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Abstract 

While latent class (LC) modeling using bias-adjusted stepwise approaches has become widely 

popular, little is known on how these methods are affected by missing values. Using synthetic 

data sets, we illustrate under which conditions missing values introduce biases in the estimates of 

the relationship between class membership and auxiliary variables. We apply three-step LC 

analysis with both modal and proportional class assignments, as well as the recently proposed 

two-step LC analysis method. 

Our results show that stepwise LC analysis yields unbiased parameter values as long as 

the MAR assumption holds in the step-one model. When this assumption does not hold because 

covariates are omitted from the step-one model, each of the stepwise approaches yields some 

bias, but bias is much larger with modal class assignments. The amount of bias is affected by the 

amount of deviation from MAR, the proportion of missing values, and the separation between 

the classes. 

Keywords: Missing data, mixture modeling, three-step modeling, auxiliary variables. 
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Introduction 

In social and behavioural sciences and related fields, latent class (LC) analysis 

(Lazarsfeld and Henry, 1968; Goodman, 1974) has become a popular tool for classifying 

respondents into a small number of subgroups based on their response patterns on a set of 

observed indicators. More extended LC models allow the inclusion of auxiliary variables (e.g., 

covariates, distal outcomes) to examine the cause of the class formation or the effect of these 

classes on other constructs. While researchers are often confronted with missing values on the 

class indicators, maximum likelihood estimation of LC models with missing data is 

straightforward as long as the missingness can be assumed to be missing at random (MAR; Dong 

and Peng, 2013; Little and Schenker, 1995). This approach is implemented in most of the current 

software for LC analysis, such as Mplus (Muthén and Muthén, 2015), Latent GOLD (Vermunt 

and Magidson, 2013, 2021a), poLCA in R (Linzer and Lewis, 2011), and PROC LCA in SAS 

(Lanza et al., 2015). Note that in an LC analysis, MAR implies the missingness is independent of 

the actual value of the indicators with missing values conditional on the auxiliary variables and 

the indicators without missing values. If the assumption of MAR is violated, the missing data 

mechanism is called not missing at random (NMAR), in which case maximum likelihood 

estimation under MAR yields biased estimates (Little and Rubin, 1987; Allison, 2001). 

During the past years, the practice of stepwise latent class (LC) modeling using bias-

adjusted stepwise approaches has become widely popular (Asparouhov and Muthén, 2014; Bakk 

and Kuha, 2018; Vermunt 2010). However, little is known on how these new approaches are 

affected by missing values on the class indicators. In the first step of the stepwise approaches, an 

LC model is estimated without the inclusion of the auxiliary variables. In the estimation of this 

step-one model, missing values can be handled in the usual way as long as the MAR assumption 
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holds. The second step in a three-step analysis involves obtaining classifications based on the 

observed responses and the estimated parameters from step one. In the third step of a three-step 

LC analysis, we estimate the relationship between class membership and auxiliary variables 

using the predicted class memberships from step two while correcting for classification errors 

(Bolck, Croon, and Hagenaars, 2004; Vermunt, 2010). However, the current three-step 

approaches ignore the fact that the classification errors are larger for cases with missing values 

since they apply a single classification error correction matrix to all observations. The first 

question of interest is, therefore, whether we can simply ignore the differences in classification 

errors resulting from missing data, or whether we should account in some way for the missing 

value problem also in the third step of a three-step LC analysis.  

The second potential problem arises when the missingness depends on the covariates or 

distal outcomes of interest. That is, when auxiliary variables affect the probability of having 

missing values on the class indicators, this corresponds to a MAR mechanism in a one-step LC 

analysis, but yields a not MAR (NMAR) mechanism in the first step of a stepwise LC analysis 

because the auxiliary variables are excluded from this analysis. The second question of interest, 

therefore, is how strongly parameter estimates of the stepwise LC approaches are affected by this 

type of violation of the MAR assumption. 

To summarize, in this paper, we address the following two questions: 

1) Is it correct to ignore the fact that classification errors are larger for observations with 

missing values, or should we address this in some way in the third step of a three-step 

LC analysis?  
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2) Are estimates of the relationship between class membership and auxiliary variables 

obtained with stepwise LC approaches strongly affected by possible violations of the 

MAR assumption in the step-one model?  

Note that the second question is relevant for both three-step and two-step LC analysis, while the 

first question is relevant only for three-step approaches. 

The next section describes the design of our study, which is based on the analysis of 

synthetic data sets corresponding to LC models with covariates and with missing values on the 

class indicators. These data sets vary in the missing data mechanism, the proportion of missing 

values, and the separation between classes. Next, we present the results of the analyses of these 

synthetic datasets, where we focus on the amount of bias in the covariate effects when using 

stepwise LCA methods. The paper ends with a conclusion and discussion section. 

Method 

Figure 1 depicts the four LC population models we are going to focus on. These models consist 

of three covariates (Z1 to Z3) affecting class membership (X), and six dichotomous indicators (Y1 

to Y6). The three covariates have five equidistant values ranging from -2 to 2. Indicators Y3 and 

Y6 may contain missing values for some persons, which is indicated using the missing value 

indicators I3 and I6. Figure 1a represents the missing completely at random (MCAR) mechanism 

since I3 and I6 are independent of the other variables in the model. Figure 1b corresponds with a 

MAR mechanism in which I3 depends on Y1 and Y2 and I6 on Y4 and Y5. Figure 1c assumes that I3 

depends on Z1 and I6 on Z2, which is in agreement with a MAR mechanism when Z1 and Z2 are 

included in the model, but which becomes an NMAR mechanism when estimating the model 

without the covariates included. Figure 1d represents a specific type of NMAR mechanism in 
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which missingness on Y3 and Y6 (thus I3 and I6) depends on the latent variable X. We will refer to 

these four missing data mechanisms as MCAR, MAR-Y, MAR-Z, and NMAR-X.  

[Insert Figure 1 around here] 

 For the LC model part of these population models, we used the same specifications as in 

Vermunt (2010). The model was a three-class model with equal class proportions, where the 

class-specific response probabilities for the six dichotomous indicators were chosen to create 

low, moderate, and high class separation conditions (corresponding with entropy R-squared 

values of .36, .65. and .90, respectively, without missing data). For the moderate separation 

condition, in Class 1, the success probabilities were .80 for all indicators, in Class 2, .80 for the 

first three and .20 for the last three indicators, and in Class 3, .20 for all indicators. These 

probabilities were replaced with .70 (.30) for the low and with .90 (.10) for the high separation 

conditions. The 𝑍1, 𝑍2, and 𝑍3 slope parameters in the logistic model for covariate effects of the 

classes are set to 2, 0, and 0 for Class 2 and to 2, -1, and 0 for Class 3. By setting the Class 2 and 

3 intercepts to .867 and .709, we obtained equal class proportions. 

Depending on the missing data mechanism, the likelihood of having a missing value on 

𝑌3 and/or 𝑌6 depended on values chosen for 𝑃(𝐼3) and 𝑃(𝐼6), 𝑃(𝐼3|𝑌1, 𝑌2) and 𝑃(𝐼6|𝑌4, 𝑌5), 

𝑃(𝐼3|𝑍1) and 𝑃(𝐼6|𝑍2), or 𝑃(𝐼3|𝑋) and 𝑃(𝐼6|𝑋). These probabilities were modelled using logistic 

equations with main effects. With the value for the intercept, we varied the overall proportion of 

missing values, yielding conditions with a small, a medium, and a large proportion of missing 

data on 𝑌3 (16%, 26%, 36%, respectively) and 𝑌6 (24%, 34%, 44%, respectively). In the MAR-Y 

condition, we set the slope parameters for the effects of 𝑌1 and 𝑌2 on 𝐼3 and the effects of 𝑌4 and 

𝑌5 on 𝐼6 to .5, 1, and 1.5, yielding conditions with weak, medium, and strong effects of indicators 

on missingness. Similarly, in the MAR-Z condition, we set the slopes for the effect of 𝑍1 effect 



Running head: STEPWISE LC ANALYSIS WITH MISSING VALUES 

 

7 

 

on 𝐼3 and of 𝑍2 on 𝐼6 to .5, 1, and 1.5 to manipulate the effect of covariates on missingness. In 

the NMAR-X condition, we manipulated the contrast between Class 3 and the other two classes 

(Class 3 having higher missing value probabilities), with slope parameters equal to .5, 1, and 1.5 

for weak, medium, and strong NMAR effects.  

By varying the overall proportion of missing values and the MAR and NMAR effect 

sizes, we created 3 MCAR, 9 MAR-Y, 9 MAR-Z, and 9 NMAR-X conditions (thus 30 missing 

data conditions). Each of the missing data conditions was combined with the 3 different class 

separation conditions, yielding a total of 90 conditions. 

Since we are only interested in bias and not in sampling variability, instead of randomly 

generating a large number of replication data sets, for each condition in our study design, we 

created a single synthetic data set that is exactly in agreement with the population concerned. 

These are data sets containing all possible response patterns (including those with missing 

values) with frequency weights equal or proportional to the population probability for the 

response pattern concerned. We created these data sets using the Latent GOLD 

“writeexemplarydata” output option and used R to transform the Y3 value to missing when I3 

equals 1 and the Y6 value to missing when I6 equals 1. These “exemplary” data sets were 

analyzed with Latent GOLD using three-step LC analysis with modal class assignments and ML 

bias adjustment, three-step LC analysis with proportional class assignments and ML bias 

adjustment, and two-step LC analysis. The appendix illustrates how the synthetic data sets were 

created and how the different steps of the analyses were performed. For comparison with the 

stepwise approaches, the data sets were also analyzed using one-step LC models which include 

the covariates directly. 
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We expect that the stepwise approaches will yield biased estimates of the covariate 

effects on the classes under the MAR-Z condition. The NMAR-X condition was added for 

comparison purposes only and can be expected to yield biased estimates with both one-step and 

stepwise estimation. 

 For the three-step LC analysis, we hypothesized that even MCAR or MAR-Y may be 

problematic because the amount of classification errors depends on the missing data pattern. To 

illustrate this point, in Table 1, we take the MCAR case with moderate class separation and 

medium proportion of missing values as an example, and present the overall probabilities of 

modal class assignment W conditional of the true class membership X, as well as the values for 

the four the patterns with (𝐼3 = 0, 𝐼6 = 0), (𝐼3 = 1, 𝐼6 = 0), (𝐼3 = 0, 𝐼6 = 1),  and (𝐼3 = 1, 𝐼6 =

1). As can be seen, the classification probabilities 𝑃(𝑊|𝑋) are affected by the presence of 

missing values. The class 2 predictions are more uncertain when 𝐼3 =  1, and the class 3 

predictions when 𝐼6 =  1. 

 Note that besides the missing data mechanism, we manipulated the class separation, the 

effects of the Ys, Zs, and X on the missingness, and the proportion of missing values in order to 

see whether these factors affect the amount of bias of a three-step LC analysis. More specifically, 

we expect to encounter larger biases with lower class separation since classification errors are 

larger in those situations, with larger effects of the Zs and X on missingness because of the 

resulting larger deviation from MAR in the step-one model, and with larger proportions of 

missing values because of larger overall impact of missingness. 
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Results 

This section presents the results obtained with the 90 investigated conditions. We summarize the 

overall bias as the mean absolute bias (MAB) across the six covariate effects on the classes. We 

also look at the bias in one selected parameter 𝛽12, representing the effect of 𝑍1 for 𝑋 = 2. 

MCAR and MAR-Y conditions 

The average absolute bias was exactly 0 for all stepwise approaches and the one-step approach 

under all MCAR and MAR-Y conditions, thus irrespective of the proportion of missing values, 

the strength of the MAR-Y mechanism, and the class separation. 

MAR-Z conditions 

The results obtained with the stepwise LC approaches for the MAR-Z mechanism are shown in 

Tables 2 and 3. As can be seen, the three-step modal approach has the largest absolute bias in all 

conditions, whereas the three-step proportional and two-step methods show almost zero absolute 

bias. The absolute bias in the covariate effect estimates increases with a larger proportion of 

missing data, a stronger MAR-Z effect, and a lower class separation. Furthermore, results in 

Table 2 show that a high class separation reduces the negative effect of large missing data 

proportions and strong covariate effects on missingness.  

These results are confirmed if we look at the bias encountered for a selected parameter 

𝛽12 (see Table 3). Again, the three-step modal approach yields estimates with a problematic 

amount of bias in almost all conditions. Especially in the more difficult scenarios (i.e., low class 

separation, large missing data proportion, and strong covariate effects on missingness), it 

performs much worse than the other two stepwise LC methods. Again, we can see that the three-

step proportional and two-step methods yield estimates with either zero or close to zero bias in 
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the moderate and high separation conditions. The two-step method performs slightly better than 

the three-step proportional method, mainly in the scenarios with extremely low class separation. 

We also estimated step-one LC models, which as expected yielded no bias since the 

MAR assumption holds when the covariates affecting missingness are included in the model. 

NMAR-X conditions 

Tables 4 and 5 present the mean absolute bias across the six covariate effects and the bias 

in the selected parameter 𝛽12 for the NMAR-X mechanism. As expected, we see biases with all 

LC methods. As with in the MAR-Z conditions, the three-step modal approach yields the largest 

bias in all conditions, whereas the three-step proportional and two-step LC methods produced 

estimates with relatively small biases. Among the latter two, the two-step LC approach has a 

slightly smaller bias than the three-step proportional approach. As the missing data proportions 

and the effects of class membership on missingness increase, the bias increases as well. Similar 

to what we saw for the MAR-Z mechanism, a high class separation reduces the bias. 

The one-step approach performed much better than the stepwise approaches, especially in 

the less favorable conditions with low class separation, large effects of X on missingness, and 

large proportion of missing values.  

Conclusions and Discussion 

 In this study, we examined the performance of stepwise LC methods with regard to the 

recovery of covariate effects in the presence of missing data on the class indicators. We 

examined four mechanisms for the missing data, namely MCAR, MAR-Y, MAR-Z, and NMAR-

X, and manipulated three factors within each mechanism, namely the proportion of missing data, 

the effect of indicators/covariates/latent classes on missingness, and the class separation.  
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Contrary to what we expected, estimates obtained using stepwise LC methods are not 

biased with missing values on the class indicators when the MAR assumption holds in the step-

one model estimation stage. This assumption holds when the missingness is MCAR or when it 

depends only on the indicators that are observed (our MAR-Y condition). This result answers the 

first research question we formulated in the introduction; that is, no modifications are needed 

when applying three-step LC analysis with missing values as long as the MAR assumption hold.  

As expected, when missingness depends on covariates (our MAR-Z condition), the 

stepwise approaches may yield biased parameter estimates, where bias increases with a larger 

proportion of missing values, a stronger effect of covariates on missingness, and a lower 

separation between classes. Our most important and rather unexpected finding is that amount of 

bias varies strongly across the various stepwise approaches. More specifically, three-step LC 

analysis with modal class assignments is much more strongly affected by the resulting NMAR 

missing data than the other two stepwise LC approaches.  

An explanation for the rather small biases encountered with the two-step approach is that 

the step-one measurement model parameters were not strongly affected by violating MAR 

assumption, even in the least favorable conditions. For instance, in the most difficult condition 

(low class separation, large effects of covariates on missingness, and high proportion of 

missingness), the largest bias in the class-specific response probabilities was -.02 (.28 instead of 

.30). These almost correct step-one response probabilities are treated as fixed measurement 

model parameters in the two-step approach, which explains the low bias. Proportional class 

assignment performs slightly worse than the two-step approach because it also uses the estimated 

class proportions from the step-one model to obtain the posteriors that serve as weights in the 

step-three analysis. The largest bias in the class proportions was -0.017 (0.316 instead of 0.333) 
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in the least favorable condition, which is again rather small and therefore explains why step-three 

with proportional assignment perform well. However, these seemingly small biases in the step-

one parameters may have a much larger impact when using modal class assignments in which 

one transforms the highest posterior into a weight of 1 and the other ones to 0. An assignment to 

class 2 may suddenly change in an assignment to class 3. Most probably, this increases the 

number of classification errors quite a bit in the less favorable conditions, which cannot be 

compensated by the applied correction for classification errors which itself is based on the biased 

step-one parameters. 

As expected, in the NMAR-X conditions, we always find a certain amount of bias, where 

again the three-step proportional and two-step approaches are less affected than the three-step 

modal approach. The step-one parameters showed a larger bias than in the MAR-Z condition, 

which explains why the two-step and three-step proportional approaches perform slightly worse 

in the NMAR-X condition. The one-step LC analysis approach performed very well in the 

NMAR-X condition, which can be explained by the fact that inclusion of covariates in the model 

improves the class separation substantially (in the least favorable condition, entropy R-squared 

increased from .30 to .57) and, moreover, causes one gets closer to MAR when the covariates are 

strongly related to the classes (they serve as a kind of proxy for the latent classes).  

 Based on our results, the practical recommendation for researchers who wish to use a 

stepwise LC analysis is to be cautious when there is missing data on the class indicators. If there 

is some evidence that missingness is related to auxiliary variables of interest (for example, if 

males and females have clearly different missingness probabilities and one is interested in gender 

differences in class membership), it can be recommended to use either a three-step approach with 
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proportional assignment, which is the default option in the Latent GOLD software, or a two-step 

approach, which is also available in Latent GOLD (Vermunt and Magidson, 2021a). 

 An alternative way to deal with the MAR-Z situation could be to make use of multiple 

imputation; that is, to impute the missing values on the indicators using a good imputation model 

(containing the auxiliary variables) prior to performing the stepwise LC analysis (Allison, 2000; 

Schafer, 1997; Vermunt et al., 2008). Another option could be to include the auxiliary variables 

that are related to the missingness in the step-one model, which yields a procedure similar to the 

one proposed by Vermunt and Magidson (2021b) for dealing with stepwise LC analysis in the 

presence of measurement non-invariance. 

 As any study based on constructed data sets, also our study has certain limitations. First 

of all, because we analyzed data sets that are exactly in agreement with the assumed populations, 

we did not study the effect of sampling fluctuation on estimates of parameters and their standard 

errors. Another limitation is that we postulated rather simplified missing data mechanisms, 

whereas in practice, the actual missing data mechanism may be much more complex, such as 

missingness being affected simultaneously by auxiliary variables, observed indicators, missing 

indicators, and latent classes. Moreover, we created missing values only on two of the six 

indicators, but in empirical applications, a larger portion of the indicators may contain missing 

values.  

For practical reasons, we restricted ourselves to studying the bias in the covariate effects 

in LC models for dichotomous responses. However, we expect that our results also apply to the 

estimation of the association between class membership and distal outcomes, in which case one 

may prefer using the BCH instead of the ML estimation approach (Asparouhov and Muthén, 

2021; Bakk and Vermunt, 2016, Nylund-Gibson, Grimm, and Masyn, 2019). Moreover, it can be 
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expected that our results generalize to LC models with continuous indicators, also referred to as 

latent profile models (Lazarsfeld and Henry, 1968; Oberski, 2016), which may also contain 

missing values. Finally, our results are also relevant for mixture growth or latent trajectory 

models (Muthén, 2004, Van de Schoot et al., 2017), in which it is very common to have different 

numbers of measurements per individual, something that can also be seen as a missing data 

problem. In all these situations, it can be expected that missing data is not an issue when the 

MAR assumption holds in the step-one model. But when missingness depends on auxiliary 

variables, also in these situations it can be recommended not to use a three-step LC analysis with 

modal class assignments, but instead, a three-step LC analysis with proportional class 

assignments or a two-step LC analysis. 
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Table 1: Probability of modal class assignment (W) given the true class membership (X), both 

overall and per missing data pattern, for the MCAR condition with moderate class separation and 

medium proportion of missing values. The probability of a correct assignment is printed in bold 

face. 

 

          Assigned Class W 

   True Class X   1 2 3 

   1  0.90 0.08 0.02 

   2  0.18 0.74 0.08 

   3  0.06 0.14 0.80 

Missing Data      Pat-

tern       Assigned Class W 

I3 I6   True Class X   1 2 3 

0 0  1  0.89 0.09 0.01 

   2  0.10 0.80 0.09 

   3  0.05 0.09 0.85 
        

0 1  1  0.92 0.04 0.04 

   2  0.33 0.57 0.10 

   3  0.05 0.07 0.88 
        

1 0  1  0.88 0.10 0.02 

   2  0.10 0.86 0.04 

   3  0.04 0.32 0.63 
        

1 1  1  0.90 0.09 0.01 

   2  0.30 0.67 0.04 

      3   0.10 0.28 0.61 
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Table 2: Mean absolute bias (MAB) across the six covariate effects when missingness depends on covariates (MAR-Z condition) 

 

      Low Separation   Moderate Separation   High Separation 

Method 
Missingness 

Proportion 
  

Weak 

Effect  

Medium 

Effect 

Strong 

Effect 
  

Weak 

Effect  

Medium 

Effect 

Strong 

Effect 
  

Weak 

Effect  

Medium 

Effect 

Strong 

Effect 

Three-step modal Small  0.04 0.07 0.09  0.03 0.06 0.08  0.02 0.04 0.05 

Three-step modal Medium  0.11 0.19 0.24  0.03 0.05 0.06  0.03 0.05 0.07 

Three-step modal Large  0.13 0.22 0.28  0.04 0.06 0.07  0.03 0.05 0.07 

Three-step proportional Small  0.00 0.01 0.01  0.00 0.00 0.00  0.00 0.00 0.00 

Three-step proportional Medium  0.01 0.01 0.02  0.00 0.00 0.01  0.00 0.00 0.00 

Three-step proportional Large  0.01 0.01 0.02  0.00 0.01 0.01  0.00 0.00 0.00 

Two-step Small  0.00 0.00 0.00  0.00 0.00 0.00  0.00 0.00 0.00 

Two-step Medium  0.00 0.00 0.00  0.00 0.00 0.00  0.00 0.00 0.00 

Two-step Large   0.00 0.00 0.01   0.00 0.00 0.00   0.00 0.00 0.00 

One-step Small  0.00 0.00 0.00  0.00 0.00 0.00  0.00 0.00 0.00 

One-step Medium  0.00 0.00 0.00  0.00 0.00 0.00  0.00 0.00 0.00 

One-step Large   0.00 0.00 0.00   0.00 0.00 0.00   0.00 0.00 0.00 
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Table 3: Bias in the 𝛽12 parameter with a true value 2.00 when missingness depends on covariates (MAR-Z condition) 

 

      Low Separation   Moderate Separation   High Separation 

Method 
Missingness 

Proportion 
  

Weak 

Effect  

Medium 

Effect 

Strong 

Effect 
  

Weak 

Effect  

Medium 

Effect 

Strong 

Effect 
  

Weak 

Effect  

Medium 

Effect 

Strong 

Effect 

Three-step modal Small  0.09 0.19 0.27   -0.03 -0.05 -0.07   -0.02 -0.05 -0.06 

Three-step modal Medium  0.15 0.30 0.42  0.02 0.05 0.07  -0.03 -0.07 -0.09 

Three-step modal Large  0.20 0.37 0.51  0.06 0.12 0.09  -0.04 -0.07 -0.10 

Three-step proportional Small  0.01 0.02 0.03  0.01 0.01 0.01  0.00 0.00 0.00 

Three-step proportional Medium  0.02 0.04 0.05  0.01 0.02 0.02  0.00 0.00 0.00 

Three-step proportional Large  0.03 0.06 0.07  0.01 0.02 0.03  0.00 0.00 0.00 

Two-step Small  0.00 0.01 0.01  0.00 0.00 0.00  0.00 0.00 0.00 

Two-step Medium  0.01 0.01 0.01  0.00 0.00 0.00  0.00 0.00 0.00 

Two-step Large   0.01 0.01 0.02   0.00 0.01 0.01   0.00 0.00 0.00 

One-step Small  0.00 0.00 0.00  0.00 0.00 0.00  0.00 0.00 0.00 

One-step Medium  0.00 0.00 0.00  0.00 0.00 0.00  0.00 0.00 0.00 

One-step Large   0.00 0.00 0.00   0.00 0.00 0.00   0.00 0.00 0.00 

 

  



Running head: STEPWISE LC ANALYSIS WITH MISSING VALUES 

 

21 

 

 

Table 4: Mean absolute bias (MAB) across the six covariate effects when missingness depends on the latent classes (NMAR-X 

condition) 

 

      Low Separation   Moderate Separation   High Separation 

Method 
Missingness 

Proportion 
  

Weak 

Effect  

Medium 

Effect 

Strong 

Effect 
  

Weak 

Effect  

Medium 

Effect 

Strong 

Effect 
  

Weak 

Effect  

Medium 

Effect 

Strong 

Effect 

Three-step modal Small  
0.02 0.03 0.04  0.02 0.03 0.03  0.01 0.02 0.02 

Three-step modal Medium  
0.04 0.07 0.10  0.03 0.05 0.07  0.02 0.03 0.04 

Three-step modal Large  
0.06 0.12 0.20  0.04 0.08 0.11  0.02 0.05 0.06 

Three-step proportional Small  
0.02 0.03 0.04  0.01 0.01 0.02  0.00 0.01 0.01 

Three-step proportional Medium  
0.02 0.04 0.05  0.01 0.02 0.03  0.01 0.01 0.01 

Three-step proportional Large  
0.03 0.05 0.06  0.02 0.03 0.04  0.01 0.02 0.02 

Two-step Small  
0.01 0.01 0.02  0.01 0.01 0.01  0.00 0.01 0.01 

Two-step Medium  
0.01 0.03 0.04  0.01 0.02 0.03  0.00 0.01 0.01 

Two-step Large   0.02 0.04 0.06   0.01 0.03 0.04   0.01 0.01 0.02 

One-step Small  0.00 0.00 0.01  0.00 0.00 0.00  0.00 0.00 0.00 

One-step Medium  0.00 0.01 0.01  0.00 0.01 0.01  0.00 0.00 0.01 

One-step Large   0.00 0.01 0.01   0.00 0.01 0.01   0.00 0.01 0.01 
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Table 5: Bias in the 𝛽12 parameter with a true value 2.00 when missingness depends on the latent classes (NMAR-X condition) 

 

      Low Separation   Moderate Separation   High Separation 

Method 
Missingness 

Proportion 
  

Weak 

Effect  

Medium 

Effect 

Strong 

Effect 
  

Weak 

Effect  

Medium 

Effect 

Strong 

Effect 
  

Weak 

Effect  

Medium 

Effect 

Strong 

Effect 

Three-step modal Small  -0.04 -0.07 -0.09  -0.04 -0.06 -0.07  -0.03 -0.05 -0.06 

Three-step modal Medium  -0.08 -0.17 -0.23  -0.06 -0.12 -0.15  -0.04 -0.08 -0.10 

Three-step modal Large  -0.13 -0.28 -0.49  -0.09 -0.18 -0.26  -0.06 -0.11 -0.15 

Three-step proportional Small  0.04 0.06 0.07  0.01 0.02 0.02  0.00 0.00 0.00 

Three-step proportional Medium  0.05 0.07 0.07  0.02 0.02 0.02  0.00 0.00 0.00 

Three-step proportional Large  0.06 0.07 0.04  0.02 0.02 0.01  0.00 -0.01 -0.02 

Two-step Small  0.00 0.00 0.00  0.00 0.00 -0.01  
0.00 0.00 0.00 

Two-step Medium  0.00 -0.01 -0.02  0.00 -0.01 -0.01  0.00 -0.01 -0.01 

Two-step Large   0.00 -0.03 -0.06   -0.01 -0.02 -0.03   0.00 -0.01 -0.01 

One-step Small  0.00 0.01 0.01  0.00 0.00 0.00  0.00 0.00 0.00 

One-step Medium  0.00 0.01 0.01  0.00 0.00 0.01  0.00 0.00 0.00 

One-step Large   0.01 0.01 0.01   0.00 0.00 0.01   0.00 0.00 -0.01 
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Figure 1. LC model with covariates and MCAR (a), MAR depending on observed indicators (b; MAR-Y), MAR depending on 

covariates (c; MAR-Z), and NMAR depending on latent classes (d, NMAR-X) missing data mechanisms. 
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Appendix: Latent GOLD 6.0 Syntax 

Latent GOLD 6.0 (Vermunt and Magidson, 2021) was used to create synthetic data sets which 

are exactly in agreement with the assumed populations. This is example syntax for the MAR-Z 

model with medium effects of z1 and z2 on i3 and i6, medium proportion of missing values, and 

moderate class separation: 

options 

         algorithm emiterations=0, nriterations=0; 

   output parameters=first writeexemplarydata= 'data.txt'; 

variables 

   caseweight freq1000; 

   dependent y1 2, y2 2, y3 2, y4 2, y5 2, y6 2, i3 2, i6 2; 

   independent z1, z2, z3; 

   latent Class nominal 3; 

equations 

   Class <- 1 + z1 + z2 + z3; 

   y1 – y6 <- 1 | Class; 

   i3 <- 1 + z1; 

   i6 <- 1 + z2; 

       {0.867 0.709 2 2 0 -1 0 0                    

         1.386294361 1.386294361 -1.386294361 

         1.386294361 1.386294361 -1.386294361 

         1.386294361 1.386294361 -1.386294361 

         1.386294361 -1.386294361 -1.386294361 

         1.386294361 -1.386294361 -1.386294361 

         1.386294361 -1.386294361 -1.386294361 

    -1.49 1 

        -.95 1} 
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The input data file contains one record for each of the 125 covariate patterns, with the eight 

dependent variables (six items and two missing data indicators) set to 0 and a frequency weight 

yielding an arbitrary total sample size (here it equals to 8 for each pattern, yielding a total of 

sample size of 1000). Specific in this syntax is that we set the number of EM and Newton-

Raphson iterations to 0 (to fix the parameter values to their starting values), that we use the 

output option “writeexemplarydata” (to obtain the data file that we need), and that we specify 

“starting values” for all model parameters at the end of the equations section (to define the 

population values). As can be seen, the variables section specifies the caseweight and the 

variables which are part of the model. For the dependent variables, we have to specify their 

number of categories, and for the latent variable we have to provide a name, define its scale 

types, and specify its number of categories. The population parameters are specified between 

“{}”, where the first row defines the logit parameters of the model for the classes (the intercepts, 

and the effects of the three covariates), the next six rows define the class-specific response logits 

for the six items, and the last two rows contain the logit parameters of the models for the two 

missing value indicators. Note that the output option “parameters=first” indicates that dummy 

coding is used for the logit parameters with the first category as the reference category. The 

output data file “data.txt” will contain all possible response patterns (thus 125*62*22 rows) a 

with frequency weight equal to the population proportion derived for the specified parameter 

values times the total sample size (here 1000). 

Subsequently, in data file “data.txt”, the value of y3 (y6) should be replaced by a missing 

value if i3 (i6) equals 1, which can, for example, be done using R. Then, using the resulting data 

set, a step-one analysis can be performed, while writing the classification information to an 
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output data file. For the two-step approach, the log of the class-specific response densities should 

be saved in the output data file. That is,  

options 

   missing includeall; 

   output parameters=first standarderrors profile; 

   outfile 'classification.txt' classification logdensity  

      keep z1 z2 z3; 

variables 

   caseweight frequency; 

   dependent y1, y2, y3, y4, y5, y6; 

   latent Class nominal 3; 

equations 

   Class <- 1; 

   y1 – y6 <- 1 | Class; 

Important is the missing values option “includeall”, which is used to indicate that records with 

missing values should be kept in the analysis. The “outfile” option is used to write the posterior 

class memberships and the log of class-specific response densities to an output data file, which in 

addition should contain the three covariates (indicated with the “keep” option). The “variables” 

and “equations” sections are similar to those showed above, though quite a bit simpler since the 

covariates and the missing value indicators are not part of the step-one model. Moreover, there is 

no need to specify number of categories of the items since these can be derived from the input 

data file. Note that the “caseweight” contains the frequency counts which are in agreement with 

the specified population model. Though not really needed, starting values may be provided to 

make sure the classes come out in the “right” order.  

The step-three model can be estimated using the data file 'classification.txt'. With modal 

class assignments, the model syntax the looks as follows:   
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options 

   step3 modal ml; 

   output parameters=first standarderrors=robust estimatedvalues; 

variables 

   caseweight frequency; 

   independent z1, z2, z3; 

   latent Class nominal posterior=(Class#1 Class#2 Class#3); 

equations 

   Class <- 1 + z1 + z2 + z3; 

The option “step3” indicates the type of step-three analysis one wishes to perform. Note that 

Class#1, Class#2, and Class#3 are names of the variables in the data file 'classification.txt', 

which contain the posterior class membership probabilities. The “caseweight” is the same 

frequency count as was used in the step-one model. The equations section contains the logistic 

regression equations for the latent classes.   

With proportional class assignments, we use “step3 proportional ml” instead of “step3 

modal ml”. For a the step-2 analysis, the line “step3 modal ml;” can be removed, and 

posterior=(Class#1 Class#2 Class#3)” is replaced by “logdensity=(logdensity1 logdensity2 

logdensity3)”. The variables logdensity1, logdensity2, and logdensity3 contain the log of the 

classification response densities from the step-one model.  

 


