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Abstract

Latent class analysis often aims to relate the classes to continuous external

consequences (“distal outcomes”), but estimating such relationships necessitates

distributional assumptions. Lanza et al. (2013) suggested to circumvent such

assumptions with their “LTB approach”: linear logistic regression of latent class

membership on each distal outcome is first used, after which this estimated relationship

is reversed using Bayes’ rule. However, the LTB approach currently has three

drawbacks, which we address in this article. First, LTB interchanges the assumption of

normality for one of homoskedasticity, or, equivalently, of linearity of the logistic

regression, leading to bias; fortunately, we show introducing higher-order terms prevent

this bias. Second, we improve coverage rates by replacing approximate standard errors

with resampling methods. Finally, we introduce a bias-corrected three-step version of

LTB as a practical alternative to standard LTB. The improved LTB methods are

validated by a simulation study, while an example application demonstrates their

usefulness.
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Introduction

Latent class (LC) analysis is a well-known approach used in the social and

behavioral sciences to create subgroups of units with similar scores on a set of observed

indicator or response variables. In many applications, the interest lies not only in the

clustering of units, but also in investigating whether LCs differ with respect to the

mean of one or more continuous distal outcome variable. For example, De Cuyper,

Rigotti, Witte, and Mohr (2008) compared the class-specific means of job insecurity for

psychological contract type clusters and Mulder, Vermunt, Brand, Bullens, and

Van Merle (2012) compared the means of juvenile offenders clusters on outcomes

measuring recidivism. Other examples are predicting alcohol dependence from early

substance abuse clusters and predicting the contraction of sexually transmitted diseases

from sexual risk behavior clusters (Lanza, Tan, & Bray, 2013).

The class-specific means of a continuous distal outcome can be estimated by

expanding the LC model with the outcome as an additional indicator. The main

problem with this approach, which is referred to as the one-step approach, is that

assumptions have to be made about the within-class distribution of the distal outcome.

Typically this will be the assumption of normality. However, in case this assumption is

violated the whole LC solution can change when including the distal outcome, or even

more classes can be extracted than would without this variable included (Bauer &

Curran, 2003).

Lanza, Tan, and Bray propose an approach (called “LTB approach” after its

developers) that bypasses the difficulties arising from potential violations of

distributional assumptions. It involves estimating a LC model in which the distal

outcome variable is used as a covariate affecting the LCs instead of a response variable.

Subsequently, using the estimates from this model, the class-specific means of the distal

outcome variable are calculated (Lanza et al., 2013). The approach is implemented in

standard software for LC analysis, such as Mplus 7.1 (Muthén & Muthén, 1998-2012),

and Latent GOLD 5.0 (Vermunt & Magidson, 2013).

While promising, the LTB approach has a few shortcomings that we address in
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this paper. First of all, when the distal outcome has heteroskedastic errors across

classes, the LTB method may yield biased estimates of the class-specific means (Bakk &

Vermunt, in press). We show how this bias can be prevented by including a quadratic

term in the multinomial regression model for the classes. This is similar to what is done

in a quadratic discriminant analysis. Furthermore while in the original article (Lanza et

al., 2014) no standard error estimator was proposed, Asparouhov and Muthén (2014)

proposed an ad-hoc estimator that is downward biased (Bakk & Vermunt, in press;

Asparouhov & Muthén, 2014), thus obtaining too low coverage rates. We propose

resolving this problem by using standard resampling methods, i.e. bootstrap-based or

jackknifed standard errors.

Furthermore we propose a three-step estimation of the LTB approach. Many

applied researchers prefer to first establish a measurement model, and in a later stage

relate it to external variables of interest. It is also common that the measurement

model is built by one researcher, while the structural model (relating LC membership to

external variables) is built by others. It then is useful to have a three-step approach

available. This proceeds as follows: 1) a standard LC analysis is performed using only

the indicator variables, 2) individuals are assigned to latent classes, and 3) the assigned

class scores are regressed on the distal outcome of interest, while correcting for the

classification error introduced in the second step (Vermunt, 2010). Based on the

parameters obtained in the third step, the class-specific means of the distal outcome can

be calculated. This three-step implementation can also be useful when the model

estimates using the LTB approach is part of a larger, complex model.

In the remainder of this paper, we first introduce the basic LC model, then

present the simultaneous LTB approach (as proposed by Lanza et al. 2014), and

subsequently discuss its three-step implementation. Next, we introduce the proposed

correction for the situation where the distal outcome has heteroskedastic errors,

followed by the introduction of the alternative SE estimators. Subsequently, we present

the results of a simulation study investigating the performance of the proposed

improvements, and we demonstrate the use of the proposed methods via an example
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explaining respondent’s income from parents’ social status. Lastly, we conclude and

suggest directions for future research.

The basic LC model

Let Yik denote the response of individual i on one of K categorical indicator

variables, where 1 ≤ k ≤ K and 1 ≤ i ≤ N. The full response vector is denoted by Yi.

LC analysis assumes that respondents belong to one of the T categories of an

underlying categorical latent variable X which affects the responses (McCutcheon, 1987;

Goodman, 1974; Hagenaars, 1990). Denoting a particular latent class by t, the model

can be formulated as follows:

P (Yi) =
T∑
t=1

P (X = t)P (Yi|X = t), (1)

where P (X = t) represents the (unconditional) probability of belonging to latent class t

and P (Yi|X = t) represents the class-specific response probabilities on the indicators.

Furthermore, we assume that the K indicator variables are independent within classes,

which is known as the local independence assumption. This yields:

P (Yi) =
T∑
t=1

P (X = t)
K∏
k=1

P (Yik|X = t). (2)

For categorical responses, P (Yik|X = t) =
Rk∏
r=1

π
I(Yik=r)
ktr , where πktr is probability of

response r on variable k for class t, and I(Yik = r) is an indicator variable taking on the

value 1 if Yik = r and 0 otherwise.

The basic LC model can be extended to include a continuous distal outcome

variable, which involves adding this variable to the model as an additional indicator and

defining its class-specific distribution. However, this approach is hardly ever used in

practice. Alternative approaches are the LTB approach and the three-step approach

discussed in the next sections.
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The simultaneous LTB approach

The LTB approach was developed with the goal to make it possible to estimate

the association between the LC membership and the distal outcome without making

strong distributional assumptions about the latter. This is especially important in case

of a continuous outcome variable, in which case the assumption of normal class-specific

distribution is often violated. As a consequence of violating this assumption a

completely different LC model can be estimated, when the distal outcome is added, a

possibility that is often not intended/ desired by researchers. Because of these issues the

LTB approach is preferred over the one-step approach in many applications. Using the

LTB approach, first a LC model is estimated with the distal outcome, say Z, included

as covariate to the basic LC model. Subsequently, using Bayes theorem the class-specific

means of the distal outcome are calculated (see Figure 1). We will call this approach

originally proposed by Lanza, Tan, and Bray (2014) the simultaneous LTB approach.

In step one, Z is included as a covariate to the basic model, by extending

Equation 2 to model P (Yi|Zi) instead of P (Yi) (Dayton & Macready, 1988;

Bandeen-Roche, Miglioretti, & Zegger, 1997):

P (Yi|Zi) =
T∑
t=1

P (X = t|Zi))
K∏
k=1

P (Yik|X = t). (3)

This model assumes that the indicator variables are conditionally independent of

the covariate given the latent variable X. This is a standard assumption, made by the

approaches available in literature to relate LC membership to external variables. If a

direct effect is hypothesized, this should be explicitly modeled. The P (X = t|Zi) is

parametrized using a multinomial logistic regression model:

P (X = t|Zi) = eαt+βtZi

1 + ∑T−1
t′=1 e

αt′ +βt′Zi
, (4)

where αt and βt are the intercept and slope coefficients for class t.
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Next, in step two, the class-specific means µt are computed:

µt =
∫
Z
Z f(Z|X = t) (5)

where f(Z|X = t), the class-specific distribution of Z, is obtained by applying Bayes’

rule (Lanza et al., 2013):

f(Z|X = t) = f(Z)P (X = t|Z)
P (X = t) . (6)

The quantities P (X = t|Z) and P (X = t) can be obtained from the estimated LC

model. The distribution of Z, f(Z), can be approximated using the empirical

distribution of this variable (Asparouhov & Muthén, 2014). That is, replacing the

integral in Equation 5 by a sum over the N sample units and replacing f(Z) in

Equation 6 by 1
N

(Bakk & Vermunt, in press). This yields:

µt =
N∑
i=1

Zi
P (X = t|Zi)
N P (X = t) . (7)

Simulation studies show that the estimated class-specific means obtained with this

implementation of the LTB approach are unbiased as long as the relation between X

and Z is linear-logistic (Asparouhov & Muthén, 2014; Bakk & Vermunt, in press).

However, when the linearity does not hold the estimates are biased (Bakk & Vermunt,

in press). This occurs for instance when the distal outcome has heteroskedastic errors.

It turns out that larger the differences in the variances between classes, the larger the

bias. We address this problem in more detail in section 4.

Lanza et al. (2013) did not discuss how to obtain SEs for the class-specific means,

which are needed to make statistical inference possible. As a way out, Asparouhov and

Muthén (2014) suggested obtaining approximate SEs by taking the square root of the

within-class variance divided by the class-specific sample size; that is,

σ2
t =

N∑
i=1

(Zi − µt)2P (X = t|Zi)
NP (X = t) (8)
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Simulation studies show that the approximate SE estimates underestimate the

true sampling variability of the class-specific means (Asparouhov & Muthén, 2014;

Bakk & Vermunt, in press), a problem that we address in section 5.

The three-step LTB approach

While originally proposed as a simultaneous estimation procedure, the LTB

approach can easily be transformed into a three-step estimation procedure similar to

the one proposed by Vermunt (2010). This can be beneficial because it follows the logic

of researchers, who often prefer to first establish a measurement model, and later

associate it with one or more distal outcomes. Furthermore, in some situations the

simultaneous LTB approach cannot be used; for example, when the sample used to

estimate the LC measurement model does not (fully) overlap with the sample

containing the distal outcomes of interest (Bakk & Vermunt, in press). The approach is

also useful in situations where there is a large amount of missingness on the Z variable

of interest. In such situations the researcher can choose for a three-step approach, in

order to estimate the classification model (step one) using more information.1

The three-step LTB approach can be implemented as follows. Steps one and two

involve performing a standard LC analysis (without distal outcome) and assigning

individuals to classes, whereas in step three the assigned class memberships are related

to the external variables of interest while correcting for classification errors, followed by

the calculation of the class-specific means (Vermunt, 2010; Bakk, Tekle, & Vermunt,

2013) (see Figure 2). Using this approach, the first two steps need to be performed only

once. Step three is repeated for each distal outcome variable, while keeping the

measurement model parameters and the resulting classifications fixed.

After estimating the step-one model (that includes only the indicator variables),

as described in Equation 2, the units are assigned to the latent classes based on their

posterior class membership probabilities: P (X|Yi). During the assignment process a
1It should be mentioned that in the three-step approach we assume that missingness on the distal

outcome is unrelated to the size of the classification errors. Since cases with missing values are removed
from the analysis, this missingness is assumed to be MCAR, as is also the case in the simultaneous
(original) LTB method.
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new variable, Wi is created, which equals the assigned class membership score for

person i. Different assignment rules can be used, the best-known ones being modal and

proportional assignment. Using modal assignment, each unit is assigned to a single

class; namely, to the class for which the posterior membership probability is largest

(Bolck, Croon, & Hagenaars, 2004), yielding what is called a hard partitioning. Using

proportional assignment, each unit is assigned to each of the T classes with a weight

equal to P (Wi = s|Yi) = P (X = s|Yi), leading to what is sometimes referred to as a

soft partitioning (Dias & Vermunt, 2008). Irrespective of the assignment rule used,

there will be classification errors unless all classifications are perfect. These errors can

be quantified as the off-diagonal elements of the T − by − T classification table with

entries P (Wi = s|X = t) (Bolck et al., 2004; Vermunt, 2010; Bakk et al., 2013).

In step three, a LC model is estimated with W as a single indicator of class

membership and with Z as a covariate affecting the classes:

P (Wi = s|Zi) =
T∑
t=1

P (X = t|Zi)P (Wi = s|X = t), (9)

where P (Wi = s|X = t) is fixed to the estimated values from step two, and P (X = t|Zi)

contains the logistic parameters to be estimated. Next, just as with the simultaneous

LTB approach, with the estimated values for P (X = t|Zi), the class-specific means of Z

are calculated using Equation 7. This three-step LTB analysis is implemented in the

Latent GOLD 5.0 program (Vermunt & Magidson, 2013).

The LTB approach with a quadratic term

While not stated explicitly by Lanza et al. (2013), if Z is normally distributed

within classes with means µt and variances σ2
t , the logistic model for P (X = t|Zi) is

actually described by the discriminant function (Narsky & Porter, 2013, pp. 221-225).

That is:

logP (X = t|Zi) = logP (X = t)− 1
2 log σ2

t −
µ2
t

2σ2
t

+ Ziµt
σ2
t

− Z2
i

2σ2
t

+ C,
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where C is a constant (−1
2 log(2π)). This implies that log(P (X = t|Zi) is a quadratic

function of Z:

logP (X = t|Zi) = at + btZi + ctZ
2
i .

Where

at = logP (X = t)− 1
2 log σ2

t −
µ2
t

2σ2
t

,

bt = µt
σ2
t

,

ct = − 1
2σ2

t

.

Thus, using the logistic formulation, the model for P (X = t|Zi) equals:

P (X = t|Zi) = exp(αt + βtZi + γtZ
2
i )∑T

t′=1 exp(αt′ + βt′Zi + γtZ2
i )
. (10)

In a multinomial logistic regression, one would impose identifying constraints on the αt,

βt, and γt terms, for example, set them equal to 0 for class T . This means αt = at − aT ,

βt = bt − bT , and γt = ct − cT .

Since Zi and Z2
i are correlated, the estimates of P (X = t|Zi) based on Equation 4

which does not contain the quadratic term and resulting estimates of the class-specific

means will be biased unless the γt term is equal to 0. It should be noted that γt = 0

when the variances σ2
t are equal across classes, that is, when errors are heteroskedastic.

However, when variances are unequal across classes, the quadratic term should be

included in the multinomial logistic regression model to obtain the correct estimates for

µt. By plugging in the estimates for P (X = t|Zi) obtained using Equation 10 into

Equation 7, unbiased estimates of the class-specific means can also be obtained in the

case of heteroskedastic errors.

Alternative SE estimators

Another issue with regard to the LTB approach implementation that needs

further attention is the problem of the underestimated standard errors reported by
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Asparouhov and Muthén (2014) and Bakk and Vermunt (in press). This occurs because

the approximate SEs do not take into account the sampling variability of the logistic

parameters defining P (X = t|Zi) nor the fact that it conditions on the sample

distribution of Z. A natural way to obtain SEs in such situations is by means of

non-parametric resampling methods, that can be done by either a non-parametric

bootstrapping or using the jackknife procedure.

Bootstrap SEs for the LTB approach

For the simultaneous LTB approach, bootstrap SEs (Guan, 2003) are obtained as

follows:

1. Draw B random replication samples with replacement from the original data

set.

2. Obtain the class-specific means of Z for each of these B bootstrap samples by

applying the LTB approach.

3. Calculate the standard deviations of the class-specific means across the B

bootstrap replications. This yields the bootstrap SE estimates.

For the three-step LTB method, a choice can be made whether to bootstrap only

the third step or also the first step.2 In the latter case, one would also account for the

uncertainty about the classification errors, which are fixed parameters in the step-three

analysis. However, such a double bootstrap is much more costly and complex; that is,

for each first-step bootstrap replication one should perform a full bootstrap of the third

step. Because preliminary analyses showed that the step-three bootstrap is much more

important for the SEs, we decided to bootstrap only the step-three parameters and

evaluate the performance of this approach in the simulation study.

Bootstrapping the third step is similar to the non-parametric bootstrap described

above. The main difference is that we sample from a data set with Z values and

posterior class membership probabilities instead of Z values and Y values. That is:
2Note that it can seem intuitive to bootstrap only step 1, however this is not a solution to the problem

at hand. The step three estimates need to be bootstrapped, because in this step the model for P (Z|X)
is obtained, thus the uncertainty around this estimates can be obtained using bootstrap SEs.
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1. Draw B random replication samples with replacement from the data set

containing the distal outcome(s) of interest and the classification probabilities.

2. Obtain the class-specific means of Z for each of these B samples by applying

the step-three LTB approach.

3. Calculate the standard deviation of the class-specific means across the B

replications. This gives the bootstrap SE estimates.

Jackknife standard errors for the LTB approach

When using the jackknife approach, first the ML estimates of the parameters of

interests (the class-specific means µt) are obtained based on the full sample of size N .

Following, the estimates are recalculated leaving out one observation i at a time. The

jackknife SE estimator is defined as follows:

SE(µt) =

√√√√N − 1
N

N∑
i=1

(µ̂t − µ̂t(−i))2, (11)

where µ̂t is the original estimate and µ̂t(−i) the estimate when leaving out observation i.

In the three-step approach, the jackknife estimator can be applied in the

step-three analysis, when the parameter estimates pertaining to the Z −X relationship

and the corresponding µ̂t are obtained.

Simulation study

We performed a simulation study to evaluate the performance of the proposed

adaptations of the LTB approach. These adaptations are the inclusion of a quadratic

term, the use of bootstrap and jackknife SEs, and the three-step variant of LTB

approach.

In the simulation study we compare the performance of the LTB approach with

the different modifications to the BCH approach. This is done because the BCH

approach is known to be the most robust stepwise estimator for relating LC

membership to continuous distal outcomes (Bakk & Vermunt, in press).

Data sets were generated from a four-class model for eight dichotomous indicators.
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The parameter settings were based on the LC application concerning psychological

contract types described by Bakk et al. (2013). The class proportions were set to .50,

.30, .10, and .10, similarly to those in this application. In class one, the probability of a

positive answer was set to .80 for all indicators, and in class four to .20. In class two, it

was set to .80 for the first four indicators and to .20 for the last four indicators, while in

class three these settings were reversed.

The distal outcome variable Z was specified to have means of -1, -0.5, 0.5, and 1

in the four classes. The variance of Z was fixed to 1 in classes one and four, but varied

in classes two and three. More specifically, in these two classes, the variance was set to

1, 4, 9, or 25, which corresponds to four different degrees of heteroskedasticity (none,

small, medium, and large), and thus to different degrees of deviation from linearity of

the logistic model for the association between Z and the classes.

The second factor that was varied was the sample size, which was specified to be

either 500 or 1000. For all combinations of heteroskedasticity and sample size

conditions, 500 simulation replications were used. The simulation were done using the

computer programs R (Venables, Smith, & the R Core Team, 2013) and Latent GOLD

5.0 (Vermunt & Magidson, 2013).

The LTB approach was applied with and without the quadratic term, in both its

simultaneous and its three-step form, where the three-step variant was used with either

modal or proportional class assignment. This yielded six different implementations of

the LTB method. Each of these was combined with both the approximate SEs,

jackknife SEs, and bootstrap-based SEs. For the bootstrap SEs we use B = 1000

bootstrap samples to obtain stable estimates. The BCH approach was applied with

both modal and proportional assignment, using the sandwich standard error estimator,

as proposed by Vermunt (2010).

The six different LTB implementations and two BCH implementations were

compared with respect to parameter bias and relative efficiency. The efficiency of the

LTB implementations was compared to proportional BCH, by dividing the simulation

standard deviations of the estimates by those using BCH. Moreover, coverage rates of
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the 95% confidence intervals obtained with the different SE estimators were compared.

In the following the results are presented averaged over the classes (a weighted average

is used, with the class size as weight).

In Table 1 we show the bias in the estimates of the class-specific means under the

different conditions, averaged over 500 replications and over the four classes. As the first

three rows of Table 1 show the linear LTB is an unbiased estimator only when there is

no heteroskedasticity. In the conditions with heteroskedasticity, it can be seen that as

heteroskedasticity increases, bias increases, with both three-step and simultaneous

approach (up to values such as .29 with modal, and -.31 with proportional assignment

for three-step approaches, and -.22 with simultaneous approach in the worth condition).

However using the quadratic term unbiased estimates of the class specific means are

obtained also in the high heteroskedasticity conditions. Comparing the estimates

obtained with the LTB approach using the quadratic model and BCH we can see that

results are comparable. The bias is the lowest using the simultaneous approach (between

.000 and .003). However, the differences are negligible (only on the third decimals).

Next Table 2 shows the relative efficiency of the LTB estimators as compared to

the BCH method. In almost all conditions the LTB estimators (when used with the

correct model) are more efficient then BCH (having relative efficiency scores between

.78 and 1.04). The three step LTB with modal assignment is the least efficient among

the LTB approaches, with relative efficiency scores between .82 and 1.04. Furthermore

the simultaneous LTB is the most efficient estimator in all conditions (with relative

efficiency scores ranging between .79 and .92). This results are expected, since in

general simultaneous estimators are more efficient then stepwise estimators.

Following, Table 3 shows the coverage rates obtained with the different

estimators. When the correctly specified LTB approach is used with the approximate

SEs the coverage rate is low (below 90%), even in the larger sample size conditions. The

coverage rate obtained using the jackknife and bootstrap approaches is closer to the

nominal 95%. The coverage rates obtained with the three-step LTB (with both modal

and proportional assignment) is lower (between 90%- 96%) than the coverage using the
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simultaneous approach (between 94%- 96%). However when the sample size is large

enough even with the three-step implementation the coverage rate with both the

jackknife and bootstrap estimators is close to the nominal rate. In all conditions the

bootstrap estimator is somewhat better than the jackknife. However, the differences are

very small. The coverage rates obtained using the BCH approach while close to the

nominal 95% rate (between 90%- 95%), are somewhat smaller than the coverage

obtained with the LTB approach using the bootstrap or jackknife SEs.

In summary, when the within-class errors of Z are heteroskedastic, the quadratic

term should be used to obtain unbiased estimates of the class-specific means. The

three-step LTB approaches perform as well as the original simultaneous approach with

regard to bias but they are somewhat less efficient. The bootstrapped and jackknifed

standard errors yield coverage rates much closer to the nominal 95% rate than the

approximate SEs. Furthermore, the LTB approach (both the simultaneous and the

three-step implementation) proved to be more efficient than the BCH approach.

An application: Predicting income from parents’ social status classes

We will now illustrate the different LTB implementations with an application

using data from the 1976 and 1977 General Social Survey, a cross-sectional survey of the

English-speaking, non institutionalized adult population of the U.S.A., conducted by

the National Opinion Research Center (“GENERAL SOCIAL SURVEY 1976-1977”,

1977). We built a LC model for parents’ social status using mother’s education, father’s

education, and prestige of the father’s job as indicators. Education was measured on a

five-point scale ranging from 0 to 4, where 0 corresponds to ’lower than high school’ and

4 to ’graduate’. Father’s job prestige measured on a scale from 12 to 82 which recoded

into three categories: low (12-36), medium (37-61), and high (62-82) prestige. As distal

outcome variable we chose the real income of the respondent in thousand dollars

increments.

In step 1, we fitted various LC models with the three indicators and selected the

three-class model as best fitting model (L2 = 98.10, p = 0.65, entropy R2 = 0.66). The
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bivariate residuals were also small. The parameters of the three-class model are

presented in Table 4. Class one, the largest class, comprises of respondents whose

parents had a lower social status, while class 2 corresponds to medium, and class 3, the

smallest class, to high social status of the parents. Note that in the step-one analysis

the full sample of 3029 respondents was used by keeping also cases with missing values

on one or more of the indicators in the analysis.

Next we related the respondent’s income to the latent classes using the one-step

approach in which income is an additional indicator and the LTB approach, both with

and without accounting for possible heteroskedastic errors. The LTB approach was used

with the original and three-step implementation. The estimated class-specific means

obtained with the different approaches are presented in Table 5. The estimates

obtained using the four different LTB approaches are very similar. They show that the

income is highest among those respondents whose parents have the highest social

status, and lowest for those whose parents have the lowest social status. However, the

estimates obtained with the one-step approach (with equal or unequal variances) are

very different, especially for class 3, which is the result of the fact that its definition

changes drastically (for details, see Table A1 and A2). Using unequal variances does

also not solve the problem of completely changed class definitions.

These results obtained with this application are in line with previous research.

That is, in conditions where the sample size is large and the separation between the

classes is good, the LTB approach obtains unbiased estimates, even without the

quadratic term (Bakk & Vermunt, in press, Table 5). However, in the one-step

approach, the class solution can change to fit the distribution of the distal outcome,

which is what happens in this example. It should be mentioned that the changing of the

class solution using the one-step approach is only problematic when the model based on

the indicators only is seen as the ’true’ LC model, a situation that is common in

practice. Note that while the simultaneous LTB approach yields similar class-specific

means of income as the three-step approach, the class proportions and the class-specific

response probabilities on the indicators change somewhat (see Table A3 and A4).
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Table 6 presents the SE estimates obtained with the approximate jackknife, and

bootstrap estimator for the four LTB approaches. The bootstrap and jackknife SE

estimates are larger than the approximate estimates for both the original and three-step

approaches with and without quadratic term. In this application, all SE estimators

yield the same conclusion with regard to the significance of the income difference across

classes.

Discussion

The central idea of the LTB approach is that LC membership can be related to

distal outcome variables by inverting the relationship, that is, by regressing the LC

membership on the outcomes of interest. Based on the parameter estimates of this

“reversed” model, the class-specific means of the distal outcome are calculated. The

main benefit of the LTB approach is that no strong distributional assumptions have to

be made about the distal outcomes. Furthermore this approach provides a direct test of

the overall association between the LC variable and the distal outcomes.

In this paper, we presented three possible improvements of the LTB approach

when applied to continuous distal outcomes. One of these is that we proposed

incorporating the LTB approach into a three-step estimation procedure. The

advantages of this procedure are that it follows more closely the logic of many

researchers who apply latent class analysis by separating the measurement and

structural steps. It also allows one to apply the LTB method in situations where the

measurement model gives the error rates of a variable in an external dataset, for

instance when obtaining medical diagnoses based on several error-prone tests and

relating such (modal) diagnoses to external variables in a different, non-overlapping

sample. In such situations, the simultaneous approach cannot be used. A disadvantage

of the three-step approach is that when the uncertainty about the step one estimates is

large (low entropy and/or sample size) the parameters are somewhat biased (Bakk et

al., 2013; Vermunt, 2010; Asparouhov & Muthén, 2014). Furthermore, this

implementation is asymptotically less efficient than simultaneous LTB.
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We showed that omission of the quadratic term in the logistic model for the LC

variable yields biased estimates of the class-specific means when the distal outcome has

heteroskedastic errors; that is, when means and variances are not independent. In such

situations, unbiased estimates of the class-specific means can be obtained by including

the quadratic effect of the distal outcome on the classes.

We proposed using a jackknife or bootstrap-based SE estimator as an alternative

to the currently used approximate estimator, originally proposed by Asparouhov and

Muthén (2014). Contrary to the latter, the bootstrap and jackknife estimators can

account for the overall sampling variability in the distal outcome and for the sampling

fluctuation in the logistic parameters for the association between the LCs and the distal

outcome.

The results of the simulation study showed that unbiased parameter estimates can

be obtained if the heteroskedastic error is modeled using the quadratic term in the

logistic regression of the LC variable on the outcome. This is the case with both the

original and three-step implementation. However, if the quadratic term is not used the

estimated class specific means are biased, when the error is heteroskedastic. The bias is

somewhat larger with the three-step than with the simultaneous approach, although the

difference is minor. At the same time the jackknife and bootstrap SEs obtain coverage

rates close to the nominal 95% rate for both the original and three-step implementation

of the LTB approach. It should be mentioned that the coverage rate obtained with the

bootstrap estimator is slightly better than the one obtained with the jackknife

estimator, although both are close to the nominal 95% level.

The real data example illustrated a situation where using a standard LC model

with a distal outcome or the LTB approach makes a big difference. That is, in the

one-step approach, the full LC solution changed and became hard to interpret, while

with the LTB approach this problem did not occur. Furthermore, the different

implementations of LTB yielded similar results, which can be explained by the large

sample size and the strong measurement model.

We can conclude that the LTB method can be used with confidence for relating
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LC membership to continuous distal outcomes. However, attention should be paid to

whether a linear or a quadratic model should be used. The results of the simulation

study showed that in situations where the Wald test of the quadratic effect is significant,

this effect should be added to the model. It is recommended to use the jackknife or the

bootstrap standard errors in all conditions. The proposed three-step LTB can be used

with a minimum loss of efficiency whenever using the original approach is less practical

or not feasible and the uncertainty about the step one model is not too high.

Further research might develop better tools for detecting whether a quadratic

term needs to be added. For instance, the EPC-interest measure could be used, which

quantifies how much the parameters of interest (here the class-specific means) change

when adding the quadratic term (Oberski, 2014). Future research could also analyze the

robustness of the LTB approach to other types of violations of implicit assumptions,

such as when distal outcome distribution are skewed or show excess kurtosis. In such

situations, third- and fourth-order terms might enter the logistic model for the classes.

Although we suspect that the impact and importance of such terms will decline with

their order, this remains a topic to be investigated. It is also recommended to analyze

its performance with continuous distal outcomes coming from other distributions than

normal.
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Table 1
Bias in the estimates of class-specific means under eight simulation conditions, averaged
over 500 replications and over the four classes.

Condition: heteroskedasticity × sample size condition
None Small Medium Large

Estimator 500 1000 500 1000 500 1000 500 1000
LTB, linear model

Modal 0.005 0.004 0.020 0.012 0.063 0.074 0.103 0.293
Proportional 0.003 0.005 0.022 0.014 0.094 0.110 0.150 -0.313
Simultaneous -0.003 0.003 0.092 0.075 0.237 0.226 0.239 -0.222

LTB, quadratic model
Modal 0.002 0.006 0.012 -0.002 0.013 0.003 -0.010 0.007
Proportional 0.006 0.007 0.010 -0.002 0.011 0.003 -0.013 -0.005
Simultaneous 0.001 0.000 0.003 -0.003 0.002 0.000 -0.003 0.000

BCH
Modal -0.005 -0.002 -0.008 -0.002 -0.006 0.002 -0.002 -0.005
Proportional -0.006 -0.002 -0.009 -0.002 -0.007 0.003 -0.002 -0.005
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Table 2
Relative efficiency compared with the proportional-assignment BCH estimator. Shown
are simulation standard deviations of the estimates divided by those using BCH.

Condition: heteroskedasticity × sample size
None Small Medium Large

Estimator 500 1000 500 1000 500 1000 500 1000
LTB, linear model vs. BCH

Modal 1.024 0.976 1.251 1.308 1.819 2.262 2.258 3.523
Proportional 0.966 0.965 1.407 1.489 2.279 2.902 3.199 4.718
Simultaneous 0.942 0.848 1.958 2.298 2.671 3.251 3.099 3.825

LTB, quadratic model vs. BCH
Modal 1.040 0.988 1.006 0.990 0.912 0.873 0.822 0.884
Proportional 0.983 0.976 0.958 0.981 0.898 0.866 0.780 0.852
Simultaneous 0.942 0.848 0.946 0.904 0.848 0.834 0.792 0.834



IMPROVED LTB APPROACH 25

Table 3
Coverage of 95% confidence intervals under the eight conditions. Performance is shown
for three difference standard error estimators for LTB.

Condition: heteroskedasticity × sample size
None Small Medium Large

Estimator . 500 1000 500 1000 500 1000 500 1000
LTB, linear model

Modal
Approximate 0.830 0.839 0.816 0.782 0.780 0.735 0.780 0.721
Jackknife 0.909 0.924 0.927 0.923 0.905 0.892 0.894 0.825
Bootstrap 0.909 0.927 0.932 0.927 0.920 0.913 0.923 0.846

Proportional
Approximate 0.843 0.856 0.781 0.770 0.691 0.642 0.672 0.594
Jackknife 0.903 0.926 0.913 0.923 0.845 0.822 0.791 0.720
Bootstrap 0.903 0.926 0.919 0.933 0.874 0.847 0.812 0.748

Simultaneous
Approximate 0.863 0.887 0.770 0.781 0.673 0.679 0.674 0.888
Jackknife 0.946 0.957 0.891 0.896 0.803 0.789 0.818 0.811
Bootstrap 0.961 0.961 0.914 0.910 0.824 0.806 0.829 0.824

LTB, quadratic model
Modal

Approximate 0.829 0.832 0.856 0.871 0.881 0.881 0.906 0.891
Jackknife 0.900 0.921 0.935 0.931 0.932 0.946 0.959 0.941
Bootstrap 0.906 0.921 0.936 0.936 0.940 0.947 0.962 0.942

Proportional
Approximate 0.836 0.856 0.872 0.885 0.888 0.907 0.922 0.904
Jackknife 0.904 0.924 0.932 0.930 0.942 0.948 0.955 0.936
Bootstrap 0.903 0.924 0.931 0.931 0.943 0.955 0.963 0.941

Simultaneous
Approximate 0.861 0.880 0.878 0.895 0.900 0.924 0.925 0.905
Jackknife 0.947 0.956 0.944 0.954 0.951 0.953 0.963 0.936
Bootstrap 0.954 0.965 0.952 0.956 0.959 0.959 0.967 0.944

BCH
Modal 0.907 0.919 0.927 0.929 0.932 0.930 0.945 0.954
Proportional 0.898 0.908 0.917 0.921 0.929 0.930 0.941 0.952
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Table 4
The 3-class model of parents social status. Class proportions and conditional response
probabilities

Low Medium High
Class Size 0.69 0.24 0.07
Father’s job status
low 0.47 0.31 0.05
medium 0.53 0.67 0.46
high 0.00 0.02 0.49
Mother’s education
< high school 0.83 0.14 0.15
high school 0.16 0.78 0.44
junior college 0.00 0.03 0.01
bachelor 0.01 0.04 0.30
graduate 0.00 0.01 0.10
Father’s education
< high school 0.95 0.08 0.01
high school 0.05 0.86 0.12
junior college 0.00 0.00 0.05
bachelor 0.00 0.05 0.38
graduate 0.00 0.00 0.43
Note.The sample consists of 3029 respondents
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Table 5
Estimates of the class-specific means of income for the classes of parental social status
obtained with the different methods

Method Model µ class 1 µ class 2 µ class 3
Simultaneous LTB linear 25.37 36.49 44.16
Simultaneous LTB quadratic 25.73 35.76 45.68
3-step LTB linear 26.43 37.88 44.40
3-step LTB quadratic 26.74 36.94 44.85
Standard 1-step equal variances 25.36 36.62 162.59
Standard 1-step unequal variances 21.33 26.98 69.73
Note. Sample size is 2767 obtained by excluding missing values on income

Table 6
SE estimates of the class-specific means of income for the different LTB approaches with
the approximate and bootstrap SE estimators

SE estimator Original 3-step
linear quadratic linear quadratic

Class1
approximate 0.90 0.58 0.55 0.44
bootstrap 1.03 0.78 0.63 0.63
jackknife 0.98 0.83 0.65 0.59

Class2
approximate 1.16 1.57 1.45 1.31
bootstrap 1.20 1.52 1.51 1.76
jackknife 1.26 2.39 1.46 1.43

Class3
approximate 2.62 3.42 2.81 3.04
bootstrap 3.00 3.30 2.96 3.15
jackknife 2.87 4.58 2.96 3.22
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Figure 1 . Original LTB approach
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Figure 2 . Three-step LTB approach
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Appendix 1: Additional tables related to our example application

Table A1
The modified 3-class model of parents social status obtained using the one-step approach
without accounting for heteroskedasticity

Class Size 0.69 0.30 0.02
Father’s job status
low 0.47 0.23 0.20
medium 0.53 0.64 0.68
high 0.00 0.13 0.13
Mother’s education
lt high school 0.82 0.12 0.42
high school 0.17 0.72 0.42
junior college 0.00 0.03 0.00
bachelor 0.00 0.11 0.13
graduate 0.00 0.03 0.03
Father’s education
lt high school 0.93 0.08 0.52
high school 0.07 0.66 0.26
junior college 0.02 0.00 0.00
bachelor 0.00 0.13 0.10
graduate 0.00 0.11 0.13

Table A2
The modified 3-class model of parents social status obtained using the one-step approach
with accounting for heteroskedasticity

Class Size 0.59 0.33 0.08
Father’s job status
low 0.48 0.33 0.05
medium 0.52 0.67 0.47
high 0.00 0.01 0.48
Mother’s education
lt high school 0.92 0.17 0.16
high school 0.08 0.75 0.47
junior college 0.00 0.03 0.01
bachelor 0.00 0.04 0.27
graduate 0.00 0.01 0.08
Father’s education
lt high school 0.96 0.32 0.01
high school 0.04 0.65 0.17
junior college 0.00 0.01 0.05
bachelor 0.00 0.03 0.37
graduate 0.00 0.00 0.40
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Table A3
The modified 3-class model of parents social status obtained using the simultaneous LTB
approach without accounting for heteroskedasticity

Class Size 0.59 0.33 0.08
Father’s job status
low 0.48 0.33 0.05
medium 0.52 0.67 0.47
high 0.00 0.01 0.48
Mother’s education
lt high school 0.92 0.17 0.16
high school 0.08 0.75 0.47
junior college 0.00 0.03 0.01
bachelor 0.00 0.04 0.27
graduate 0.00 0.01 0.08
Father’s education
lt high school 0.96 0.32 0.01
high school 0.04 0.65 0.17
junior college 0.00 0.01 0.05
bachelor 0.00 0.03 0.37
graduate 0.00 0.00 0.40

Table A4
The modified 3-class model of parents social status obtained using the simultaneous LTB
approach with accounting for heteroskedasticity

Class Size 0.61 0.31 0.08
Father’s job status
low 0.47 0.33 0.06
medium 0.52 0.67 0.48
high 0.00 0.00 0.47
Mother’s education
lt high school 0.92 0.15 0.16
high school 0.08 0.78 0.47
junior college 0.00 0.03 0.01
bachelor 0.00 0.04 0.27
graduate 0.00 0.01 0.09
Father’s education
lt high school 0.95 0.31 0.02
high school 0.05 0.65 0.20
junior college 0.00 0.01 0.05
bachelor 0.00 0.03 0.36
graduate 0.00 0.00 0.38

Appendix 2: Latent GOLD syntax for the LTB approach

In this appendix, we present the LG 5.0 syntax used for the real data example.

The following is the syntax for the original one-step LTB approach:



IMPROVED LTB APPROACH 32

options

output

parameters=effect standarderrors=npbootstrap profile=LTB;

variables

dependent fatherjob nominal, mothereduc nominal, fathereduc nominal;

independent income;

latent

Cluster nominal 3;

equations

Cluster <- 1 + income ;

fatherjob <- 1 + Cluster;

mothereduc <- 1 + Cluster;

fathereduc <- 1 + Cluster;

In the options, we indicate what output we would like to have. The command “profile=LTB”

yields class-specific means for the independent variables, as well as their standard errors. As can been,

in this example, the chosen type of standard error estimator is the nonparametric bootstrap SE

(npbootstrap). This can also be jackknife or standard.

The subsection “variables” defines the indicators as dependent variables, the distal outcome as

independent variable, and the latent class variable. The section “equations” defines the model of

interest. The heteroskedastic model is obtained by changing the first line of the equations into

Cluster <- 1 + income + income * income;
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When using a step-three approach, one first estimates a LC model and saves the classification

information and other variables of interest to an output file. In the third step, this output file is used as

the data set to be analyzed. The class assignments are related to the distal outcome as follows:

options

step3 modal ml simultaneous;

output

parameters=effect standarderrors=npbootstrap profile=LTB;

variables

independent income;

latent Cluster nominal posterior = ( Cluster#1 Cluster#2 Cluster#3 ) ;

equations

Cluster <-\textless- 1 + income;

The choice of the type of three-step approach is defined by the command line “step3 modal ml

simultaneous”. In the definition of the LC variable one specifies the variables in the data file containing

the posterior classification probabilities from the first step: ’(Cluster1 Cluster2 Cluster3)’.


