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Mokken scale analysis can be used for scaling

under nonp aram et ric it em resp onse t h eory m odels.

T h e result s m ay, h ow ev er, not refl ect t h e

underlying dim ensionalit y of dat a. V arious

feat ures of Mokken scale analysis— t h eH

coeffi cient , Mokken scale condit ions, and

algorit h m s— m ay ex p lain t h is result . I n t h is art icle,

t h ree new H - based obj ect iv e funct ions w it h sligh t

reform ulat ions of Mokken scale analysis in t h e

unidim ensional and m ult idim ensional cases are

int roduced. D et erm inist ic and st och ast ic

nonh ierarch ical clust ering algorit h m s reduced t h e

p robabilit y of obt aining subop t im al solut ions. A

sim ulat ion st udy inv est igat ed w h et h er t h ese

m et h ods can det erm ine t h e dim ensionalit y

st ruct ure of dat a set s t h at v ary w it h resp ect t o it em

discrim inat ion, it em diffi cult y, num ber of it em s p er

t rait , and num bers of observ at ions p er t est .

F urt h erm ore, it w as inv est igat ed w h et h er

det erm inist ic and st och ast ic algorit h m s can

generat e ap p rox im at ely global op t im al solut ions.

T h e m et h od based on t h e av erage w it h in- scaleHi

com bined w it h a st och ast ic nonh ierarch ical

clust ering algorit h m w as t h e m ost successful in

dim ensionalit y assessm ent . Index terms:

o p ti mi z a ti o ns, mu l ti di mensi o na l i ty , no np a ra metri c

i tem resp o nse th eo ry , seq u enti a l c l u steri ng ,

sc a l i ng , sto c h a sti c a l g o ri th ms

A m at h em at ics t est t h at draw s on t h e st udent ’ s sp at ial insigh t , calculus, and arit h m et ic abilit ies

is know n as a m ult idim ensional t est . I n general, a t est or q uest ionnaire t h at is sensit iv e t o m ore

t h an one t rait , abilit y, or ch aract erist ic is denot ed as m ult idim ensional. O ne t yp e of m ult idim en-

sionalit y inv olv es t h e sit uat ion w h ere t h e it em p ool is sensit iv e t o m ult ip le lat ent t rait s and t h e

it em s are sensit iv e t o one dom inant lat ent t rait . F or an uneq uiv ocal int erp ret at ion in t h ose m ea-

surem ent sit uat ions, it is conv enient t o select it em s int o m ult ip le set s, each sensit iv e t o one dom i-

nant t rait , and dev elop scale scores for each t rait sep arat ely.

F our nonp aram et ric it em resp onse t h eory ( I R T ) m et h ods can be used t o select one or m ore set s

of it em s sensit iv e t o a single t rait from a m ult idim ensional dat a m at rix . D edicat ed soft w are

p ackages are D E T E C T ( K im , 1 9 9 4 ; Z h ang & S t out , 1 9 9 9 ) , D I MT E S T ( N andakum ar & S t out ,

1 9 9 3 ; S t out , G oodw in F roelich , & G ao, 2 0 0 1 ) , H C A / C C P R O X ( R oussos, S t out , & Marden,

1 9 9 8 ) , and MS P ( Mokken, 1 9 7 1 ; Molenaar & S ij t sm a, 2 0 0 0 ; S ij t sm a & Molenaar, 2 0 0 2 ) . T h ese

m et h ods all use observ able conseq uences of t h e m onot one h om ogeneit y m odel ( MH M; Mokken,

1 9 7 1 ) . A set of it em s t h at sat isfi es t h e MH M is unidim ensional ( i. e. , sensit iv e t o a single lat ent

t rait ) , is locally indep endent ( i. e. , t h e it em resp onses are st at ist ically indep endent giv en a fi x ed

v alue of t h e lat ent t rait ) , and m eet s t h e m onot onicit y assum p t ion ( i. e. , t h e p robabilit y of answ ering

an it em correct ly is an increasing funct ion of t h e lat ent t rait ; e. g. , H olland & R osenbaum , 1 9 8 6 ) .

A p p l i ed P sy c h o l o g i c a l M ea su rement, V ol. 3 1 N o. 4 , J uly 2 0 0 7 , 3 0 8 – 3 3 0
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The methods vary in their focus on each of the particular MHM assumptions. A relaxation of

nonparametric IRT’s local independence assumption, denoted as weak L I (e.g., McDonald, 1985;

Stout, 1987), is used to evaluate the relationship between item pairs in DETECT, DIMTEST, and

HCA/CCPROX. In DETECT and HCA/CCPROX, the items are partitioned into clusters in such

a way that locally independent sets of items are obtained as much as possible, and in DIMTEST,

weak L I of the responses is tested. Although multidimensionality may not be the only possible

explanation that weak L I does not hold, this approach appears to be a rather direct one to assess

dimensionality (van Abswoude, Van der Ark, & Sijtsma, 2004). The methods have a few disad-

vantages; that is, these methods are not suitable for tests having few items and a modest sample

siz e (sample siz es of 2,000 and less are regarded as being small; Stout, 1987); they are sensitive to

the strength of each scale (i.e., different numbers of items or different discrimination of the items

between scales; see van Abswoude et al., 2004); and their statistics have some bias (see Roussos &

Oz bek, 2003; Stout et al., 2001; Zhang, Y u, & Nandakumar, 2003).

The focus of MSP’s method, Mokken scale analysis (MSA), is on creating scales rather than on

dimensionality assessment. Items joined into a scale using MSA satisfy an observable conse-

quence of the MHM on one hand, and a user-defined condition on the other hand. The user-defined

condition allows one to choose the minimal discrimination power of items in a scale. The strength

of the relationship between item scores is quantified by means of the H coefficient (L oevinger,

1948; Mokken, 1971), a normed covariance that corrects for the maximum covariance possible

given the marginal distribution of the items. This coefficient need not be calculated for each latent

trait value and thus requires fewer subjects and fewer items than the conditional statistics used in

the local independence-based methods. A disadvantage is that its sequential scaling algorithm

may not yield the best possible solution. Technically, the best solution for one scale is the item set

having the highestH value for as many items as possible and satisfying the scale conditions. Prac-

tically, this disadvantage could mean that a scale has less strength to measure the underlying trait

and/or consists of fewer items than if an alternative algorithm were used. For a theoretical compar-

ison of the four methods, see van Abswoude et al. (2004).

The main purpose of this article is to implement a new algorithm in MSA that allows us to keep

the general focus of the method intact but resolves the problems associated with the old algorithm.

W e use stochastic and deterministic versions of a nonhierarchical clustering algorithm for this pur-

pose. New objective functions are introduced in which MSA is adapted to these new algorithms.

These new objective functions define the problem of finding more than one scale in a slightly dif-

ferent way than the sequential MSA method. The necessity of this redefinition and its conse-

quences for scaling results are discussed.

Although we intend to keep the scaling focus intact, in this article, the scale conditions are gen-

erally ignored. The main reason for this is simplicity: B efore we add restrictions to the problem,

we first want to investigate how well the new functions work. A consequence of adopting this

approach is that the new method is investigated as a dimensionality assessment tool. This has

a number of advantages. If the scale conditions are not incorporated, weakly discriminating items,

for which the assignment of items into scales is the most difficult, can be selected into scales, and

thus the limitations of the method can be investigated. Furthermore, we can find out whether the

new function, the scale conditions, or the algorithm is responsible for splitting or joining of item

pairs into clusters. Suggestions for how to extend the new MSA method with the scale conditions

are discussed elsewhere (van Abswoude, 2004).

U sing a simulation study, we determined how successful these methods are in finding the under-

lying dimensionality of a data matrix, which answers the first research question. In particular, we

investigated the correspondence between the solution (i.e., the obtained sets of items or clusters) that

maximiz ed the object function concerned and the true dimensionality. The second research question
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is connected to the preferred algorithm. We judged the success of each algorithm by the number of

times it yielded a (near) global solution and by the number of iterations it needed to converge.

MSA

MSA uses Loevinger’s H coefficient as a scalability coefficient (Loevinger, 1948; Mokken,

1971). The H coefficient can be expressed in terms of Guttman errors (Guttman, 1950). Let

X= ðX1; . . . ;XIÞ be the vector of I binary scored item response variables (items), and let

x= ðx1; . . . ; xIÞ be their realizations (i.e., 0 denotes incorrect; 1 correct). In addition, let pi denote the

proportion of subjects answering item i correctly, and let all items be ordered such that pi ≥ pj. Then,

a subject answering an easy item i incorrectly and a difficult item j correctly produces a Guttman

error. A larger number of Guttman errors than expected under the MHM in combination with the dis-

tribution of the latent trait(s) may be due to misfit of one or a few subjects (person misfit; e.g., Emons,

2003; Karabatsos, 2003;Meijer, 1994), themisfit of one or two items in specific subgroups of subjects

(item bias), or the misfit of one or more items driven by unintended latent variables (multidimension-

ality; e.g., Stout, 1987; van Abswoude et al., 2004). Person misfit and item bias can in fact be seen as

special cases of multidimensionality, in which instead of an extra unobservable trait, a grouping vari-

able either distinguishes one subject from the rest or distinguishes different subgroups.

Let Fij denote the observed number of Guttman errors, and Eij =Npjð1− piÞ the expected

number of Guttman errors under marginal independence. The H coefficient for an item pair (i, j)

is defined as

Hij = 1−
Fij

Eij

: ð1Þ

One may note that Hij = 0 when items i and j show exactly as many Guttman errors as expected

under marginal independence, and Hij = 1 when no Guttman errors are observed. The H coeffi-

cient can also be written as

Hij =
covðXi;XjÞ

covðXi;XjÞmax

ð2Þ

(Loevinger, 1948; Mokken, 1971). The H coefficient of a single item i in a scale consisting of I

items equals

Hi =

P

j 6¼ i

covðXi;XjÞ

P

j 6¼ i

covðXi;XjÞmax

: ð3Þ

Also, the overallH coefficient for a set of items can be written as a normed covariance; that is,

H =

PI− 1

i= 1

PI

j= i+ 1

covðXi;XjÞ

PI− 1

i= 1

PI

j= i+ 1

covðXi;XjÞmax

: ð4Þ
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Alternatively, we could define the scaleH as a weighted sum of the itemsHis or the bivariateHijs

(Mokken, 1971), respectively:

H
XI1

i1

XI

j i1

Eij Hi

XI1

i1

XI

j i1

Eij

XI1

i1

XI

j i1

Eij Hij

XI1

i1

XI

j i1

Eij :

ð5Þ

Mokken (1971, pp. 149-152) showed that the MHM implies that 0≤Hij ≤ 1, 0≤Hi ≤ 1, and

0≤H ≤ 1. Thus, positive values of these coefficients are necessary for theMHM to hold. The rela-

tionship between Hij, Hi, and H is the following: min(HijÞ≤ minðHiÞ≤ maxðHiÞ≤ maxðHij)

(e.g., Hemker, Sijtsma, & Molenaar, 1995; Mokken, 1971). We restrict our attention to dichoto-

mously scored items. The generalization of our methods to polytomous items (using Equations 2,

3, and 4) is straightforward (e.g., Hemker et al., 1995; Molenaar, 1991).

Theoretically, a Mokken (1971) scale is defined as

Condition 1: cov(Xi,XjÞ> 0, for all i 6¼ j, and

Condition 2:Hi ≥ c, for all i, where c is a user-defined constant between 0 and 1 (default, c= :30).

The first scaling condition, which can be restated as Hij > 0, is necessary but not sufficient for the

MHM to hold (Mokken, 1971 also see Holland & Rosenbaum, 1986). The second scaling condi-

tion serves a practical purpose and allows the user to manipulate the minimum discrimination of

items joined into scales. Given the choice of c, not all items may be scalable. The scalable items

agreeing with the MHM do, however, contribute to the correct ordering of subjects on the latent

variable measured by each scale (Grayson, 1988; Hemker, Sijtsma, Molenaar, & Junker, 1997).

For the interpretation of the strength of a scale, Mokken (1971, p. 185) derived the following rules

of thumb: :30≤H < :40 constitutes a weak scale; :40≤H < :50 a medium scale; and H ≥ :50

a strong scale. Mokken considered c= :30 a reasonable minimal requirement for item quality. The

appropriate value of c depends on the researcher’s purpose of scaling. When highly scalable (or

high discrimination) items are required, c needs to be high. Coefficient H also tends to be higher

when the dispersion of items is larger (Roskam, Van den Wollenberg, & Jansen, 1986). For more

information on the effect of c on dimensionality results, see Hemker et al. (1995), Molenaar and

Sijtsma (2000), and van Abswoude et al. (2004).

Having a set of items with highH coefficients (Equation 2 or 3) does not necessarily imply that

the set is sensitive to a single latent trait. For example, when traits are moderately correlated,

despite multidimensionality, H can be high (van Abswoude et al., 2004). On the other hand,

‘ ‘ Hemker et al. (1995) showed for polytomous items that the dominant dimensions of a data matrix

may be found when various values for c are used. In fact, because the scale conditions are neces-

sary but not sufficient for satisfying the MHM, one should check model assumptions. Let R−i

denote the total score on a set of items minus the score on item i. The program MSP then provides

a tool to check the monotonicity of each item via nondecreasing P½Xi = 1|R−i� in R−i, known as

manifest monotonicity (Junker, 1993). Methods such as DIMTEST could be used in addition to

MSP to ascertain that Mokken scales satisfy weak LI.

MSP uses a sequential clustering algorithm to select items into scales. Sequential item selection

as defined by Mokken (1971) and as incorporated in the MSP method has the following stepwise
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procedure. Item selection starts by joining of the item pair (i, j) with the highest Hij under the

restriction that it is significantly positive. This is the start set of the procedure. Then, out of all

remaining items, the item i that yields the highestH with the already selected items is added to the

start set under the following three restrictions: First, item i should have a positive covariance with

each of the already selected items (Condition 1); second, Hi with respect to the already selected

items should be significantly positive; and third, the Hi with respect to the already selected items

should satisfyHi ≥ c (Condition 2). This step is repeated until no item that satisfies the scaling cri-

teria remains. Once this occurs, the first Mokken scale has been formed. If, after forming a scale,

more than one item remains, the procedure is repeated to form a second, and a third (and so on)

Mokken scale. Details about significance testing, the treatment of ties, or other aspects of the

sequential algorithm can be found in Mokken (1971) andMolenaar and Sijtsma (2000).

Typical solutions found with this sequential procedure will be illustrated by means of a small

example using simulated data. Assume we have data on a linguistics test having items on three

topics: grammar (y1, 20 items), meaning (y2, 10 items), and punctuation (y3, 10 items). For such

a test, one can easily imagine that the underlying abilities are correlated: We used rðy1, y2Þ= :4,

rðy1, y3Þ= :2, and rðy2, y3Þ= :2. In addition, items may be sensitive to more than one trait. Then,

starting out with the best item pair, two grammar items, using the sequential MSA method the fol-

lowing partitioning is found:1 25 items in Scale 1 (y1, y2; H = :51), 5 items in Scale 2 (y2;

H = :46), and 10 items in Scale 3 (y3;H = :60). If we deviate from the default setting of MSP and

use the next best pair as the starting set (i.e., two meaning items), we find 10 items in Scale 1 (y2;

H = :53), 20 items in Scale 2 (y1; H = :60), and 10 items in Scale 3 (y3; H = :63). The combina-

tion of dependence on the start set and the inability to move items into better fitting clusters are the

drawbacks of the sequential method in a nutshell (see Molenaar and Sijtsma, 2000, for instructions

on how to cope with these issues in the current programMSP).

Problems such as this one can be expected to occur in scaling contexts where the underlying

traits are significantly correlated (say, larger than .40; van Abswoude et al., 2004) or where items

load on more than one trait. These conditions are typical for many test data situations.

Alternative ClusteringMethods

In this section, we introduce three new methods that might improve MSA’s optimization in

a single as well as in a multiple scale context. To evaluate the quality of a partitioning consisting

of items that are joined into one or more clusters, we need functions based on H. Each new func-

tion is called an objective function, and its purpose is to find a scaling solution that maximizes its

value such that, for example, the highest value of the H coefficient for all clusters is obtained

simultaneously. The proposed algorithms for maximizing the objective functions allow single

items to be moved to a cluster where the fit may be better and allow multiple clusters to be formed

simultaneously. In the following sections, we introduce three new objective functions based on

Hij,Hi, andH, respectively, and explain how these objective functions can be maximized.

O b j ec tive F unc tions U sing theH Coef fi c ient

Objective function O1 was inspired by the work of Kim (1994) and Zhang and Stout (1999).

Zij = 1 if items i and j are in the same cluster k in partitioning P, and Zij = −1 otherwise. Then,

O1 is defined as

O1 =
2

IðI− 1Þ

X

1≤ i < j≤ I

ZijðHij − c∗Þ: ð6Þ
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The idea behind this objective function is that a good partitioning is achieved when pairs of items

with high Hijs are joined in the same cluster, and pairs with low Hijs are put in different clusters.

The partitioning that maximizes the objective function is referred to as P∗. The multiplication by Zij

is incorporated in Equation 6 to encourage item pairs with a highHij to be joined into the same clus-

ter and item pairs with a low or a negative Hij to be put into different clusters. This is because the

contribution of pair (i, j) to O1 is positive if Hij − c∗ > 0 and Zij = 1; and if Hij − c∗ < 0 and

Zij = −1. The contribution to O1 is negative ifHij − c∗ > 0 and Zij = −1, and if Hij − c∗ < 0 and

Zij = 1: Variations of O1 can be obtained not only by different choices of c∗, but also by changing

the definition ofZij. For example, by settingZij = 0 for items i and j, which are not in the same clus-

ter k, andZij = 1 otherwise, the objective function would target only the within-cluster scalability.

Rewriting Equation 6 makes the effect of c∗ on the final clustering solutions clearer:

O1 =
2

IðI− 1Þ

X

1≤ i < j≤ I

ZijHij −
2

IðI− 1Þ

X

1≤ i < j≤ I

Zijc
∗: ð7Þ

If c∗ = 0, the sum most right of Equation 7 equals zero. Thus, P∗ is found when all items, except

those having many negative Hijs with other items, are joined in one large set. With c∗ = 1, which

expresses the maximum value of Hij, the rightmost sum of Equation 7 is maximized when items

are distributed equally across the K clusters. The objective function is maximized with K equally

large sets consisting of item pairs that jointly yield the highestSHij (see Equation 7), which means

that c∗ = 1 is appropriate only when item sets are equal in size. Because researchers do not know

the latent trait composition of their test, c∗ = 1 is useless in practice. Choosing a fixed value for c∗,

for example, c∗ = :3, is not advisable either because the suitability of a c∗ value may depend

on the properties of the investigated items. An alternative is to derive c∗ from the data: c∗ =

2=IðI− 1ÞSi 6¼jHij, that is, the average Hij of all item pairs (denoted �Hij). One can easily verify

that O1 = 0 when c∗ = �Hij and all items are entered in a single cluster. This provides a benchmark

against which we can compare other solutions.

We investigated the appropriateness of the four proposed c∗ values (0, .3, 1, and Hij) for simu-

lated data with two moderately correlated traits (i.e., .4). The algorithms and the model used for

generating data are the same as in the main simulation study. Item discrimination (hi= high dis-

crimination, or mo=moderate discrimination) and the length of the two subtests (15 items or 30

items) were varied. The results presented in Table 1 show that for c∗ = 0 all items were joined into

one cluster, regardless of the type of data. Using c∗ = :3 yields the simulated structure for moderate

discrimination items but not for high-discrimination items. This is because Hij > :3 for most item

pairs in the high-item discrimination condition, and as a result items sensitive to different traits are

joined into one cluster. Using c∗ = 1 works only for data having equal numbers of items for each

trait (i.e., the total pool is split correctly), not for unequal numbers. Using c∗ = �Hij yields the simu-

lated structure for equal numbers of items and has one misclassified item for unequal numbers. We

investigated the use of c∗ = �Hij inO1 more extensively in the main study.

The second objective function, denoted asO2, can be interpreted as the averageHi within clus-

ters of a partition. The objective function is used to maximize the item scalability. Before defin-

ing O2, some additional notation is needed. Let k again denote an arbitrary cluster of items

(k= 1; . . . ;K), and letHk
i be theHi value of item i with respect to the other items in cluster k. Let

Zk
i = 1 if i∈ k at P (i.e., when item i is in cluster k), and Zk

i = 0 otherwise. The second objective

function for evaluating aK-cluster partitioning P is

O2 = I− 1
XI

i= 1

XK

k= 1

Zk
iH

k
i : ð8Þ
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We use normalizing constant I− 1 and indicator Zk
i to make O2 easily interpretable as the average

Hi within clusters. Note that with O2 all elements of a partitioning are evaluated and not just one

element at a time as in the sequential MSP method. This means that O2 can be used to search for

that partitioning of items that produces the highest Hi for all items. This property may resolve the

problems discussed for MSP. As one can observe, we do not specify a constant c (Condition 2) or

any related constant such as c∗ inO1. One may further note that maximizingO2 may not yield the

same solution as maximizing H. We use O2 because of its direct relationship to the second

Mokken scaling condition.

Let Hk denote the overall H for cluster k. The third objective function, denoted as O3, equals

the average within-clusterH:

O3 =K−1
XK

k= 1

Hk: ð9Þ

Out of the three presented objective functions, O3 is most similar to MSP’s original objective

function.

The three objective functions presented above have in common that they make use of an aver-

age of the pairwise Hijs. A difference is that O1 uses the arithmetic mean of the Hijs, whereas O2

and O3 use weighted normalized sums of the Hijs. Another difference is that O1 targets both

within-cluster similarities and between-cluster differences, whereasO2 andO3 target only within-

cluster similarities.

NHCAAlgorithm

A well-known nonhierarchical clustering analysis (NHCA) algorithm is used to optimize O1,

O2, and O3. It is similar to the K-means algorithm (e.g., Berthold & Hand, 1999). Let t

ðt= 1; . . . ; T ) represent the iteration number.

In an NHCA algorithm, first an initial configuration is constructed. This means that each item i

is assigned to its initial cluster k. At iteration t, the quality of the partitioning is evaluated using

O1, O2, or O3, and one item i is moved from a cluster k to another cluster k0. These steps are

repeated until the process has converged.

The NHCA algorithm can be implemented in different ways. In our implementation, one item

is moved at a time, but it would also have been possible to move more than one item per iteration.

We choose not to move multiple items per iteration because that turned out to yield much less

stable algorithms.

When applying the algorithm, we aim to find the partitioning that yields the highest value of the

objective function given all possible partitionings. One may note that the objective function is

T able 1

Effect of Using Different c∗ Values ofO1 on Obtained Dimensionality Results

c∗

Test Composition Discr. 0 .3 1 �Hij

15/15 Hi [ 30] [ 30] True True

Mo [ 30] True True True

15/30 Mo [ 45] [ 18/27] [ 21/24] [ 16/29]

N ote. Discr.=Discrimination; hi= high discrimination; mo=moderate discrimination; true= the simulated

structure was obtained; otherwise, the number of items obtained in each cluster is presented in brackets.
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a discrete function whose value depends on the partitioning. As explained earlier, the solution

space is bounded only by the selected value for K (i.e., no Mokken scale conditions are imposed).

The best solution is the one that maximizes the objective function. This solution is known as the

global optimum solution. Frequently, however, this objective function is multimodal, meaning

that there are several local maxima in addition to a global maximum. In this article, the highest

maximum that is obtained by running each of the algorithms is denoted the global maximum.

Strictly speaking, this solution is globally optimal only by approximation because not all possible

solutions were investigated.

In general, because simple deterministic algorithms have a higher likelihood of yielding a local

maximum, we used stochastic algorithms in addition to deterministic ones. We chose to use an

NHCA algorithm instead of simplex- or evolutionary-type algorithms (e.g., Danzig & Thapa,

1997; Michalewicz, 1996) because it closely resembles MSP’s original algorithm and because it

has the potential to resolve the optimization problems discussed for the sequential approach.

Another attractive property is that deterministic and stochastic elements can easily be incorpo-

rated. These elements influence the likelihood that a global solution will be obtained and the speed

of the algorithm. Deterministic and stochastic elements can be introduced into the NHCA at two

occasions: at the initial configuration and at the move of a single item into a different cluster.

Initial Configuration

In the random initial configuration condition, items are randomly assigned to one of K clus-

ters with equal probability (i.e., we use the default random number generator of Borland Pascal,

Version 7.0). A random initial configuration requires no additional information and thus is simpler

than its deterministic counterpart. Methods that use a random-start configuration may be repeated

several times so that some may yield global optimal solutions (e.g, Michalewicz, 1996).

In the nonrandom initial configuration condition, one may use the K-cluster partitioning based

on a priori knowledge. Another option is to start with the partitioning obtained with another clus-

tering method, such as a sequential clustering or a hierarchical clustering procedure. Here, we used

the partitioning obtained with the sequential clustering without testing procedure of MSP as the

starting point. This nonrandom-start configuration can be expected to be close to the underlying

dimensionality, and it can therefore be expected that few iterations will be needed to arrive at

a final solution.

A practical complication with this start configuration is that sequential clustering may yield

a larger number of clusters than NHCA and that some items may not be selected at all. There are

different ways to remedy this, such as trying to obtain a K-cluster solution by manipulating the

constant c in sequential clustering. This may, however, be rather cumbersome. In the simulation

study, we therefore took a shortcut and randomly redistributed items from extra clusters and non-

selected items over theK available clusters to get the desiredK-cluster start solution.

Move an Item to a Cluster

In the nonrandom or deterministic condition, we move item i to the cluster k that yields the

greatest improvement of the objective function. Methods that have such a deterministic move (i.e.,

hill-climbing methods) may provide only a local optimum value; therefore, the success of the

method depends on the starting point of the algorithm.

For the random or stochastic condition, we use an adapted Metropolis procedure that is fre-

quently used in simulated annealing (e.g., Berthold & Hand, 1999). The probability Pk
it that item i

will be moved to cluster k at iteration t is derived from the resulting change in the value of the

objective function, denoted as � Ok
it, where O

k
it may refer to O1, O2, or O3. More specifically, the
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probability that item i is moved to cluster k equals

Pk
it =

½expð�Ok
itÞ�

t=I

PI

i= 1

PK

k= 1½expð�Ok
itÞ�

t=I
; ð10Þ

where the denominator normalizes the probability to lie within the 0-1 range and sums to 1 over k

and i. Power (t=I) is added to make improvements of the value of the objective function more

likely for higher iteration numbers. Which particular item i is moved to which cluster k depends

on a randomly drawn number and the probabilities described above.

Convergence

When moving items into clusters deterministically, the method stops when the objective func-

tion can no longer be improved. With a random component, it is less obvious when to stop the clus-

tering process. We need a convergence rule to stop the iteration process. Figure 1 depicts the value

of the objective function as iteration number t increases for some binary multidimensional data.

One can observe that for low iteration numbers, the objective function may either increase or

decrease. For t→∞, the algorithm becomes similar to a deterministic algorithm in which the best

improvement is always selected. In Figure 1, one can observe that the process does not become

completely deterministic because the value of the objective function fluctuates between the best

and the next best solution. This is because in our implementation we always move one item at

every iteration step.

For convergence of the stochastic move algorithm, one has to let the iteration process continue

until a more or less stable result is obtained. In Figure 1 this occurs after approximately 6,000 itera-

tions. The rather safe stopping rule we used in our simulation studies is that the same largest value

of the objective function should have occurred 100 times.

Simulation Study

The first goal of the simulation study was to investigate how successful the objective functions

O1,O2, andO3 are in assessing the underlying dimensionality structure for different types of data

matrices. For this purpose, we compared the solution corresponding to the globally optimal value

and the underlying dimensionality of the data. One may recall that the globally optimal value is

the highest value obtained after running each algorithm. The second research question was which

algorithm can find the global maxima for O1, O2, and O3. In answering this question, we ignored

the underlying dimensionality and assessed only which algorithms yielded global solutions. This

will be discussed in the second part of this section.

Model Used for G enerating D ata

For generating binary item scores, we used a model that can produce item response functions

(IRFs) with more than one inflection point (also see Douglas & Cohen, 2001; Samejima, 2000).

The model is a multidimensional IRT model that consists of a mixture of IRFs (denoted ‘‘compo-

nents’’) that satisfy the multidimensional two-parameter logistic model (M2-PLM; Birnbaum,

1968; Reckase, 1997).

Before we define the model, we need to introduce some notation. Let q (q= 1; . . . ;Q) represent

one of the mixture components; aiqd is the discrimination parameter of component q on trait d

(d= 1; . . . ;D) for item i, and diqd is the component-specific difficulty parameter for item i. The
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component-specific difficulty may be interpreted as the location where according to that compo-

nent the item concerned discriminates most.

The mixture model is defined by

PðXi = 1jyÞ=
XQ

q= 1

exp½
PD

d= 1 aiqdðy p d − diqdÞ�

1+ exp½
PD

d= 1 aiqdðy p d − diqdÞ�
: ð11Þ

Increasing the number of components in the model generally means that more inflection points are

added to the IRF. Increasing the aiqds means that the local increases in the IRF become steeper.

Because an IRF differs locally in steepness, increasing aiqd may increase the overall discrimination

of an IRF. Increasing the aiqds does not, however, unequivocally manipulate the overall discrimi-

nation of an item. The item discrimination can be manipulated more directly via the diqds; that is,

increasing the variance of the diqds within an item lowers the discrimination of an item.

In the simulation study, depending on the particular cell in the design, the parameters of the

mixture model took on different values. The values of item component parameters were first gen-

erated from a distribution and subsequently fixed so that the results of the various conditions of the

design became comparable. This means that the values of aiqd and diqd are different between items

and between components, but the item properties were the same between equivalent conditions of

the design. Five components for each IRF were used.

We investigated the relationship between parameters of the five-component mixture model (for

three levels of component-sensitive discrimination and two levels of component-sensitive diffi-

culty) and parameters of the M2-PLM (see Table 2). M2-PLM parameters were estimated using the

LEM computer software (Vermunt, 1997). For simplicity, unidimensional items were used; all

other properties of the items were the same as in the simulation study. Because the values of the

parameters were fixed across conditions, this meant that the diqds of items were exactly the same

across different levels of component-sensitive discriminations, making it possible to assess the

effect of aiqd without the influence of diqd. The reverse (i.e., aiqd fixed and diqd free) was true for diqd.

Figure 1

Example of Convergence ProcessWhenMove Is Random
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Note. t denotes iteration number.
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Design

Retrieving the dominant underlying dimensionality. To answer the research question regarding

the ef fi cacy of the obj ectiv e f unctions, we used data matrices hav ing 15 items p er l atent trait and

2, 0 0 0 resp onses p er item. Throughout the study , we used two- dimensional , standard normal l y dis-

tributed l atent traits ( y1 and y2). I n the main study , fi v e comp onents ( in E quation 11) were used.

To ensure stabil ity of the resul ts, we rep l icated each cel l 10 times. The design comp rised the

comp l etel y crossed f actors C orrel ation B etween Traits ( three l ev el s), S tructure ( three l ev el s), and

I tem D iscrimination ( two l ev el s), which y iel ded a 3× 3× 2 design. F or p art of the design, we

inv estigated the ef f ect of other f actors, such as N umbers of I tems P er Trait ( two l ev el s) and

S amp l e S iz e ( three l ev el s). I n addition, f or p art of the design, a simp l er model with one comp onent

was used, which al l ows indep endent inv estigation of the ef f ect of the f actors S tructure and I tem

D iscrimination.

The three l ev el s of C orrel ation B etween Traits ( r) were .1, .4 , and .7 . A s r increases, the l ess

the resp onses to items sensitiv e to dif f erent traits can be ex p ected to be dif f erent, and the more dif -

fi cul t it becomes to fi nd the correct p artitioning. The ex tremes r= : 0 ( i.e., no correl ation) and

r= 1: 0 ( i.e., a unidimensional model fi ts the data best) were not incl uded because they p rov ide

l ittl e chal l enge f or the methods. v an A bswoude et al . ( 20 0 4 ) showed that f or high- discrimination

items, M S P coul d fi nd the correct dimensional ity f or r≤ : 4 . W e woul d l ik e to k now whether better

resul ts can be obtained using the new M S A methods.

The three l ev el s of S tructure were conditions A S 1, A S 2, and A S 3 ( A S stands f or ap p rox imate sim-

p l e structure, as used by S tout, 20 0 2). I n C ondition A S 1, itemswere constructed to be highl y discrimi-

nating on a singl e l atent trait ( i.e., the intended trait). D iscrimination with resp ect to the other l atent

trait ( i.e., the unintended l atent trait) was entirel y due to the correl ation between the traits. I n the A S 2

condition, items discriminated highl y with resp ect to their intended trait and weak l y with resp ect to

their unintended trait. F igure 2 dep icts an item resp onse surf ace used in the A S 2 condition. I n C ondi-

tion A S 3, items discriminated highl y with resp ect to their intended trait and at a medium l ev el with

resp ect to their unintended trait. W e ex p ected that the simul ated dimensional ity structure in A S 1

woul d be easiest to recov er, f ol l owed by A S 2, and then by A S 3. The three l ev el s of S tructure were

obtained v ia the sp ecifi cation of the comp onent- sp ecifi c discrimination p arameters.

The two l ev el s of I tem D iscrimination were high and moderate. The ov eral l discrimination of

an I R F was manip ul ated v ia the disp ersion of the diqds, as was ex p l ained earl ier. The f actor I tem

T a b l e 2

M inimum and M ax imum V al ues of the Two- P arameter L ogistic M odel P arameters,

I tem D iscrimination, and I tem D if fi cul ty f or D ata G enerated U sing Two R anges

of C omp onent D if fi cul ty ( d iq d) and Three L ev el s of C omp onent D iscrimination ( aiq d)

L ev el of aiq d

R ange of diq d H igh M edium L ow

I tem discrimination

S mal l 1.36 – 4 .10 1.27 – 2.28 0 .4 9 – 0 .8 9

L arge 0 .7 0 – 1.5 4 0 .6 4 – 1.5 8 0 .4 4 – 0 .8 7

I tem dif fi cul ty

S mal l −1.26 – 1.32 −1.32– 1.22 −1.24 – 1.35

L arge −1.32– 1.6 8 −1.23– 1.36 − 0 .9 8 – 1.4 1
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Discrimination was manipulated independently from the factor Structure. Thus, within one level

of Structure (say, AS1) the item discrimination may be high or moderate.

The two levels of Numbers of Items Per Trait were equal numbers (i.e., 15 items sensitive to y1
and 15 items to y2) and unequal numbers (i.e., 15 items sensitive to y1 and 30 items to y2). Num-

bers of Items Per Trait was included as a design factor because it has been shown to have an effect

on finding the dimensionality of a set of items using LI-based methods (van Abswoude et al.,

2004). The effect of this factor was investigated for a few cells.

The three levels of Sample Size we used were small (i.e., 200 subjects), medium (i.e., 2,000

subjects), and large (i.e., 10,000 subjects). It was expected that the results using small sample sizes

would be less stable than the results for medium or large sample sizes. The effect of this factor was

investigated for only a few cells.

Dependent variables. J udgment about the success of the methods was based on two criteria.

The first criterion was whether the simulated structure was recovered, meaning that the items were

split according to their underlying trait structure. The retrieved clustering solution has the follow-

ing general structure ½K : I1; I2; . . . IK�, where K denotes the number of obtained clusters and

I1; . . . ; IK denotes the number of items retrieved for clusters 1 through K. When no classification

errors were made, the two adjacent clusters (e.g., I1 and I2) are separated by a semicolon; separa-

tion by a comma is used to indicate that the two adjacent clusters are in fact sensitive to the same

underlying trait, and separation by a slash indicates that some items are entered into a cluster sensi-

tive to another trait. When a method yields the simulated structure, this is referred to as the ‘ ‘ true

dimensionality,’ ’ which is an observation rather than an interpretation. For example, in the case of

two latent variables with a correlation of .95, from a substantive point of view one may prefer the

incorrect solution [ 1: 30] over the correct partitioning [ 2: 15; 15] .

The second dependent variable was the value of the objective function at the global maximum

solution. Note that the value of the objective function provides us with an indication of the strength

of the clusters that were found.

Figure 2

Item Response Surface of an Item That Discriminates Highly

With Respect to y1 (T1) and LowlyWith Respect to y2 (T2)
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Performance of the algorithms. The second research question relates to the elements of the

clustering method that are responsible for finding global optima. For this purpose, we compared

the various variants of the NHCA method with respect to their ability to find the global maxima

for different types of data. We used only a part of the total design. We investigated the effect of

Structure (four levels), and Correlations Between Latent Traits (three levels) on the number of

times the global optimum was found for the different NHCA algorithms. The four algorithms (i.e,

two types of initial configurations and two move processes) were investigated for O1, O2, and O3

each. The probabilistic methods were run 10 times. The data were generated using the five-compo-

nent mixture model with moderately discriminating items.

Dependent variables. The success of the algorithms was judged by using as a criterion the

number of replications that resulted in a global optimal solution. We also determined the average

number of runs (and its standard deviation) producing the global optimum solution for 10 repli-

cated data matrixes. The average number of iterations needed to find the global optima was the

second dependent variable.

Results

Retriev ing th e Do m inant U nd erly ing Dim ensio nality

Table 3 shows the dimensionality results using sequential clustering (in short, Sequent) and

NHCA for data (N= 2;000) generated with the five-component mixture model (narrow distribu-

tions of the component difficulties). For Sequent, we present the clustering solution. For nonhier-

archical clustering, we present the value of the objective function at the global maximum and at

the true dimensionality (within parenthesis). In Table 3, the label ‘‘true’’ denotes that the simulated

dimensionality was retrieved (i.e., the global solution is the same as the true dimensionality);

‘‘otherwise, the retrieved global clustering solution is printed.

As Correlations Between Latent Traits (r) increased, the following effects can be observed in

Table 3: Sequent tended to collect all items into one large cluster;O1 andO2 found the underlying

dimensionality; andO3 tended to split the total set in one item pair versus the rest. When loadings

on unintended traits increased (from AS1 to AS3), the intended dimensionality was obtained less

often. For moderate discrimination, Sequent and to a lesser extentO1 did not yield the true dimen-

sionality, whereas O2 did in most cases. The value of the objective function increased with

increasing r, increasing loading on unintended traits, and increasing Item Discrimination. In gen-

eral,O1 andO2 performed better than Sequent.

In Sequent, for high r and deviation from AS1, most items satisfied the Mokken scale condi-

tions for the first scale, which means that they were all collected into the first scale (see Table 3).

This effect was stronger in the high-discrimination condition. With high r and moderate discrimi-

nation, some items could not satisfy the scale conditions of the large cluster, but satisfied the scale

conditions when a new scale was formed (an example can be found in a later table) or were not

scalable at all. Item and scale H values were lower with the moderate discrimination because the

H coefficient is sensitive to item discrimination.

The difference between the global maximum value of the objective function and its value for the

true dimensionality partitioning provides some indication as to the suitability of the method for

dimensionality analysis. O ne may note that the global maximum value is at least as large as the value

at the true dimensionality. Equal or similar values indicate that the clustering method is suitable for

dimensionality assessment, which is exactly what we observe forO1 andO2, with exception of some

combinations of AS3, high correlation between traits and moderate discrimination. The values for
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O3 were so far apart that we can safely conclude thatO3 was not successful in finding the underlying

dimensionality.

One may note that lowO1 values were found when items discriminated weakly, clusters corre-

lated highly, or items loaded highly on each latent trait (see Table 3). In those cases, the pairwise

Hij s do not deviate much from their mean value. When we use Mokken’s rules to interpret

obtained O2 values (also see Discussion), we observe that the clusters obtained were strong for

high-discriminating items and very weak for moderately discriminating items (see Table 3). Inter-

preting the maximum O3 values using Mokken’s rules of thumb indicates that the average cluster

is strong for high-discriminating items and weak to medium for moderately discriminating items.

As r increased and as the item loadings on unintended traits increased, it became more difficult

to retrieve the simulated dimensionality structure. Whether this can be attributed to sampling fl uc-

tuation is investigated next.

Table 3

Results of the Restricted Sequential MSP and the Unrestricted NewMokken Scale

Analysis Methods Using Objective FunctionsO1,O2, andO3 on Retrieved Dimensionality

NHCA

Sequent

(c= .3) O1(Hij −
�Hij ) O2( �Hij ) O3(H

k)

Structure r Clust. Value Clust. Value Clust. Value Clust.

High item discrimination

AS1 .1 True .290 True .573 True .543(.561) [2/ 28]

.4 [14/ 16] .193 True .560 True .680(.548) [2/ 28]

.7 [30] .089 True .563 True .728(.552) [2/ 28]

AS2 .1 True .210 True .529 True .658(.514) [2/ 28]

.4 [29] .127 True .543 True .699(.528) [2/ 28]

.7 [30] .067 True .562 True .738(.551) [2/ 28]

AS3 .1 [28] .070(.065) [2/ 25] .471 True .692(.451) [2/ 28]

.4 [30] .068(.039) [6/ 24] .500 True .717(.482) [2/ 28]

.7 [30] .067(.023) [6/ 24] .542(.540) [15/ 15] .746(.524) [2/ 28]

Moderate item discrimination

AS1 .1 [2,9;10] .129 True .256 True .383(.256) [2/ 28]

.4 [9;9] .078 True .246 True .417(.245) [2/ 28]

.7 [9;2,9] .050(.041) [7/ 23] .260 True .426(.258) [2/ 28]

AS2 .1 [2,6;2,5] .080 True .217 True .377(.216) [2/ 28]

.4 [2,7;9] .054 True .226 True .383(.226) [2/ 28]

.7 [8;2,8] .044(.027) [8/ 22] .241 True .412(.241) [2/ 28]

AS3 .1 [2,4;2,5] .050(.018) [7/ 23] .179(.177) [12/ 18] .364(.178) [2/ 28]

.4 [2/ 2/ 2/ 9] .051(.014) [7/ 23] .216(.211) [13/ 17] .388(.211) [2/ 28]

.7 [2/ 2/ 2/ 12] .053(.007) [6/ 24] .243(.229) [13/ 17] .443(.229) [2/ 28]

Note. NHCA = nonhierarchical clustering analysis; Clust.= the clustering solution of a method; value= the

near global objective functions’ value and, if different, the value at the true dimensionality (within parenthesis);

true= the maximum value of the objective function was found at the simulated partitioning (otherwise, the

obtained partitioning is presented in notation between brackets); semicolons separate dimensionally different

sets of items; commas separate dimensionally similar sets; and slashes separate dimensionally mixed sets.
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Replicated data. To get some idea about the stability of the results, the analyses were repeated

with 10 different samples (N= 2;000). Table 4 shows that the results were not sensitive to sam-

pling fluctuations. The maximum values of the objective function did not change much between

replications. In the more difficult AS3 and r= :7 conditions, O1 and O2 were maximized at the

true partitioning in some but not all replications.

Number of items and sample siz e. Table 5 shows the results obtained when varying the factors

Number of Items and Sample Size for moderately discriminating items. These data were simulated

under the AS2 condition. For Sequent, O1, O2, and O3, the results of 10 replicated data matrices

are presented.

Table 5 shows that the numbers of items did not influence whether Sequent found the true

dimensionality. For unequal numbers of items per trait, Sequent generally produced more clusters

than for equal numbers of items (not shown in Table 5). The results of O1 were worse in the

unequal numbers of items condition than in the equal numbers of items condition, but they turned

Table 4

Results of the Unrestricted NewMokken Scale Analysis Methods Using Objective

FunctionsO1,O2, andO3 Concerning Retrieved Dimensionality for 10 Replicated Data Matrices

NHCA

O1(Hij−
�Hij) O2(H

k
i ) O3(H

k)

Structure r M( S D) # True M(S D) # True M(S D) # True

High item discrimination

AS1 .1 .288(.008) 10 .556(.009) 10 .403(.018) 0

.4 .192(.007) 10 .557(.006) 10 .392(.037) 0

.7 .096(.006) 10 .559(.009) 10 .427(.021) 0

AS2 .1 .203(.005) 10 .523(.008) 10 .360(.018) 0

.4 .128(.007) 10 .538(.008) 10 .401(.016) 0

.7 .064(.003) 10 .555(.007) 10 .429(.016) 0

AS3 .1 .072(.004) 0 .461(.013) 9 .340(.016) 0

.4 .070(.003) 0 .500(.011) 10 .388(.025) 0

.7 .065(.003) 0 .543(.008) 4 .431(.013) 0

Moderate item discrimination

AS1 .1 .125(.005) 10 .257(.004) 10 .403(.018) 0

.4 .085(.004) 10 .253(.004) 10 .371(.044) 0

.7 .047(.002) 1 .253(.005) 10 .383(.047) 0

AS2 .1 .078(.004) 10 .220(.006) 10 .315(.036) 0

.4 .054(.003) 10 .230(.005) 10 .364(.042) 0

.7 .050(.003) 0 .247(.005) 8 .386(.042) 0

AS3 .1 .052(.003) 0 .177(.006) 0 .297(.040) 0

.4 .055(.003) 0 .211(.007) 0 .340(.034) 0

.7 .059(.005) 0 .244(.004) 0 .414(.030) 0

Note. NHCA= nonhierarchical clustering analysis; M( S D)= average and standard deviation of the

maximum objective function for 10 replicated data matrices; # true= number of correct partitions for the 10

replicated data matrices.
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out to be better than expected. Evidently, the effect of having clusters that are not equal in strength

(i.e., due to unequal numbers of items or unequal item discrimination between clusters) is not so

large for two-cluster data. The results for O2 and O3 were not notably different for the equal and

unequal numbers of items conditions.

There is some sample fluctuation in Sequent’s results, but not to the extent that simulated parti-

tionings were retrieved in one condition and not in the other. Table 5 shows that with samples of size

200 the values of the objective functions varied more across replications and the true dimensionality

was found less often than with the larger sample sizes, which is, of course, what could be expected.

Additional M2-PLM simulations. To ensure that the obtained results are not an artifact of the

mixture model, the O1, O2, and O3 methods were exposed to M2-PLM data. Equation 11 with

Q= 1 equals the M2-PLM.With this simpler model, it is easier to control factors such as Discrimi-

nation and Structure than with the mixture model. This allows us to vary only the intended factor

while keeping the remaining factors constant. Unbalanced data, in which the number of items, item

discrimination, and/or the distribution of the item difficulties is not the same between clusters, were

also developed with the M2-PLM. Unbalanced data sets were generated because they can provide

more challenge for the methods than balanced data sets (see Objective Functions Using the H

Table 5

Results of the Unrestricted NewMokken Scale Analysis Methods Using Objective

FunctionsO1,O2, andO3 Concerning Dimensionality Results for Different Numbers

of Items Per Trait and Number of Respondents for Moderate Discrimination Data

NHCA

O1(Hij−
�Hij) O2(H

k
i ) O3(H)

r M(SD) # True M(SD) # True M(SD) # True

Default

.1 .078(.004) 10 .220(.006) 10 .315(.036) 0

.4 .054(.003) 10 .230(.005) 10 .364(.042) 0

.7 .050(.003) 0 .247(.005) 8 .386(.042) 0

Numbers of items per trait

[2:15;30] .1 .077(.005) 10 .219(.009) 10 .379(.020) 0

.4 .052(.010) 1 .228(.004) 10 .409(.018) 0

.7 .030(.013) 0 .243(.006) 7 .440(.022) 0

Sample size

200 .1 .075(.007) 2 .218(.021) 4 .463(.038) 0

.4 .058(.008) 1 .227(.024) 3 .466(.037) 0

.7 .060(.006) 0 .250(.016) 0 .533(.045) 0

10,000 .1 .079(.002) 10 .221(.003) 10 .358(.010) 0

.4 .053(.002) 10 .232(.003) 10 .384(.013) 0

.7 .050(.001) 0 .241(.004) 10 .414(.009) 0

Note. NHCA= nonhierarchical clustering analysis; M(SD)= average and standard deviation of the

maximum objective function for 10 replicated data matrices; # true= number of correct partitions for the 10

replicated data matrices.
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Coefficient). By default, the M2-PLM data has the following properties: r= :1 (Correlation

Between Traits), AS2 (Structure), high (Discrimination), large (Distribution of Difficulty),

[2:15;15] (Numbers of Items Per Trait), andN= 2;000 (Sample Size).We did not replicate.

To demonstrate that our methods capture real dimensionality and not just sampling fluctuation,

we also performed an exploratory factor analysis (EFA) for categorical variables (Mplus; Muthén

& Muthén, 2003). We used a means and variance-adjusted weighted least squares (WLSMV)

method, which provides a χ2 goodness-of-fit test. In the EFA, the number of factors was fixed to

two, and the factors were obliquely (Promax) rotated to allow for the correlation between the latent

variables (r ≥ :1). For comparison with our methods, an item is assigned to the factor for which it

has the highest loading.

Results. Table 6 presents the M2-PLM results for O1, O2, O3, and EFA. For EFA, the obtained

estimated correlations between the two factors, the obtained partitioning according to the two-factor

solution, three fit measures— χ2p values RMSR< .05 ðyÞ and > :05 or RMSEA> .06 ðz Þ — are

given.

In general,O1 andO2 yielded the true dimensionality more often for the M2-PLM data than for

the mixture model data (see Table 6). In particular, for moderate discrimination, AS3, and r= :7,

the obtained differences are noteworthy. The different shape of the item response surfaces for the

M2-PLM and the mixture model may explain the obtained results. Alternatively, the M2-PLM

data being cleaner than the mixture model data could have had an effect. In particular, using the

mixture model item discrimination with respect to each trait is difficult to control. For the mixture

model, properties this property is ignorable because it yields acceptable multidimensional non-

parametric IRT surfaces. However, for AS3 and r= :7, this can yield monotonicity violations (for

an example, see Figure 2). These properties could hamper finding the preferred solution. With the

M2-PLM data, where there were no monotonicity violations, the preferred dimensionality was

found. Neither distribution of difficulty nor balanced versus unbalanced item pools had noticeable

effects on the performance of the methods.

The effect of factors of the main design onO1,O2, andO3 values was similar for data generated

under the M2-PLM and the mixture model. Thus, the M2-PLM results do not give cause to read-

just the conclusions about O1, O2, and O3 values. The unbalanced versus balanced conditions did

not affectO1,O2, andO3 values. As expected, theO1,O2, andO3 values increased as the Distribu-

tion of Difficulty increased.

EFA generally yielded the same dimensionality solutions as O1 and O2 (see Table 6). The Pro-

max rotated two-factor model did not fit well for r= :7, AS3,N= 200, and unbalanced data. These

EFA results generally confirm the new MSA method’s replication results, as discussed earlier (see

Table 4). The effect of sample size on factor analysis solutions has been well documented (e.g.,

Hoogland, 1999). One may note that the difference between r and the estimated correlation (Corr)

can be explained by deviation from simple structure in the data. For example, the default data set

that has r= :1 and AS2 yielded Corr= .253, whereas another data set with r= :1 and AS1 yielded

Corr= .126. Thus, the correlations obtained with EFA reflect the simulated structure well (Table 4).

Performance of the Algorithms

The results of the new methods presented in Tables 3 through 6 were obtained by making use of

all NHCA algorithms. Only the results that corresponded with maximum values of the objective

functions were presented. In this section, the goal is to find out which algorithm was best at finding

these approximately global solutions. The algorithm that had the highest probability of finding the
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global solution is seen as the best algorithm. When several algorithms performed equally well, we

prefer the one that finds the global optimum within the smallest number of iterations.

Table 7 presents the performance of the algorithms used forO1 andO2. We did not include O3

because it was not very successful in unrestricted dimensionality assessment. The algorithms are

abbreviated in the following way: SEQ and RAN1 denote the sequential and random initial config-

urations, and DET and RAN2 denote the deterministic and random moves. The four combinations

of the two initial configuration possibilities and the two move possibilities yield the four studied

Table 6

Results ofO1,O2,O3, and Exploratory Factor Analysis for Balanced and Unbalanced

Clusters Simulated Using the Multidimensional Two-Parameter Logistic Model

O1(Hij−
�Hij) O2(H

ðkÞ
i ) O3(H

(k)) EFA

Correlation Between Traits (r) Value Clust. Value Clust. Value Clust. Value Clust.

r= .1 (default) .217 True .531 True .617(.512) [2:2/28] .253 True

r= .4 .137 True .564 True .701(.546) [2:2/28] .509 True

r= .7 .064 True .575 True .741(.557) [2:2/28] .690 Truey

ρ= :1=:4 .179 True .566 True .686(.548) [2:2/28] .403 True

S t ruc t ure

A S 1 .260 True .529 True .541(.512) [2:2/28] .126 True

A S 2 (d ef a ul t ) .217 True .531 True .617(.512) [2:2/28] .253 True

A S 3 .063 True .613 True .766(.601) [2:2/28] .666 [2:14/16]yz

[ 2 : h i / l o ; m e / l o ] .142 True .384 True .611(.373) [2:2/28] .349 Truey

D i s c ri m i n a t i o n

M o d era t e .066 True .220 True .316(.217) [2:2/28] .464 True

H i g h (d ef a ul t ) .217 True .531 True .617(.512) [2:2/28] .253 True

D i s t ri b ut i o n o f d i f fi c ul t y

S m a l l .184 True .479 True .518(.476) [2:2/28] .268 True

L a rg e (d ef a ul t ) .217 True .531 True .617(.512) [2:2/28] .253 True

C o m b i n e d .187 True .498 True .533(.496) [2:2/28] .244 Truey

S a m p l e s i z e

200 .194 True .550 True .668(.527) [2:2/28] .327 Trueyz

2, 000 (d ef a ul t ) .217 True .531 True .617(.512) [2:2/28] .253 True

# I t em s p er t ra i t

[2:15; 15] (d ef a ul t ) .217 True .531 True .617(.512) [2:2/28] .253 True

[ 2 : 1 5 ; 3 0 ] .210 True .526 True .678(.526) [2:2/43] .295 Truey

Note. E F A = ex p l o ra t o ry f a c t o r a n a l y s i s ; v a l ue= o b j ec t i v e f un c t i o n s ’ (n ea r) g l o b a l v a l ue (a n d , i f d i f f eren t ,

t h e v a l ue a t t h e t rue d i m en s i o n a l i t y i n p a ren t h es i s ); c l us t .= c l us t eri n g s o l ut i o n o f a m et h o d ; t rue= m a x i m um

v a l ue o f t h e o b j ec t i v e f un c t i o n w a s f o un d a t t h e s i m ul a t ed p a rt i t i o n i n g (o t h erw i s e, t h e o b t a i n ed p a rt i t i o n i n g i s

p res en t ed i n n o t a t i o n b et w een b ra c k et s ); /= d i m en s i o n a l l y m i x ed s et s ; y= p v a l ue< .05; z= R M S E A > .06

o r R M S R > .05. U n b a l a n c ed c l us t ers a p p ea r i n b o l d .
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algorithms: RAN1&DET, RAN1&RAN2, SEQ&RAN2, and SEQ&DET. For each algorithm, we

present the number of times out of 10 replications that the highest (global) maximum was reached

(denoted G ), the average number of runs that yielded global values over 10 replications and their

standard deviations (denoted Mð S D Þ, not shown for SEQ & DET), and the average number of

iterations needed to obtain the global solution for the first time (denoted t).

Table 7 shows that the algorithms with a random component (i.e., RAN1&DET, RAN1 &RAN2,

and SEQ&RAN2) performed best at finding global solutions forO1 (i.e., the sums of G were 120 for

each algorithm). For O2, RAN1&RAN2 yielded the global solution 105 times, SEQ&RAN2 106

times, and RAN1&DET 101 times. The completely deterministic algorithm performed worst for the

two objective functions: It found the global solution 91 times forO1 and 72 times forO2. The values

presented within parentheses in Table 7 tell us that none of the algorithms yielded the global solutions

every time they were run, but the random- move algorithms came closest. O ne may note that as r

increased and as items loaded on more than one trait, the number of times a global solution was

obtained decreased and the number of iterations needed to obtain a solution increased.

The relationship between the discrete partitionings and the objective function’s value can

explain the results of Table 7. The table shows that for low r and weak loadings on unintended

traits (AS1 and AS2), all algorithms yielded the global solution. In these data matrices, the

Table 7

Efficiency of Algorithms forO1 andO2

Initial: Random (RAN1) Seq uential (SEQ)

Move: DET RAN2 DET RAN2

Structure r G M( S D ) �t G M( S D ) �t G �t G M( S D ) �t

AS1 .1 10 9.1(1.0) 14 10 10.0(0.0) 2166 10 7 10 9.2(0.9) 2215

.4 10 9.4(1.0) 14 10 9.7(0.7) 3143 10 7 10 9.7(0.7) 3116

.7 10 7.3(2.1) 13 10 9.3(1.3) 5698 1 8 10 9.5(0.8) 5683

AS2 .1 10 9.2(1.1) 14 10 9.5(0.5) 3453 10 9 10 9.3(0.7) 3385

.4 10 5.0(1.7) 13 10 10.0(0.0) 5026 10 9 10 9.9(0.3) 5143

.7 10 8.8(1.7) 14 10 8.5(1.5) 5357 4 11 10 8.3(1.8) 5361

AS3 .1 10 9.6(1.0) 14 10 9.1(0.7) 5217 9 11 10 9.4(0.7) 5104

.4 10 9.4(1.1) 14 10 8.2(1.5) 4793 9 16 10 8.7(0.7) 4715

.7 10 9.6(1.3) 14 10 7.6(1.7) 4562 10 11 10 7.8(1.9) 4675

AS1 .1 10 10.0(0.0) 14 10 9.0(1.5) 2264 10 7 10 8.9(1.0) 2219

.4 10 10.0(0.0) 14 10 9.3(1.3) 3208 10 7 10 9.3(0.8) 3184

.7 10 10.0(0.0) 13 10 9.9(0.3) 6040 10 8 10 9.5(0.5) 6148

AS2 .1 10 10.0(0.0) 14 10 8.7(1.2) 3457 10 4 10 9.1(1.1) 3427

.4 10 10.0(0.0) 14 10 9.4(0.7) 4932 10 6 10 9.2(1.2) 4826

.7 10 8.7(2.2) 14 10 7.7(2.5) 8491 6 6 10 7.8(1.8) 8618

AS3 .1 5 2.3(3.2) 13 5 1.3(2.2) 8772 4 3 4 2.7(3.1) 6953

.4 4 2(3.0) 13 7 0.8(0.6) 8317 1 5 7 0.8(0.6) 7149

.7 3 4(4.8) 14 7 1.3(1.2) 8423 2 5 8 1.2(1.1) 7725

Note. G= number of global maxima out of 10 replications; M(S D )= average and standard deviations of

reported global maxima; �t= average number of iterations over 10 runs of the algorithms and 10 replicated

data matrices having moderate discrimination items.
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relationship between the partitionings and the value of the objective function (for O1 and O2) is

relatively simple because there is only one maximum, and the fast deterministic algorithm can be

used to find global maxima. For data having high r and high loadings on unintended traits (AS3),

the relationship between partitionings and the objective function is more complex because in addi-

tion to the global maximum, there are local maxima, and the values of these maxima may be close

to one another (see Table 3). The complexity also means that the partitionings yielding these max-

ima may not at all be similar; that is, many items need to be moved before a different maximum is

found. For this type of data, stochastic algorithms are needed.

The choice between the random-start/deterministic move and the random-move algorithms is

a matter of taste. The RAN1&DET algorithm, however, won this match. It is an attractive algorithm

because of its high accuracy and high efficiency. The random-move algorithms, which search

a large part of the solution space, were highly accurate but required many iterations to converge.

Conclusions

Three new MSA approaches to resolve the optimization problems of sequential MSP were intro-

duced in this article. The objective functions in these newmethods incorporate reformulations of mul-

tidimensional Mokken scaling, and deterministic and stochastic nonhierarchical clustering algorithms

were used to maximize these objective functions. To investigate the properties of the objective func-

tions, we ignored the restrictions that are usually imposed in aMokken scaling analysis.

The first research question that wewanted to answerwas ‘ ‘ How successful are the three new objec-

tive functions at finding the underlying dimensionality of a data set? ’’ Objective functionO2 yielded

the best results; O1 performed somewhat better than the original sequential approach, and O3 per-

formed worse than the original sequential approach. Also, the fact that the newmethods usingO1 and

O2 were able to find the true dimensionality in most situations indicates that these are effective tools

for dimensionality assessment, perhaps even comparable to methods based on weak LI (e.g., Stout,

2002). This confirms earlier findings that theH coefficient can be used not only as a tool for scaling

but also for dimensionality assessment (Hemker et al., 1995; van Abswoude et al., 2004).

The methods usingO1 andO2 performed approximately equally well in most conditions of the

study. This is not surprising because the two are strongly related. However, there are some differ-

ences. Objective functionO1 has the advantage that underD= 1 (i.e., unidimensionality)O1 = 0;

therefore, deviation from unidimensionality can be determined. Another advantage of O1 is that

theoretically its value is maximized when the investigated number of traits (K) equals the true

underlying number of traits (D). Objective function O2 does not have this advantage, but this can

easily be remedied. A disadvantage of O1 is that this objective function may not work well when

D is large and when clusters have unequal numbers of items or have differently discriminating

items. The impact of these disadvantages requires further investigation. The interpretation of O2

as the average within-clusterHi is simpler than the interpretation ofO1. Therefore, it is likely that

known properties of MSA (e.g., Mokken’s rules of thumb) can be used. B othO1 andO2 use theH

coefficient; therefore, both join items on the basis of the slope of the IRFs. B ased on the results

from the simulation study and the properties discussed above, we preferO2 toO1.

The second research question was ‘ ‘ W hich algorithm should we use in the newMSA? ’’ A com-

pletely deterministic algorithm should clearly not be used because it can find only global maxima

for simple structure data with slightly correlated or uncorrelated latent traits. For the preferred

objective function O2, the algorithm with the random-start configuration and the deterministic

move performed well, that is, with high precision and high speed.
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Discussion

Some issues deserve further attention. First, providing mechanisms for deciding between several

globally optimal solutions when the true number of latent traits is unknown was not the aim of this

study. However, one could easily imagine that for this purpose different sources of information

could be used. In particular, the value of the objective function (see second issue), the item and

scale H values, the purpose of scaling, and substantive information (see third issue) are informa-

tive. For explicit rules of thumb (say, cutoff scores for the objective functions that hold under

various conditions), an additional simulation study would be required that explicitly targets this

research question. Such a study most probably would be restricted to one objective function (say,

O2) and one algorithm (say, RAN1&DET).

Second, the following preliminary rules of thumb for interpreting the values of O1 and O2 are

based on the M2-PLM and mixture model data. For O1, we propose that when O1 ≤ :05, interpret
with caution; when :05≤O1 ≤ :1, there is adequate scaling; and when :1≤O1 ≤ 1, there is very

promising scaling. The motivation behind the word of caution is that theoretically O1 = 0 when

D= 1: In addition, low values were found especially for AS3, r= :7, and moderate discrimination

and can therefore be indicative of chance capitalization (the assignment of items to clusters on the

basis of noise). J oining clusters may be a strategy that yields better results (i.e., higher O1 values)

when O1 ≤ :5. ForO2, we propose to use Mokken’s rules of thumb, which were presented earlier.

Although there are clear distinctions between H andO2,O2 can be seen as an average unweighed

H over K clusters (see Equation 8). Thus, there are enough similarities that make the application

of the rules defensible.

Third, when confronted with two highly correlated sets or sets with high loadings on unin-

tended traits, researchers may differ in their opinions as to whether these sets should be joined.

The NHC A methods can be applied whether a researcher prefers to join items or not. The decision

about the number of clusters to use is left to the researcher.

Fourth, in MSA with the MSP software (Molenaar & Sijtsma, 2000), items will automatically

satisfy Mokken scale conditions. We left the Mokken scale conditions out of the NHC A methods

because we wanted to know whether the methods could be used to find globally optimal solutions

and whether these solutions refl ected the simulated dimensionality structure. If the Mokken scale

conditions (i.e., with c= :3) were incorporated, weakly scalable items, for which the assignment

of items into clusters is the most difficult, would have been left out of the analysis; thus, the limita-

tions of the methods would have been difficult to investigate. Future research will address how the

Mokken scale conditions can be incorporated into the newMSAmethods.

Fifth, variations of the objective functions can be obtained by changing the definition of Z. For

example, in Equation 8 we used the average within-cluster Hi. One possible alternative objective

function would maximize the average within Hi and minimize the Hi between clusters simulta-

neously, which could be achieved simply by equatingZk

i
to−1 rather than to 0 when item i is not in

cluster k. Although this objective function no longer has the convenient interpretation of the aver-

age within-cluster Hi, it may be an appropriate objective function for determining the number of

clusters. This is because the objective function contains a punishment when items that should be in

the same cluster are put in separate clusters. These issues will be addressed in future research.

N ot e

1. Number of items, underlying dimensions, and scaleH are presented for each scale.
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