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Abstract

Latent class analysis is used in the political science literature in both substantive

applications and as a tool to estimate measurement error. Many studies in the social

and political sciences relate estimated class assignments from a latent class model

to external variables. Though common, such a “three-step” procedure effectively

ignores classification error in the class assignments; Vermunt (2010) showed that this

leads to inconsistent parameter estimates and proposed a correction. Although this

correction for bias is now implemented in standard software, inconsistency is not the

only consequence of classification error. We demonstrate that the correction method

introduces an additional source of variance in the estimates, so that standard errors

and confidence intervals are overly optimistic when not taking this into account.

We derive the asymptotic variance of the third-step estimates of interest, as well as

several candidate corrected sample estimators of the standard errors. These corrected

standard error estimators are evaluated using a Monte Carlo study and we provide

practical advice to researchers as to which should be used so that valid inferences

can be obtained when relating estimated class membership to external variables.
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1 Introduction

Latent class analysis (LCA) is a tool used to classify objects for further analysis

(Ahlquist and Breunig, 2012), with a wide range of applications in political sci-

ence. For example, McCutcheon (1985) examined the effect of education and age

cohort on Americans’ tolerance for nonconformity as obtained from a latent class

model; Mustillo (2009, Table 4) provided a hard partitioning of new political parties

in volatile party systems. Furthermore Grimmer and Stewart (2013) discuss latent

class analysis as an unsupervised machine learning method for political texts such

as debates, legislation, news reports, and party manifestos; and Grimmer (2013)

related latent classes obtained from US Senators’ press releases to their publicly ex-

pressed priorities. Further applications of LCA in political science include Feick

(1989), Sniderman et al. (1989), Breen (2000), Hill and Kriesi (2001), Blaydes and

Linzer (2008), Linzer (2011), Glasgow, Golder and Golder (2012), Ristei Gugiu and

Centellas (2013), and Beissinger (2013). While most applications we refer to are

substantive, LCA, and in general latent variable models can be used in a more instru-

mental manner as well, as a tool to estimate measurement error in observed variables

(Fuller, 1987; Alwin, 2007; Fornell and Larcker, 1981; Rabe-Hesketh, Skrondal and

Pickles, 2001; Oberski and Satorra, 2013).

As the above examples already suggest in most applications the interest lies not

only in creating a latent classification, but also in relating this to external variables of

interest. Usually this is done using a three-step procedure, even though a simultane-

ous estimation procedure is also available (Dayton and Macready, 1988; Hagenaars,

1990, 1993; Bandeen-Roche et al., 1997). The three-step approach proceeds as fol-

lows: in the first step, the latent class model is estimated; secondly units are classified

into classes using some assignment mechanism based on the first step; and thirdly

the newly created observed variable is related to external variables using standard

methods such as (logistic) regression. Note that in the second step a classification
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error is introduced because the true class membership is unknown, unless there is

perfect classification, and this error leads to biased parameter estimates in the third

step (Vermunt, 2010; Bolck, Croon and Hagenaars, 2004).

Bias notwithstanding the three-step approach is still very popular in applied so-

cial and bio-medical research (Olino et al., 2010; McCutcheon, 1985; Clark and

Besterfield-Sacre, 2009; Marsh et al., 2009; Loken, 2004; Chan and Goldthorpe,

2007). This popularity can be explained among other factors by the intuitive nature

of the approach: researchers prefer to first establish a measurement model or a con-

struct, and later regress the construct on potential predictors (Vermunt, 2010). The

stepwise approach is preferred even more in situations where the classification needs

to be related to dependent variables (distal outcomes). The reason for this preference

is that if the dependent variables are added in a single step these variables would

define the classification, whereas the intent is to explain them by the classification

(Bakk, Tekle and Vermunt, 2013; Lanza, Tan and Bray, 2013), thus an unintended

circularity would be created. In many situations the different steps are performed

by different researchers, at different points in time. The stepwise approach can also

be used in situations where the simultaneous estimation would be impossible, for

instance when information about the classification error comes from a different sam-

ple.

Inspired by the widespread use of the three-step approach, Vermunt (2010) pro-

vided an improved three-step procedure in which the third step is amended by cor-

recting for classification errors, thus removing the parameter bias. Bakk, Tekle and

Vermunt (2013) and Asparouhov and Muthén (2012) tested Vermunt’s approach via

simulation studies by using models with distal outcome variables and latent transi-

tion analysis respectively, showing that in all these situations the bias-adjusted three-

step approach performs well with regard to parameter bias reduction. Furthermore

Feingold, Tiberio and Capaldi (2013) applied the corrected three-step approach to

substance abuse data, and implementations of the method are available in standard
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latent class software Mplus Version 7.1 (Asparouhov and Muthén, 2012) and Latent

GOLD Version 5.00 (Vermunt and Magidson, 2013).

As such the improved three-step procedures of Vermunt (2010) are easy to use

due to their availability in mainstream software. However, as we show in this article,

even after correcting for parameter bias an additional source of error remains, namely

the three-step procedure causes additional variance in the estimates that should be

accounted for. Depending on the assignment method used in step two, standard

errors will be over- or underestimated (Vermunt, 2010; Bakk, Tekle and Vermunt,

2013) in the last step. This means that even though the parameter estimates are

correct, statistical inferences are not. When underestimated standard errors are used

the confidence intervals will be too narrow and significance tests overly optimistic,

thus increasing the probability of Type I error. At the same time, using overestimated

standard errors leads to loss of power. Considering the broad applications of three-

step latent class modeling, this is an undesirable situation.

The problem of additional variance caused by using estimates from a previous

step has been dealt with in the context of non-linear models (Carroll et al., 2006),

and three-step structural equation modeling (Skrondal and Kuha, 2012; Oberski and

Satorra, 2013), and econometric theory for two-stages least squares is already well-

developed (Murphy and Topel, 1985). In this paper we apply the general theory of

Gong and Samaniego (1981) to latent class modeling, noting similarities and differ-

ences with these other approaches.

In this article we introduce two correction methods that are based on the general

theory of Gong and Samaniego (1981) and can account for the bias in the standard

errors. We evaluate different possible estimators of the standard errors using Monte

Carlo simulations showing how the optimal variance estimator depends on the class

assignment method. We also provide advice which estimators to use in different

situations in order to obtain correct inferences. Based on this study, the methods

discussed have been made available to applied researchers in the syntax version of
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the software Latent GOLD 5.00 (Vermunt and Magidson, 2013).

Whereas most of this paper focuses on correct inferences using Vermunt’s ap-

proach that conditions on the first step ML estimates (an approach that can be used in

most practical situations), in the discussion we introduce the possibility of Bayesian

inference, showing how the uncertainty about the first step parameters can be ac-

counted for in the last step using multiple imputation. The Bayesian approach can

be useful for instance in situations where model uncertainty is high, or sample size

is low and there are strong priors available.

The structure of the paper is as follows: in Section 2 we introduce the bias-

adjusted three-step latent class analysis. Next section 3 presents possible variance

estimators of this model. Section 4 then evaluates and compares the performance

of these different variance estimators in a simulation study. Section 5 revisits Mc-

Cutcheon’s (1985) analysis of how education and age groups differ in their tolerance.

While the author initially used the uncorrected three-step approach, we show how in-

ferences change using the corrections we propose. We conclude in Section 6, also

showing directions for the Bayesian implementation of the methods we propose.

2 Bias-adjusted three-step latent class analysis

To model the relationship between a latent classification and external variables of

interest without allowing the external variables to influence the classification, a three-

step approach may be followed (Vermunt, 2010; Hagenaars, 1990):

First step. Using only the indicator variables, estimate a latent class model;

Second step. Based on the first-step latent class model, create a new observed

variableW that assigns to each unit its estimated latent class mem-

bership;

Third step. Relate the estimated classification W to the external variables of
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interest.

Note that the assigned scores on W obtained in the second step do not correspond

exactly to the true values unless the classification is perfect. Thus, classification error

is introduced. As a consequence the parameter estimates of the third-step model

will be biased, since a model with variables with measurement error is estimated

(Bolck et al., 2004; Hagenaars, 1990). However, a specific of this model is that

the amount of error introduced in step two is known. Thus, the step three model

can be augmented to account for this known classification error (Bolck et al., 2004;

Vermunt, 2010). In the following we introduce in detail each of the steps, explaining

how the step three model is corrected for.

Special attention is given to the possible variance estimators. In each step a

choice can be made between Hessian or robust variance estimator, nevertheless it

is not clear which is better. More importantly in the third step the variance esti-

mators should also account for the additional variance due to the correction method

implemented. We propose two correction methods, and later in the simulation study

we cross the choice of Hessian or robust estimator with the choices of correction

methods to give practical advice on which variance estimator to use.

Similar models, in which the amount of error in the proxy is known or the true

value is approximated via multiple proxies, are available in political science litera-

ture Blackwell, Honaker and King (2012) and in the literature on measurement er-

ror correction via latent variable models Alwin (2007); Fornell and Larcker (1981);

Skrondal and Kuha (2012); Oberski and Satorra (2013).

2.1 First step: estimating a latent class model

The first step is a standard latent class analysis of K categorical indicator variables

(McCutcheon, 1987; Goodman, 1974; Hagenaars, 1990). Where by indicator vari-

ables we understand, the observed variables used to define the LC model. Given a

6



sample of n units, the observations Yi are modelled as arising from T unobserved

(latent) classes X ,

P (Yi) =

T∑
t=1

P (Xi = t)P (Yi|Xi = t). (1)

The T − 1 unique latent class sizes (mixture proportions) will be denoted P (X =

t) = ρt and are the first set of parameters of the first-step model to be estimated.

Note that in most applications the number of latent classes is not known a priori,

but can be selected based on a set of modification indices (AIC, BIC). While select-

ing the right number of classes is outside the focus of this paper, we recommend for

those interested in this problem to refer to Nylund, Asparouhov and Muthén (2007),

Van der Heijden, ’t Hart and Dessens (1997), or Sclove (1987).

Further, the responses of each unit to the K categorical indicator variables are

usually assumed to be locally independent given the unit’s latent class membership.

The conditional probability of the i-th response given the latent class can then be

written as a product of conditional item responses,

P (Yi |Xi = t) =
K∏
k=1

P (Yik|Xi = t) =
K∏
k=1

Rk∏
r=1

π
I(Yik=r)
ktr , (2)

where the indicator variable I(Yik = r) = 1 if subject i has response r on item k,

and 0 otherwise. The last step assumes that conditional item responses are equal for

all units and defines the (K− 1)KT unique probabilities {πktr} as the second set of

first-step model parameters to be estimated.

The first-step log-likelihood of the sample data L1 follows by combining equa-

tions 1 and 2 and assuming independence of observations:

L1(θ1) =
N∑
i=1

logP (Yi) =
N∑
i=1

log

[
T∑
t=1

ρt

K∏
k=1

Rk∏
r=1

π
I(Yik=r)
ktr

]
. (3)
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The first-step parameter vector to be estimated θ1 = [ρ,π] collects the latent class

sizes ρ and conditional item response probabilities π. Sample estimates θ̂1 of

the first-step parameters can be obtained by maximum-likelihood (ML). Usually

expectation-maximization, a quasi-Newton method, or a combination of both is used

to maximize the first-step likelihood in Equation 3.

The maximum-likelihood estimates are sample estimates and will contain sam-

pling variance. Assuming that the first-step model in Equation 3 is correct, standard

theory suggests that the sampling variance equals the inverse of the Fisher informa-

tion (negative of the Hessian matrix):

ΣH
1 = (−H)−1, (4)

where the Hessian matrix H is defined as the second derivative of the first-step data

log-likelihood with respect to the first-step parameters, H = ∂2L1/∂ θ1 ∂ θ
′
1.

The first-step model may not be correct–because the local independence assump-

tion may not hold, for instance. If this misspecification is small, it will likewise have

a small effect on the first-step estimates θ̂1. However, misspecification then still

affects standard errors and sampling variance. The robust or “sandwich” variance

should then be used,

ΣR
1 = ΣH

1 B ΣH
1 , (5)

where the “meat” of the sandwich, B, is the average outer product of the case wise

gradients (White, 1982). Although the robust variance estimator corrects for model

misspecification, it will also lead to a loss of efficiency (Kauermann and Carroll,

2001). It is therefore not clear in practice whether ΣH
1 or ΣR

1 should be preferred.

In situations where the misspecification is strong using robust standard errors

does not suffice. As King and Roberts (2012) highlights in these situations instead

of relying on robust standard errors it is recommended to check where the misspec-
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ification is located, and correct for that. Some useful tools to check for misspec-

ification are: the BVR statistics that checks whether there is residual association

between two indicators after controlling for latent class membership (Vermunt and

Magidson, 2013, p.72-73), or the EPC statistics, that shows how much the model

parameters would change if one parameter was freed (Oberski and Vermunt, 2013).

These statistics are especially useful to test whether there is a direct effect between

an indicator and external variable or if there is residual association left between the

indicators after controlling for class membership. If such effects exist they should be

modelled in the step one model.

For simplicity of exposition in the following we restrict ourselves to models

where all model assumptions hold, that is the conditional independence assumption

of the indicators holds, and there are no direct effects of external variables on the

indicators. Furthermore we assume that the number of classes is known. 1

2.2 Second step: assignment of units to classes

After estimating the latent class model in the first step, a new variable W is created,

assigning each unit to an estimated class. Following Bayes’ rule, each unit’s posterior

probability of belonging to class t is

P (Xi = t|Yi) =
P (Xi = t)P (Yi|X = t)

P (Yi)
. (6)

Sample estimates of the posterior probabilities P (Xi = t|Yi) can be obtained by

replacing class sizes P (X = t) with ρ̂t, conditional probability P (Yi|X = t) with∏
π̂ktr, and generally substituting elements of θ1 in Equation 6 with their first-step

sample estimates θ̂1. These estimates can be used in different ways to create an

estimated class membership variableW (Vermunt, 2010). We introduce the two most

1In situations where there is model uncertainty in step one a Bayesian approach might be used, as
introduced in the discussion. Note that uncertainty about the number of classes cannot easily be handled
with the Bayesian approach, only uncertainty about direct effects.
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widely known and applied assignment rules: modal and proportional assignment.

The modal assignment rule to generate a posterior classification W is the most

widely used rule (Collins and Lanza, 2010, p. 72). Each unit is simply assigned the

class label with the largest (modal) estimated posterior probability from Equation 6.

Using modal assignment the value of P (Wi = t|Yi) = 1 is assigned for P (Xi =

t|Yi) > P (Xi = t
′ |Yi) for all t 6= t

′
. For all other classes this value is set to 0,

leading to a hard partitioning.

Proportional assignment, in contrast, is a soft partitioning method (Dias and Ver-

munt, 2008). For each unit, T records are first created, one for each latent class. The

T values of Wi are then set equal to the posterior probabilities P (Xi = t|Yi). The

data matrix is therefore expanded to include T instead of one records for each of the

n units, where the within-unit values of the class assignment variable W will act as

weights in the third step of the analysis.

Irrespective of the assignment method used, the true (X) and assigned (W ) class

membership scores will differ. Classification errors are therefore always present,

even if the entire population were observed. The amount of classification errors will

depend on the posterior classification and the assignment method chosen. After as-

signment, the assignment variable W will require correction for classification errors

in the third step; therefore, the amount of error in it must first be calculated (Bolck,

Croon and Hagenaars, 2004).

Summing over all observed data patterns the amount of classification errors can

be expressed as the posterior class membership conditional on the true value (Ver-

munt, 2010; Bakk, Tekle and Vermunt, 2013),

P (W = s|X = t) =

1

N

N∑
i=1

P (Xi = t|Yi)P (Wi = s|Yi)

P (X = t)
. (7)

Note that while for any assignment method used the general form of equation 7 is
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the same, the values of P (Wi = s|Yi) will differ per assignment method, and thus

the amount of classification error P (W = s|X = t) will also differ per assignment

method. For example, P (Wi = s|Yi) is either 0 or 1 using modal assignment,

and with proportional assignment P (Wi = s|Yi) = P (Xi = s|Yi).As we will show

later this difference is not problematic, it just reflects that the amount of classification

error depends on the assignment method used.

The classification error can be re-expressed on the logit scale as follows:

P (W = s|X = t) =
exp(γst)
T∑
s=1

exp(γst)

, (8)

where

γst = log

[
P (W = s|X = t)

P (W = t|X = t)

]
.

Note that the logistic γst parameters do not constitute free parameters but follow as

a function of the first-step results and the assignment rule chosen.

We collect the γst parameters in the vector θ2, with sample estimates θ̂2, calcu-

lated directly from θ̂1. These logistic effects of the true latent class on the estimated

classification W are later needed to correct for classification error. Since these logit

coefficients are calculated from the uncertain first-step estimates, they are themselves

uncertain. Their sampling variance Σ2 can be obtained using the delta method from

the variance of the first step model: (Oehlert, 1992)

Σ2 =

(
∂θ2
∂θ1

)
Σ1

(
∂θ2
∂θ1

)′

(9)

Either of the Σ1 estimators discussed above can be plugged in to the formula, leading

to an observed Hessian based (ΣH
2 ) or robust (ΣR

2 ) variance estimator of the second

step parameters.
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2.3 Third step: relating estimated class membership to co-

variates

In the third step the assigned classification W is related to a vector of covariates,

Z, say, while also correcting for classification error in W . Logistic regression of W

on Z may appear to be an obvious solution, but would yield biased estimates due

to classification errors in W . In effect, the relationship with the error-prone W is

modelled, where the relationship with the true but unobserved latent class variable

X is of interest, leading to measurement error effects on the parameter estimates

(Bolck, Croon and Hagenaars, 2004).

Bolck, Croon and Hagenaars (2004) showed how the P (X = t|Zi), and P (W =

s|Zi) are related to each other, namely that the P (W = s|Zi) can be written as a

weighted sum of the latent classes given the covariates,with the classification error

probabilities as the weights:

P (W = s|Zi) =
T∑
t=1

P (X = t|Zi)︸ ︷︷ ︸
free

P (W = s|X = t)︸ ︷︷ ︸
fixed

. (10)

Details of the derivation are available in Bolck et al. (2004). Equation 10 can be

seen as a latent class model with W as a single indicator that is fixed to the“known”

classification error probabilities P (W = s|X = t), as defined in Equation 8 Ver-

munt (2010). This means that relating the estimated membership to covariates while

correcting for classification errors can be achieved by using standard latent class

software that allows the user to fix classification error parameters to those obtained

in the second step.This model is composed of two parts: (1) the structural part, i.e.

the model of interest for P (X = t|Zi), relating the latent class membership to the

vector of external variables and (2) the measurement part P (W = s|X = t) fixed to

the parameter values estimated in step 2, as shown in Equation 7.

Denoting by Ziq the value of subject i on one of the Q covariates, the structural
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part of the model can be parametrized by means of a multinomial logistic regression

model,

P (X = t|Zi) =

exp(β0t +
Q∑
q=1

βqtZiq)

T∑
s=1

exp(β0t +
Q∑
q=1

βqsZiq)

. (11)

Although we only present the third-step model with predictors of latent class mem-

bership here, Bakk, Tekle and Vermunt (2013) showed how the correction method

can be used for a wider class of models, including models where the class member-

ship is a predictor of a distal outcome variable, or with multiple latent variables. For

the measurement part the logistic parametrization can be used as defined in equation

8.

The parameters of interest are the logistic regression coefficients βqt, gathered in

the vector θ3. Consistent estimates θ̂3 can be obtained by maximizing the third-step

log-likelihood (Vermunt, 2010),

L3(θ3 |θ2 = θ̂2) =
N∑
n=1

T∑
s=1

P (W = s|Yi) log
T∑
t=1

P (X = t|Zi)P (W = s|X = t).

(12)

Thus, in the third step, the logistic regression coefficients, contained in the third-step

parameter vector θ3, are freely estimated, while the classification errors of the class

membership variable W as a measure of X , contained in the second-step parameter

vector θ2, are held fixed at their sample maximum-likelihood estimates, θ2 = θ̂2.

The third-step ML estimates can therefore be seen as conditional estimates (θ̂3|θ2 =

θ̂2).

3 Variance of the third-step estimates

Although the third-step maximum-likelihood estimates θ̂3 are consistent, their sam-

pling variance now contains two sources of variation: that variation due to estimation
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at the third step, and that carried over from the first step. Ignoring the second source

of variance will lead to an underestimation of the standard errors, as the results

of previous simulation studies showed (Vermunt, 2010; Bakk, Tekle and Vermunt,

2013).

In the following we introduce two correction methods to account for this addi-

tional uncertainty. We also highlight a special problem of proportional assignment

that needs to be solved regardless of the choice made for correction for uncertainty

in the variance estimator.

To see why underestimation occurs, write the variance of the third-step estimate

as conditional on the second step (Oberski and Satorra, 2013):

Σ∗3 ≡ Var(θ̂3) = Eθ2 [Var(θ̂3|θ2)] + Varθ2 [E(θ̂3|θ2)]. (13)

The first term in Equation 13 corresponds approximately to the usual variance cal-

culations obtained after fixing parameters in the third step,

Eθ2 [Var(θ̂3|θ2)] ≈ Σ3, (14)

where Σ3 may, again, be estimated as the inverse third-step Fisher information or

with the robust variance estimator. This is the basis for standard errors currently

given by standard latent class analysis software when performing three-step analysis.

In the case of proportional assignment, each unit has several cases associated

with it. Simulation studies by Vermunt (2010) and Bakk, Tekle and Vermunt (2013)

found that using the third-step Hessian matrix to obtain an estimator of Σ3, stan-

dard errors were underestimated for modal assignment but overestimated for propor-

tional assignment, a phenomenon that can be explained by the duplication of records

present in proportional assignment. To correct the standard errors for this duplica-

tion, Σ3 must be estimated with the well-known “complex sampling” (clustered)
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robust variance estimator (Wedel, Ter Hofstede and Steenkamp, 1998), which will

be denoted ΣR
3 . Using this estimator we expect the standard error estimates to be

down-weighted, because the sum of square of weights is always smaller then one

with proportional assignment.

The second term in Equation 13 can be obtained by a first-order Taylor expansion

(Gong and Samaniego, 1981; Oberski and Satorra, 2013),

Varθ2 [E(θ̂3|θ2)] ≈
(
∂ θ3

∂ θ2

)
Σ2

(
∂ θ3

∂ θ2

)′
, (15)

where an estimate of Σ2 is available from the second step, and ∂ θ3 /∂ θ2 can be

obtained using implicit function theorem:

∂ θ3

∂ θ2
=

(
− ∂2L3

∂ θ3 ∂ θ
′
3

)−1
∂2L3

∂ θ3 ∂ θ
′
2

≡ −H−13 C, (16)

which thus requires obtaining the second derivatives of the third-step log likelihood

towards the free parameters (H) and towards the free parameters with respect to the

fixed parameters (C). Therefore, the third-step variance defined in equation 13 can

be written as the sum of two positive-definite terms,

Σ∗3 = Σ3 + H−13 C Σ2 C′H−13 . (17)

If a second-order Taylor expansion is used instead of Equation 15, an additional

term results (Gong and Samaniego, 1981, Theorem 2.2), leading to

Σ∗∗3 = Σ3 + H−13 (C Σ2 C′−C H−12 R′−R H−12 C′) H−13 , (18)

where the R matrix is the outer product of the case-wise gradients of the first and

third-step models, R = (∂L3/∂ θ3)
′(∂L1/∂ θ1). However, perhaps surprisingly,

this extra term vanishes as the sample size increases: provided the first-step estimates
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are consistent, asymptotically R = 0 (Parke, 1986). Therefore, the two variance

estimators are equal in large samples, Σ∗∗
a
= Σ∗, although they may not be equal in

small samples. In small samples it is possible that Σ∗ will overestimate the standard

errors of the third-step estimates, although this overestimation should decrease as

sample size increases; on the other hand, the calculation of the extra terms in Σ∗∗

may add considerable effort and instability to the standard errors.

Whether Σ∗ or Σ∗∗ is the more appropriate variance estimate is therefore un-

clear. Furthermore, it can be concluded from the preceding discussion that at each

step a range of possible choices of variance estimators exist. The following section

investigates how combinations of these different choices perform and which, if any,

of the standard error corrections is likely to be necessary in practice.

4 Monte Carlo simulation

4.1 Design

In order to see which variance estimator performs the best, we crossed the choice of

variance estimators (for Σ2 and Σ3: observed Hessian based or robust) with the op-

tions for correcting for uncertainty (Σ3 - uncorrected, Σ∗3 first order and Σ∗∗3 second

order correction) for both modal and proportional assignment. In the following table

we summarize the different choices of the variance estimators compared.2

As used in Table 1 the 1st order correction, Σ∗3 is defined in equation 17 and the

2nd order correction, Σ∗∗3 in 18, and Σ3 is the variance of the free parameters ignor-

ing the additional uncertainty attributable to the fixed parameter values. In reporting

the simulation study results and real data example we use the term ΣR
3 in case of

proportional assignment for the complex sampling variance estimator (Wedel, Ter

Hofstede and Steenkamp, 1998), and for modal assignment for the sandwich estima-

2The simulation set up is available in the dataverse replication material of this article: Study Global Id:
doi:10.7910/DVN/24497 (v1)
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Table 1: Possible variance estimators of the third step model
Final Components

2nd step 3rd step
Uncorrected (Σ3) - Hessian (ΣH

3 )
- Robust (ΣR

3 )
1st order correction (Σ∗3) Hessian (ΣH

2 ) Hessian (ΣH
3 )

Hessian(ΣH
2 ) Robust (ΣR

3 )
Robust(ΣR

2 ) Robust (ΣR
3 )

2nd order correction (Σ∗∗3 ) Hessian(ΣH
2 ) Hessian (ΣH

3 )
Hessian (ΣH

2 ) Robust (ΣR
3 )

Robust (ΣR
2 ) Robust (ΣR

3 )

tor as defined by White (1982). All in all we investigate 8 variance estimators for

each of the two assignment methods separately.

The need for the uncertainty correction is expected to depend on the amount of

uncertainty about the model parameters, that we varied by changing sample size and

separation between classes.

As population model we chose a LCA model with 3 classes measured by 6 di-

chotomous indicators, and regressed on 3 numerical covariates (each with five cat-

egories: 1-5). The first class is likely to give positive response on all 6 items, class

two has a high probability of a positive response on the first 3 items, and negative

response on the other three items. In class three all items have a high probability of

a negative answer. We manipulated the separation between classes by changing the

size of the conditional probability of the indicators given the classes. The two levels

of separation we used for the probability of a positive answer are .80 and .90, corre-

sponding to entropy R2 values of .65 and .90. We chose the following sample sizes:

500, 1000, 2000. Thus in total we had 6 conditions of combinations of sample size

and separation between classes, in which the performance of all 8 variance estima-

tors was compared for both modal and proportional assignment. For each condition

500 replications were used.

Using the first class as reference category we set the logit parameters of covariate
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effects on latent classes to -2 (β12) and 1 (β13) for the effect of Z1 on X . Where we

use the first subscript for Z, and the second subscript for X , as such for example β13

stands for the effect of Z1 on the third class. Te effect of Z2 on X is set to 1 (β22)

and 0 (β23), and to 0 for both parameters (β32, β33) for the effect of Z3 on X . The

intercepts were set to values yielding equal class sizes.

Two measures were used to compare the performance of the variance estimators.

We compared the coverage rate over replications to a nominal 95 percent rate, and the

average standard errors (se) across replications to the standard deviation (sd) across

replications. For a well performing standard error estimator we expect the se/sd to be

1. Also the coverage rate should be 95 %, which is the nominal coverage rate used.

We used the computer programs Latent GOLD (Vermunt and Magidson, 2013)

and R (R Core Team, 2013) to run the analysis.

4.2 Simulation Results

First we compare the parameter estimates and standard deviation across replications

obtained with the three-step approach with the two assignment methods and the one-

step approach in order to see whether the three-step estimates are comparable with

regard to parameter bias and efficiency to the estimates obtained using the one-step

approach. In Table 2 we report the mean parameter estimates over all replications,

and the standard deviation across replications for all three estimation methods. On

average the parameter bias is low with all three estimators for all the parameters.

We compared the efficiency of the parameter estimators by comparing the standard

deviation across replications. As we can see in Table 2 the standard deviations of

all parameters are very close to each other with the three methods.These results are

in accordance with previous simulation studies (Bakk, Tekle and Vermunt, 2013;

Vermunt, 2010), and show that the three- step approach can be used without loss of

efficiency or parameter bias.
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Table 2: Parameter estimates and their standard deviation (sd) for all parameters averaged
over all conditions for all estimators

Modal Proportional One-Step
Value True Estimate sd Estimate sd Estimate sd
β12 -2.00 -1.98 0.30 -1.97 0.28 -2.07 0.30
β13 1.00 1.00 0.12 1.00 0.11 1.01 0.11
β22 1.00 1.00 0.17 0.98 0.16 1.02 0.18
β23 0.00 0.00 0.08 0.00 0.07 0.00 0.08
β32 0.00 0.00 0.11 0.00 0.11 0.00 0.11
β33 0.00 0.00 0.07 0.00 0.07 0.00 0.07

Given the unbiased parameter estimates reported in Table 2 in the following we

restrict the discussion only to the variance estimators of the third-step model. Let us

first look on the results averaged across all conditions of sample size and separation

between classes, that are reported in Table 3 for one parameter (β13 = 1.00). The

results for the other parameters are very similar.

For modal assignment, as can be seen in Table 3 the two uncorrected standard

error estimators that do not account for the additional uncertainty (ΣH
3 and ΣR

3 ) un-

derestimate the variance (the se/sd is .95 for ΣH
3 , and .97 for ΣR

3 ). Using either

of the correction methods (Σ∗3 or Σ∗∗3 ) improves the results for both Hessian based

and robust estimator. Comparing the first and second order corrections ( Σ∗3, Σ∗∗3 ) to

each other we see that the standard error estimates obtained with the later are slightly

higher irrespective of the choice for robust or Hessian based estimator. When com-

paring observed Hessian based to robust estimator for the modal assignment, we see

that the standard errors obtained with the later are somewhat larger, thus less effi-

cient. The differences are although small, as can be seen from the coverage rate,

which is almost the same with all estimators.

Next, looking on the results for proportional assignment, we see, that as hypoth-

esized the standard error estimates obtained with the observed Hessian based esti-

mator overestimate the standard error for all three estimators (Σ3,Σ
∗
3,Σ

∗∗
3 ). This

can be seen from both the se/sd (which is higher then 1 for all three estimators) and
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Table 3: Comparison of the different variance estimators averaged across all conditions
for one parameter, β13 for modal and proportional assignment separately

Final Components Modal Proportional
2nd step 3rd step se se/sd coverage se se/sd coverage

Σ3 - ΣH
3 0.11 0.95 0.95 0.12 1.08 0.97

Σ∗3 ΣH
2 ΣH

3 0.12 1.03 0.96 0.13 1.14 0.98
Σ∗∗3 ΣH

2 ΣH
3 0.12 1.04 0.96 0.13 1.12 0.97

Σ3 - ΣR
3 0.12 0.97 0.95 0.11 0.99 0.95

Σ∗3 ΣH
2 ΣR

3 0.12 1.04 0.96 0.12 1.05 0.96
Σ∗∗3 ΣH

2 ΣR
3 0.13 1.05 0.96 0.12 1.03 0.96

Σ∗3 ΣR
2 ΣR

3 0.13 1.05 0.96 0.12 1.06 0.96
Σ∗∗3 ΣR

2 ΣR
3 0.13 1.06 0.96 0.12 1.04 0.96

Note: Σ∗3 is the 1st and Σ∗∗3 the 2nd order correction, as defined in equation 17 and 18,
and ΣH and ΣR are the Hessian based and robust estimators

coverage rate (that is .97 for Σ3 and Σ∗∗3 and .98 for Σ∗3). Using the robust variance

estimator in the third step improves the results (the se/sd using ΣR
3 is .99, and using

the correction methods this value becomes slightly larger then 1). Similarly to modal

assignment we can see, that using robust variance estimator in the first step yields

larger standard error estimates.

Following we look separately into the results averaged over the different levels

of separation between classes and the different sample size conditions. First the

results averaged over the three sample sizes separately for the 2 separation levels

are presented. For the condition with high separation between the classes (entropy

R2=.90) all variance estimators perform well. In case of modal assignment for all the

variance estimators the ratio of the standard error to the standard deviation (se/sd) is

between 1.00-1.02, and the coverage rate is 96 %, results that show that all standard

error estimators perform well in this condition. The same holds for all standard

error estimates for proportional assignment that are based on the robust variance

estimator. As such we do not present these results in more detail, but move toward

the discussion of the low separation condition, where we see more variability.

In Table 4 the results averaged over the three sample sizes for the low separation
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Table 4: Comparison of the different variance estimators across the three sample sizes,for
the low separation levels for one parameter, β13 for modal and proportional assignment
separately

Final Components Modal Proportional
2nd step 3rd step se se/sd coverage se se/sd coverage

Σ3 - ΣH
3 0.12 0.91 0.93 0.14 1.11 0.98

Σ∗3 ΣH
2 ΣH

3 0.14 1.03 0.96 0.15 1.21 0.98
Σ∗∗3 ΣH

2 ΣH
3 0.14 1.05 0.96 0.15 1.18 0.98

Σ3 - ΣR
3 0.13 0.93 0.94 0.12 0.97 0.95

Σ∗3 ΣH
2 ΣR

3 0.14 1.05 0.96 0.14 1.08 0.97
Σ∗∗3 ΣH

2 ΣR
3 0.14 1.06 0.96 0.13 1.05 0.96

Σ∗3 ΣR
2 ΣR

3 0.15 1.07 0.96 0.14 1.10 0.97
Σ∗∗3 ΣR

2 ΣR
3 0.15 1.08 0.96 0.14 1.07 0.96

Note: Σ∗3 is the 1st and Σ∗∗3 the 2nd order correction, as defined in equation 17 and 18,
and ΣH and ΣR are the Hessian based and robust estimators

condition are presented. For modal assignment the uncertainty uncorrected standard

error estimate (Σ3) underestimates the standard error with both Hessian based and

robust estimators (se/sd is .91 and .93 while coverage rate is .93 and .94 for ΣH
3

and ΣR
3 respectively). Using either of the correction methods (Σ∗3,Σ

∗∗
3 ) the se/sd

becomes slightly larger then 1, and the coverage rate increases to 96%, for both the

Hessian based and robust estimators. When comparing the observed Hessian based

estimates to the robust estimates we can see that the later obtains slightly larger

standard error estimates.

For proportional assignment we can see that the variance estimators that use the

observed Hessian in the third-step overestimate the standard error. Using the robust

variance estimator in the third step decreases the variance. Once this is used, the

difference between the standard error estimates is small (Σ3 obtains se/sd 0.97,with

Σ∗3 this is 1.08, and with Σ∗∗3 1.05). Using robust variance estimator in the first step

increases the standard error estimates.

Next in Table 5 we present the standard error estimates averaged over the two

separation levels separately for the three sample size conditions. For modal assign-
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Table 5: Comparison of the different variance estimators averaged across the two sep-
aration levels,for the 3 sample sizes for one parameter, β13 for modal and proportional
assignment separately

Final Components 500 1000 2000
- 2nd step 3rd step se se/sd coverage se se/sd coverage se se/sd coverage

Modal
Σ3 ΣH

3 0.16 0.87 0.92 0.11 1.01 0.95 0.08 1.05 0.96
Σ∗3 ΣH

2 ΣH
3 0.17 0.96 0.95 0.12 1.08 0.97 0.08 1.13 0.97

Σ∗∗3 ΣH
2 ΣH

3 0.17 0.97 0.95 0.12 1.09 0.97 0.08 1.12 0.97
Σ3 ΣR

3 0.16 0.90 0.93 0.11 1.02 0.95 0.08 1.06 0.96
Σ∗3 ΣH

2 ΣR
3 0.18 0.98 0.95 0.12 1.08 0.97 0.08 1.11 0.97

Σ∗∗3 ΣH
2 ΣR

3 0.18 0.99 0.95 0.12 1.08 0.97 0.08 1.13 0.97
Σ∗3 ΣR

2 ΣR
3 0.18 1.01 0.95 0.12 1.10 0.97 0.08 1.11 0.97

Σ∗∗3 ΣR
2 ΣR

3 0.18 1.01 0.95 0.12 1.09 0.97 0.08 1.13 0.97
Proportional

Σ3 ΣH
3 0.17 0.99 0.96 0.12 1.15 0.98 0.08 1.2 0.98

Σ∗3 ΣH
2 ΣH

3 0.18 1.06 0.96 0.12 1.20 0.98 0.09 1.25 0.98
Σ∗∗3 ΣH

2 ΣH
3 0.18 1.04 0.96 0.12 1.18 0.98 0.09 1.23 0.98

Σ3 ΣR
3 0.16 0.92 0.94 0.11 1.04 0.96 0.08 1.08 0.96

Σ∗3 ΣH
2 ΣR

3 0.17 0.99 0.95 0.11 1.10 0.97 0.08 1.14 0.97
Σ∗∗3 ΣH

2 ΣR
3 0.17 0.97 0.95 0.11 1.08 0.96 0.08 1.12 0.97

Σ∗3 ΣR
2 ΣR

3 0.18 0.98 0.95 0.11 1.09 0.97 0.08 1.14 0.97
Σ∗∗3 ΣR

2 ΣR
3 0.18 1.00 0.95 0.11 1.10 0.97 0.08 1.12 0.97

Note: Σ∗3 is the 1st and Σ∗∗3 the 2nd order correction, as defined in equation 17 and 18, and ΣH and ΣR

are the Hessian based and robust estimators

ment we can see that in the small sample size condition the uncorrected standard

error estimates are underestimated (se/sd 0.87 for ΣH
3 and 0.90 for ΣR

3 and coverage

rate 0.92 and 0.93 respectively), but using any of the correction methods this val-

ues get closer to 1. Comparing the first and second order correction (Σ∗3 , Σ∗∗3 ) we

see that the standard error estimates obtained with the later are slightly larger irre-

spective of the choice of Σ3. The same tendencies can be seen in the larger sample

size conditions as well, though in the 2000 sample size condition it can be seen, that

on average the uncorrected standard error estimates are the same as the corrected

ones with the precision of 2 decimals. Comparing the Hessian based estimators to

the robust ones we see that the later ones are somewhat larger. Using proportional

assignment the same tendencies can be observed, once in the third step the robust
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standard error is used.

In summary it can be said, that in conditions where the uncertainty about the fixed

parameters is high (that is low separation between classes and/or low sample sizes)

the use of the uncertainty correction is needed.3 It can be seen that the difference

with the results using Σ∗3 and Σ∗∗3 is low, thus the use of the first order correction

is recommended, because it needs less calculations. With regard to the choice of

Hessian or robust variance estimator we see that in case of proportional assignment

this choice is important. With proportional assignment the use of robust estimator

is recommended for all situations, while for modal assignment this choice is not so

relevant.

5 Example application using the suggested cor-

rections: cohort and education effects on tolerance

We now show how correcting for parameter bias in the three-step latent class anal-

ysis makes a difference for substantive conclusions. For this purpose we re-analyze

the often-cited example of latent class analysis in political science, McCutcheon

(1985)’s assessment of how age and education groups differ in their tolerance to-

wards out-groups. In addition, we illustrate how the different choices of standard

error discussed above can affect results.

The question of who is more intolerant originated with Stouffer (1955). His anal-

ysis, conducted at the height of the McCarthy era, focused on citizens’ tolerance for

communists: should they be allowed basic democratic rights to free speech accord-

ing to the public? McCutcheon (1985) re-assessed this question by including other

groups in the questionnaire besides communists, namely atheists, homosexuals, mil-

3This tendency can be seen in more detail in the Appendix in Tables A1 and A2, which show that once
the uncertainty decreases (either by a stronger effect of classes on indicators or higher sample size) the
effect of the corrections is lower, but when the uncertainty is high the corrections make a big difference.
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itarists, and racists. He then used a latent class model to integrate respondents’ toler-

ance for these different groups into a single categorical latent variable that represents

each person’s “tolerance for nonconformity”. After estimating this model (step 1)

and assigning a “tolerance” classification to each respondent (step 2), McCutcheon

then regressed the categorical “tolerance” assignment on age cohort and educational

attainment (step 3). This commonly cited example of a latent class analysis in polit-

ical science is therefore in fact a bias-uncorrected three-step analysis.

Here we examine how McCutcheon (1985)’s conclusions might change when the

necessary (e.g. Roeder, Lynch and Nagin, 1999; Bolck, Croon and Hagenaars, 2004)

bias corrections (Vermunt, 2010) are applied to the third step, predicting “tolerance”

from age cohort and education. We also show how the standard errors of this re-

gression differ over the various choices of standard error estimator described in the

preceding sections.

The original data are obtained from the 1976 and 1977 General Social Survey

(GSS), which are publicly available4. Each of the 2689 respondents (nr. of respon-

dents obtained after listwise deletion was applied) answered the following questions

on communists, atheists, homosexuals, militarists, or racists:

• “Suppose this wanted to make a speech in your community. Should he

be allowed to speak?” (Yes/No)

• “Should such a person be allowed to teach in a college or university, or not?”

(Yes/No)

• “Suppose he wrote a book which is in your public library. Somebody in your

community suggests that the the book should be removed from the library.

Would you favor removing it or not?” (Yes/No)

The bold-faced answers are those indicating tolerance. McCutcheon coded a re-

4https://www.icpsr.umich.edu/icpsrweb/ICPSR/series/28/studies/7398?
archive=ICPSR&sortBy=7, also available in the dataverse replication material of this article: Study
Global Id: doi:10.7910/DVN/24497 (v1)
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Table 6: Fit of different latent class models to five indicators of tolerance for nonconfor-
mity from the 1976/77 General Social Survey (N=2689). Shown are the likelihood ratio
(L2), degrees of freedom (df ), Bayesian Information Criterion (BIC), Akaike Information
Criterion (AIC), and the largest bivariate residual (BVR) in the pairwise cross-table of the
five indicators.

L2 df p BIC AIC max(BVR)
Independence model 4695.8 26 0.00 4490.5 4643.8 1048.5
2-class model 240.8 20 0.00 82.9 200.8 13.2
3-class model 48.7 14 0.00 -61.7 20.7 6.0
4-class model 6.5 8 0.59 -56.6 -9.4 0.11
5-class model 2.9 2 0.24 -12.9 -1.1 0.08

spondent as “tolerant” towards a group if all three of these bold-faced answers were

given, and “intolerant” otherwise. This yields five binary indicators of general toler-

ance (one for each group).

The first step is to fit local independence models with a successively increasing

number of latent classes. Resulting model fit statistics are shown in Table 6. This

Table shows that the AIC selects the four-class model, while the BIC selects the

three-class model. Looking at the absolute model fit of the four-class model, how-

ever, it is clear that both the likelihood ratio as well as the largest bivariate residual

(BVR; see Vermunt and Magidson 2013) indicate residual dependencies between the

indicators in the three-class model. We therefore follow McCutcheon (1985) and se-

lect the four-class model, which fits the data well. None of the residual dependencies

between the observed variables are substantively large or statistically significant in

the four-class model, thus we can reasonable assume that there is no residual variance

left between the indicators.

Estimates of class sizes and conditional probabilities obtained from the four-class

model are shown in Table 7. The first row of this table indicates the labels given to

the four classes. These labels are based on the pattern of estimated conditional prob-

abilities given on the subsequent rows. For example, the first class, to which 56%

(±2%) of respondents are estimated to belong, exhibits low probabilities of toler-
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Table 7: Parameter estimates (standard errors) for the four-class model: class sizes and
conditional probabilities to give all-tolerant answers given the latent class.

“Intolerant” “Tolerant” “Intolerant
of right”

“Intolerant
of left”

Class size 0.56 (0.02) 0.23 (0.01) 0.11 (0.03) 0.10 (0.03)

Tolerance for...
Atheists 0.03 (0.01) 0.98 (0.01) 0.41 (0.06) 0.61 (0.07)
Communists 0.04 (0.01) 0.95 (0.02) 0.59 (0.11) 0.27 (0.07)
Militarists 0.05 (0.01) 0.92 (0.02) 0.34 (0.05) 0.38 (0.06)
Racists 0.08 (0.01) 0.90 (0.02) 0.02 (0.06) 0.81 (0.20)
Homosexuals 0.13 (0.01) 0.96 (0.01) 0.72 (0.07) 0.56 (0.06)

ance for all groups, ranging between 0.03 for atheists to 0.13 for homosexuals (both

±0.01). Therefore this latent class was labeled “intolerant”. There are also classes

of those respondents who are tolerant towards some groups and not others. Since

these preferences appear to correspond to political ideology, McCutcheon labeled

the classes “intolerant of right” and “intolerant of left” respectively. It should be

noted, however, that this ideological intolerance is not symmetric: those who are

intolerant of “right-wing” groups such as racists and militarists are more extreme

in their opinion than those who are intolerant of “leftist” groups such as atheists or

communists. The difference between these classes in their tolerance for homosexuals

is not statistically significant (z = −1.52, p = 0.064).

While the latent class analysis of these five indicators (step 1) is interesting in

itself, to Stouffer (1955) and McCutcheon (1985) the main substantive question was

how age cohorts and educational groups differ in their overall tolerance. For this

reason, each respondent was assigned to one of the four estimated classes using

proportional assignment based on the latent class model (step 2). This assigned

class variable is highly convenient for further analysis: the analyst performing the

latent class analysis may be separate from the researcher investigating substantive

questions using the result. Thus, the researcher interested in the effect of cohort and

education on tolerance need not have the same expertise as the latent class analyst.
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Furthermore, the definition of the latent class assignment has not been affected by

the cohort and education variables, preventing circularity in the final results.

Following McCutcheon (1985), educational attainment was coded into three cat-

egories: those with fewer than twelve grades (1), those who completed high school

(2), and those with more than twelve years of formal education (3). Birth cohort was

coded into four categories: those born in or before 1914 (4), those born between 1915

and 1933 (3), those born between 1934 and 1951 (2), and those born after 1951 (1).

We ran a multinomial regression of assigned tolerance on these covariates, corrected

for misclassification error in the assignment and using the first categories of each

variable as a reference category. The interaction effect of education × cohort turned

out to be small and not statistically significant (Wald = 12.2 on 18 df , p = 0.84), and

we therefore decided to exclude the interaction from further analysis. The resulting

main effect estimates are shown as points with 95% confidence intervals in Figure 1.

Figure 1 summarizes the 15 multinomial logit coefficients and their standard

errors from the uncorrected analysis (black dots) performed by McCutcheon (1985)

and the corrected analysis (gray points). The effect size estimates show that the

more educated and younger a person is, the more likely they are “tolerant”. Looking

at Figure 1 from bottom to top reveals a monotonic increase of logits with these two

covariates. This applies to a lesser degree to the “intolerant to right” group, and to the

“intolerant to left” group to an even lesser degree. This ordering in effect size from

the rightmost to leftmost panel in Figure 1 is probably due to ideological differences

between age and education groups: the younger and more educated were more likely

to prefer the political left.

For comparisons between corrected and uncorrected analyses, the 15 coefficients

from the corrected three-step analysis are shown below each estimate (gray points).

It can be seen that there is a substantial difference between the corrected and the

uncorrected estimates. To bring this point into perspective, Figure 2 shows the ratios

of corrected to uncorrected point estimates. The most extreme case is the logit coef-
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Figure 2: The relative size of the corrected point estimates compared with the uncorrected.
Unity means the two estimates are the same, while 2 means the corrected point estimate is
twice as large as the uncorrected estimate. The effects for different classes are indicated
with different point shapes, given in the legend.

ficient of the oldest cohort on being in the “intolerant to right” class, which increases

almost twofold. Even the smallest correction entails a 20% larger coefficient, how-

ever. This emphasizes the practical significance of correcting for classification error

in the class assignment: substantial bias will otherwise occur.

While the first-step sample size of 2689 is relatively large, the entropy R2 of

the “tolerance” latent classification is 0.71, falling short of the 0.90 our simulations

identified as an indicator of “small” uncertainty about the classification error. The

standard errors of this analysis may therefore benefit from correction for this uncer-

tainty.

Does the correction to standard errors introduced in this paper make a difference

for the results? Figure 1 shows that it does. First of all, qualitative differences can

be observed for the effect of being in the younger cohort (2) on being “intolerant to

left”: this cohort is no longer deemed to differ significantly from the youngest cohort

(1) when the correction is applied.
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Second, Figure 1 exhibits large quantitative differences in standard errors, par-

ticularly for the effects of being in the oldest cohort (4). Figure 3 shows the sizes

of these standard errors relative to each other. For instance, the finite-sample robust

standard error for the oldest cohort’s effect on being “intolerant to right” is twice

as large as the standard error without the correction discussed above (triangle in the

bottom-right graph). Since the relative standard error must be squared to obtain a

“misspecification effect” (Skinner, Holt and Smith, 1989), this means that if the cor-

rection introduced here is ignored, the researcher will claim that the sample is four

times more informative than it is. This clearly demonstrates the relevance of the

corrections to standard errors introduced above.

6 Discussion and conclusion

Social scientists often aim to study the relationship of an unobserved classification

with external variables. The “three-step” approach is common: a latent class model

is fit (step 1), units are assigned to estimated classes (step 2), and the relationships of

interest are studied using the assigned classes, for instance by multinomial regression

(step 3). Three-step analysis potentially has several advantages over the “one-step”

full-information maximum likelihood approach (see Vermunt, 2010, p. 451). Despite

being common and attractive, this approach is also inconsistent—a problem solved

by the bias-corrected three-step approach introduced by Bolck, Croon and Hagenaars

(2004) and Vermunt (2010) in this journal (see also Bakk, Tekle and Vermunt, 2013).

Correct inferences about the relationships of interest, however, require not only

consistent point estimates but also correct standard errors. In this article we show

both analytically and by simulation that correct standard errors from the third step

must incorporate the uncertainty about the classification error. Standard software

allowing for bias-corrected three-step analysis such as Mplus (Muthén and Muthén,

1998-2012) and Latent GOLD (Vermunt and Magidson, 2013) did not incorporate
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this uncertainty, leading to underestimated standard errors and confidence intervals

that are too narrow. We therefore provide in this paper the correct standard errors

allowing for appropriate inferences, based on classic likelihood theory (e.g. Gong

and Samaniego, 1981). As a result of our study, the different standard error estima-

tors discussed have been implemented in the standard latent class analysis software

Latent GOLD 5.00 (Vermunt and Magidson, 2013), making the methods developed

here directly available to applied researchers.

Moreover, we evaluate eight possible types of standard errors. Although these

standard errors are asymptotically equivalent under model correctness, they may

yield different results in finite samples. A Monte Carlo simulation study compared

them and found that the correction to standard errors introduced here can make a

large difference when uncertainty about the first-step parameters is substantial. On

the other hand, when the uncertainty about fixed estimates is low, the standard er-

ror corrections are not needed. Low uncertainty about the classification error will

occur with large first-step sample sizes and high entropy R2 (high class separation).

No substantial differences between inferences based on corrected versus uncorrected

standard errors were found with first-step sample sizes above 2000 combined with

entropyR2 > 0.90. We also noted little difference between an asymptotic and finite-

sample version of the corrected estimator. The asymptotic corrected standard error

estimator (Oberski and Satorra, 2013), which is considerably easier to compute, is

therefore recommended. Finally, we reproduced the finding of Vermunt (2010) that

proportional assignment requires robust standard errors to account for the replication

of cases.

Considering these findings, bias correction and the choice of standard errors

can make a difference for substantive conclusions. reanalysis of an example bias-

uncorrected three-step analysis from the political science literature (McCutcheon,

1985) clearly demonstrated this effect. The logistic regression coefficients that give

the strength of the relationship between being in the “intolerant to the right” class
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and all age and education categories are between one-and-a-half and twice as large

as their uncorrected counterparts, for instance. The correction for classification error

need not always increase estimated relationships: one of the coefficients of interest

is much lower after correction. “Qualitative” differences also occur after correct-

ing both the point estimates and the standard errors: the younger cohort’s logistic

coefficient for “intolerant to left” is not statistically significant in the uncorrected

analysis, but is so after correction. Conversely, the highly educated group’s coeffi-

cient is statistically significant in the uncorrected analysis, but not after correction.

This demonstrates the importance of the corrections, both for point estimates and

standard errors.

A limitation of our study is that we restricted ourselves to situations where the

separation between classes is relatively good (entropy R2= 60 or higher). We did

so because previous research showed that in situations where the entropy is lower

than this, the step three methods obtain biased estimates. This is due to the fact

that in step one the classification error is underestimated, and thus over-optimistic

correction terms are used (Vermunt, 2010, Bakk et al., 2013).

A further limitation of our study is that we assumed an (approximately) correct

model can be found. That is, we assume that mostly sampling variance drives the

first-step model uncertainty. For this reason, model checking in the first step is es-

sential. A possible alternative approach would be to obtain point and uncertainty

estimates under model uncertainty, after which these may be propagated to the third

step as described above.

A completely different approach is the Bayesian multiple imputation framework

(Rubin, 1987). In this framework, the first step is to formulate a Bayesian latent class

model, the second to obtain M multiple draws from the latent class distribution, and

the third to estimate M regression models, averaging the M parameter estimates

and using the rules described by Schafer (1997) to correctly obtain standard errors.

The idea of using Bayesian data augmentation to estimate the conditional distribu-
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tion of a latent variable X given predictors Z was introduced by Tanner and Wong

(1987). Applications of this idea can be found in the “plausible values” literature for

continuous latent variables (e.g. Mislevy, 1988), as well as the method of “pseudo-

class draws” (Bandeen-Roche et al., 1997; Wang, Brown and Bandeen-Roche, 2005;

Asparouhov and Muthén, 2012).

However, the same inconsistency problems that plague the uncorrected three-step

method also affect the Bayesian multiple imputation approach. The key difference

between, three-step analysis, plausible values, and pseudo-class draws on the one

hand,and the Bayesian augmentation literature, on the other is the inclusion of the

covariates in the first-step model. As shown by Tanner and Wong (1987, pp. 530–1),

the multiple imputations of the latent variableX must be generated from p(X|Y,Z),

not just p(X|Y ) as is done in the three-step, plausible values, and pseudo-class draws

procedures. Leaving out the predictor variablesZ from the first-step imputations will

therefore cause the same inconsistency as is present in likelihood-based uncorrected

three-step analysis. This was also demonstrated by the simulations of Asparouhov

and Muthén (2012, Table 1).

However, including Z in the first-step analysis partially defeats the purpose of

the three-step procedure. Moreover, researchers performing complicated latent vari-

able models to publish imputations for the broader research community (e.g. König,

Marbach and Osnabrügge, 2013) cannot possibly foresee all predictor variables Z

that might someday be of interest.

The problem of inconsistency in the Bayesian multiple imputation approach

caused by ignoring Z in the imputation model can in principle be solved by per-

forming the bias correction described above in each imputation. The combined cor-

rected point estimates will then be consistent for p(X|Z). Afterwards, combining

the resulting multiple corrected estimates will yield correct standard errors (Schafer,

1997). This method could substantially improve the quality of inferences from re-

cent efforts in political science to publish multiple imputations of latent variables for
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further analysis such as Democracy (Treier and Jackman, 2008) or party positions

(König, Marbach and Osnabrügge, 2013). It should be noted that the proposed cor-

rection method is not limited to Bayesian multiple imputation, but can be used in

any situation in which an integration or missing data problem is solved by simula-

tion and is based on a (step-one) model that excludes some of the relevant variables.

The resulting corrected “pseudo-class draws” or “plausible values” analysis is an in-

teresting and potentially useful application of the presented three-step approach that

warrants future study.
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Kauermann, Göran and Raymond J. Carroll. 2001. “A note on the efficiency of

sandwich covariance matrix estimation.” Journal of the American Statistical As-

sociation 96:1387–1396.

King, Gary and Margaret Roberts. 2012. “How robust standard errors expose

methodological problems they do not fix.”.

URL: http://gking.harvard.edu/files/gking/files/robust.pdf

König, Thomas, Moritz Marbach and Moritz Osnabrügge. 2013. “Estimating Party
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Table A1: Comparison of the different variance estimators for low separation,for the 3
sample sizes separatly for one parameter, β13 for modal and proportional assignment

Final Components 500 1000 2000
2nd step 3rd step se se/sd coverage se se/sd coverage se se/sd coverage

Modal
Σ3 ΣH

3 0.17 0.83 0.90 0.12 0.97 0.94 0.08 1.03 0.96
Σ∗3 ΣH

2 ΣH
3 0.20 0.98 0.95 0.13 1.06 0.97 0.09 1.12 0.97

Σ∗∗3 ΣH
2 ΣH

3 0.20 0.99 0.95 0.13 1.08 0.97 0.09 1.14 0.97
Σ3 ΣR

3 0.18 0.87 0.91 0.12 0.98 0.94 0.08 1.04 0.97
Σ∗3 ΣH

2 ΣR
3 0.21 1.01 0.95 0.13 1.07 0.97 0.09 1.12 0.97

Σ∗∗3 ΣH
2 ΣR

3 0.21 1.01 0.95 0.13 1.09 0.97 0.09 1.14 0.97
Σ∗3 ΣR

2 ΣR
3 0.21 1.05 0.95 0.13 1.08 0.97 0.09 1.12 0.97

Σ∗∗3 ΣR
2 ΣR

3 0.22 1.06 0.96 0.14 1.10 0.97 0.09 1.15 0.97
Proportional

Σ3 ΣH
3 0.19 1.04 0.97 0.14 1.16 0.98 0.10 1.25 0.99

Σ∗3 ΣH
2 ΣH

3 0.21 1.14 0.98 0.15 1.24 0.98 0.10 1.33 0.99
Σ∗∗3 ΣH

2 ΣH
3 0.21 1.11 0.97 0.14 1.22 0.98 0.10 1.31 0.99

Σ3 ΣR
3 0.17 0.92 0.94 0.12 1.00 0.95 0.08 1.07 0.96

Σ∗3 ΣH
2 ΣR

3 0.19 1.04 0.95 0.13 1.10 0.97 0.09 1.17 0.98
Σ∗∗3 ΣH

2 ΣR
3 0.19 1.00 0.95 0.13 1.07 0.97 0.09 1.14 0.98

Σ∗3 ΣR
2 ΣR

3 0.20 1.07 0.95 0.13 1.11 0.98 0.09 1.17 0.98
Σ∗∗3 ΣR

2 ΣR
3 0.20 1.04 0.95 0.13 1.08 0.97 0.09 1.15 0.98

Note: Σ∗3 is the 1st and Σ∗∗3 the 2nd order correction, as defined in equation 17 and 18, and ΣH and ΣR

are the Hessian based and robust estimators
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Table A2: Comparison of the different variance estimators for high separation,for the 3
sample sizes separatly for one parameter, β13 for modal and proportional assignment

Final Components 500 1000 2000
2nd step 3rd step se se/sd coverage se se/sd coverage se se/sd coverage

Modal
Σ3 ΣH

3 0.14 0.93 0.95 0.10 1.08 0.97 0.07 1.09 0.96
Σ∗3 ΣH

2 ΣH
3 0.14 0.94 0.95 0.10 1.09 0.97 0.07 1.10 0.96

Σ∗∗3 ΣH
2 ΣH

3 0.15 0.95 0.95 0.10 1.10 0.98 0.07 1.11 0.96
Σ3 ΣR

3 0.14 0.94 0.94 0.10 1.10 0.97 0.07 1.09 0.96
Σ∗3 ΣH

2 ΣR
3 0.15 0.96 0.95 0.10 1.10 0.98 0.07 1.11 0.96

Σ∗∗3 ΣH
2 ΣR

3 0.15 0.96 0.95 0.10 1.10 0.96 0.07 1.11 0.96
Σ∗3 ΣR

2 ΣR
3 0.15 0.96 0.95 0.10 1.10 0.97 0.07 1.11 0.96

Σ∗∗3 ΣR
2 ΣR

3 0.15 0.96 0.95 0.10 1.10 0.98 0.07 1.11 0.96
Proportional

Σ3 ΣH
3 0.15 0.95 0.95 0.10 1.14 0.98 0.07 1.11 0.97

Σ∗3 ΣH
2 ΣH

3 0.15 0.96 0.95 0.10 1.15 0.98 0.07 1.15 0.97
Σ∗∗3 ΣH

2 ΣH
3 0.15 0.95 0.95 0.10 1.14 0.98 0.07 1.14 0.97

Σ3 ΣR
3 0.14 0.92 0.95 0.10 1.10 0.96 0.07 1.10 0.96

Σ∗3 ΣH
2 ΣR

3 0.14 0.93 0.95 0.10 1.10 0.96 0.07 1.11 0.96
Σ∗∗3 ΣH

2 ΣR
3 0.14 0.92 0.95 0.10 1.10 0.96 0.07 1.10 0.96

Σ∗3 ΣR
2 ΣR

3 0.14 0.93 0.95 0.10 1.10 0.96 0.07 1.11 0.96
Σ∗∗3 ΣR

2 ΣR
3 0.14 0.92 0.95 0.10 1.10 0.96 0.07 1.10 0.96

Note: Σ∗3 is the 1st and Σ∗∗3 the 2nd order correction, as defined in equation 17 and 18, and ΣH and ΣR

are the Hessian based and robust estimators
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