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Abstract  24 

In social sciences, researchers often compare relations between constructs, referred to 25 

as “structural relations”, across a large number of groups. This paper proposes Mixture 26 

Multigroup Bayesian SEM (MixMG-BSEM), a novel method for comparing structural relations 27 

across many groups while accounting for approximate measurement invariance in factor 28 

loadings. Traditional methods often assume exact measurement invariance, which may not 29 

reflect real-world data where small differences in measurement parameters commonly occur 30 

across many groups. MixMG-BSEM addresses this by using Multigroup Bayesian CFA with 31 

small-variance priors to allow for these small differences, and groups are then clustered based 32 

on their structural relations using Mixture Modeling. This is done in a stepwise estimation 33 

procedure built on the structural-after-measurement approach. By combining cluster-specific 34 

structural relations with small between-group differences in measurement parameters, MixMG-35 

BSEM obtains a clustering that is driven only by the structural relations. The robustness and 36 

effectiveness of MixMG-BSEM are demonstrated through a simulation study.  37 
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Introduction  38 

In social sciences, Structural Equation Modelling  (SEM; Bollen, 1989; Hoyle, 2012) is 39 

widely used to investigate relations between constructs (e.g., emotions, motivation), referred to 40 

as “structural relations” within SEM. Researchers are often interested in how these structural 41 

relations vary across groups. For instance, Michael and Kyriakides (2023) examined how 42 

academic motivation mediated the effect of socioeconomic status on reading achievement 43 

among 15-year-old students and how this differed across 38 countries.  44 

To study differences in structural relations, Multigroup SEM (MG-SEM) and Multilevel 45 

SEM (ML-SEM) can be used. MG-SEM estimates the structural relations for each group and 46 

allows testing whether they are equal across groups. ML-SEM captures variations in structural 47 

relations by normally distributed random effects around the overall mean estimate for each 48 

relation. Even though group-specific estimates of relations can be derived from random effects, 49 

only the mean and variance of each random effect are part of the model parameters, which 50 

makes ML-SEM more parsimonious, allowing for accurate parameter estimates in case of very 51 

small sample sizes per group. To pinpoint which groups have the same relations and for which 52 

groups they differ, MG-SEM and ML-SEM require pairwise comparisons of group-specific 53 

relations. As the number of groups increases, performing pairwise comparisons quickly 54 

becomes infeasible. For example, for 38 groups, this requires 703 pairwise comparisons per 55 

structural relation. To reduce the number of comparisons, mixture modeling (McLachlan & Peel, 56 

2000) can be used to cluster groups based on similarity of the structural relations. Before 57 

performing such a clustering, it is essential to ensure that the structural relations are validly 58 

comparable across groups and that they are the only source of differences driving the clustering. 59 

In social sciences, the constructs of interest are typically unobserved or latent variables, 60 

also known as “factors” in SEM. SEM addresses their latent nature by including a measurement 61 

model (MM), which specifies how latent variables are measured by observed indicators (often 62 
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questionnaire items), whereas the relations of interest among the latent variables are part of the 63 

structural model (SM). For valid comparisons of constructs and their relations, measurement 64 

invariance (MI) must hold across the groups. MI implies that the MM is equal across groups, 65 

meaning that the constructs are measured in the same way, so that observed differences reflect 66 

differences in the constructs rather than differences in measurement.  67 

MI is examined at different levels by assessing the equality of different subsets of MM 68 

parameters. Configural invariance evaluates whether the factor structure is the same across 69 

groups, meaning that, in each group, the same set of indicators relates to a factor. The strength 70 

and direction of the relations between factors and indicators are quantified by factor loadings. 71 

Whereas configural invariance only deals with which factor loadings are non-zero, weak or 72 

metric invariance requires the loadings to be equal across groups. Next, strong and strict 73 

invariance impose equality of the items’ intercepts and residual or ‘unique’ variances, 74 

respectively. Metric invariance is a prerequisite for validly comparing structural relations 75 

(Davidov et al., 2012), whereas strong and strict invariance are not required. When full metric 76 

invariance (i.e., invariance of all loadings) does not hold, partial metric invariance (i.e., 77 

invariance of some loadings) still enables valid comparisons of structural relations (Byrne et al., 78 

1989), as long as the loading differences are captured in the model (e.g., by group specific 79 

loadings). The same holds for differences in item intercepts and unique variances.  80 

When combining SEM with mixture modeling, groups can be clustered on their 81 

structural relations by making the structural relations cluster-specific (i.e., the same for all 82 

groups assigned to a cluster). In traditional mixture SEM methods (Arminger & Stein, 1997; 83 

Dolan & van der Maas, 1998; Jedidi et al., 1997), MM parameters can be specified as invariant 84 

or cluster-specific, implying that MM differences can either be ignored or captured by the same 85 

clustering. To cluster groups only on the structural relations rather than also on differences in 86 

measurement, a framework of novel mixture SEM methods emerged recently. Perez Alonso and 87 
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colleagues (2024) introduced Mixture Multigroup SEM (MixMG-SEM), which combines MG-88 

SEM with mixture modeling. Zhao and colleagues (2024) proposed Mixture Multilevel SEM 89 

(MixML-SEM), which builds the mixture clustering onto the more parsimonious ML-SEM. 90 

The aim of both methods is to cluster groups specifically on the structural relations while 91 

accounting for measurement non-invariance, but the difference is that MixML-SEM uses 92 

Multilevel Confirmatory Factor Analysis (ML-CFA) with random effects to deal with MM 93 

differences, whereas MixMG-SEM uses Multigroup Confirmatory Factor Analysis (MG-CFA) 94 

with group-specific MM parameters. Their estimation builds on the stepwise “Structural-After-95 

Measurement” (SAM; Rosseel & Loh, 2022) approach, where the MM is estimated first, using 96 

either MG-CFA or ML-CFA, followed by the SM, which includes clustering the groups on their 97 

structural relations. For comparability of the structural relations, both methods require at least 98 

partial metric invariance and impose exact equality for the invariant factor loadings (i.e., exact 99 

MI). However, with a large number of groups, achieving exact MI is often unrealistic. To 100 

address this, Multigroup Bayesian SEM (MG-BSEM; Muthén & Asparouhov, 2012, 2013) with 101 

Approximate MI (AMI) uses priors with small variances for the MM parameters to allow for 102 

small differences across groups while keeping them approximately equal. In this paper, we 103 

present Mixture Multigroup BSEM (MixMG-BSEM), which extends MG-BSEM with mixture 104 

modeling to cluster groups on the structural relations while capturing approximate invariance 105 

of factor loadings.  106 

MixMG-BSEM, MixMG-SEM and MixML-SEM differ in their first estimation step 107 

only, that is, in their MM and the corresponding MI assumptions. MixMG-SEM and MixML-108 

SEM require exact invariance for (at least) some loadings, whereas the first step of MixMG-109 

BSEM is a MG-CFA with Bayesian estimation (MG-BCFA) that assumes approximately 110 

invariant loadings. Approximate invariance lies between exact invariance (where parameters 111 

are exactly equal across groups) and non-invariance (where parameters can differ substantially 112 
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across groups), where exact invariance is more closely approximated as the variances of the 113 

priors become smaller.  114 

The paper is structured as follows: We begin with a description of MixMG-BSEM in 115 

the Method section. Next, we evaluate its performance through a Simulation Study. Finally, the 116 

Discussion section summarizes the main findings and addresses limitations and future 117 

directions. 118 

 119 

Method 120 

As mentioned above, MixMG-BSEM is estimated in a stepwise manner, building on the 121 

SAM approach. In Step 1, MG-BCFA with small-variance priors is performed for each factor, 122 

and factor scores are extracted. In Step 2, these factor scores are used as single indicators to 123 

obtain group-specific factor covariances with Croon's correction (Croon, 2002). In Step 3, the 124 

SM is estimated, including the clustering and the cluster-specific structural relations, using an 125 

Expectation-Maximization (Dempster et al., 1977) algorithm for maximum likelihood 126 

estimation. Note that Steps 2 and 3 are the same as for MixML-SEM and are therefore only 127 

briefly described below (for details, see Zhao et al., 2024). 128 

Step 1: Measurement Model with Bayesian Approximate Measurement Invariance  129 

The MM defines how the factors are measured by the items and MG-CFA is used to 130 

compare MMs across groups. Note that we estimate the MM per factor, which implies that we 131 

assume the factors to be independent in Step 1. Indicating an individual in group 𝑔  (𝑔 =132 

1, … , 𝐺) by 𝑛𝑔 and gathering the responses on the 𝐽𝑞 items measuring factor 𝑞 (𝑞 = 1, … , 𝑄) in 133 

the vector 𝐱𝑛𝑔
, the MG-CFA model for factor q is expressed as: 134 
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𝐱𝑛𝑔
= 𝛕𝑔 + 𝛌𝑔𝜂𝑛𝑔

+ 𝛜𝑛𝑔
 𝑤𝑖𝑡ℎ 𝛜𝑛𝑔

~ 𝑀𝑉𝑁(𝟎, 𝚯𝑔) (1)135 

where 𝛕𝑔 is a 𝐽𝑞-dimensional vector of intercepts for group 𝑔, 𝛌𝑔 is a 𝐽𝑞-dimensional vector of 136 

factor loadings (i.e., item-factor relations) for group 𝑔, 𝜂𝑛𝑔
 denotes the latent variable score for 137 

the individual, and 𝛜𝑛𝑔
  is a 𝐽𝑞 -dimensional vector of residuals, with the diagonal of 𝚯𝑔 138 

containing the group-specific unique variances of the items. To set the scale of each factor, one 139 

can either set its variance to one or use the marker variable approach by fixing one loading 140 

(ideally, a strong and invariant loading) to one, for each group. In this paper, we adopt the 141 

marker variable approach to ensure that a one-unit change in the underlying factor has the same 142 

meaning across groups.  143 

Since small differences in MM parameters are common across many groups and still 144 

allow for latent variable comparisons, we apply the assumption of approximate metric 145 

invariance (i.e., 𝛌𝑔 ≈ 𝛌 for all groups 𝑔) instead of exact invariance (i.e., 𝛌𝑔 = 𝛌) in Step 1 of 146 

MixMG-BSEM. This is accomplished by using MG-CFA with Bayesian estimation1  (MG-147 

BCFA) and applying small-variance, normally distributed priors to the corresponding 148 

parameters, which constrain the group-specific parameters to be approximately equal. For this, 149 

both Mplus (Muthén & Muthén, 1998–2017) and the R-package blavaan (Merkle et al., 2021) 150 

are available, but we use blavaan by default because it is free and open-source. In blavaan, AMI 151 

is achieved by applying small-variance priors in every group except for the reference group, 152 

which is the first group (by default). A non-informative prior is used for the parameter in the 153 

first group and the parameter estimate for this group is used as the mean of the small-variance 154 

priors for that same parameter in the other groups. 155 

 
1 The possibility to use a different estimator in each step, such as Bayesian estimation for the MM and maximum 

likelihood for the SM (see also Zhao et al., 2024) is an important advantage of the SAM approach. 
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Since Bayesian estimation can be computationally challenging, two measures are taken 156 

to lower the computation time of Step 1 of MixMG-BSEM: (1) the data are centered per group 157 

to remove the mean structure (i.e., 𝛕𝑔 = 𝟎 and 𝛂𝑔 = 0), which is irrelevant to the comparison 158 

of structural relations, and (2) MG-BCFA is performed for each factor separately, which is in 159 

line with the “measurement blocks” approach in SAM (Rosseel & Loh, 2022) with one factor 160 

per measurement block. This approach lowers the number of parameters to be estimated and 161 

also enhances the model's robustness against MM misspecifications, such as unmodeled 162 

crossloadings.  163 

In this paper, we assume that all factor loadings, except for the marker variable loadings, 164 

are approximately invariant, while the unique variances and factor variances are estimated as 165 

group-specific parameters (i.e., with non-informative priors per group). Note that it is harmless 166 

to specify exactly invariant loadings as approximately invariant since they will then be 167 

estimated as nearly identical across groups. Of course, in practice, combinations of exactly and 168 

approximately invariant loadings can be applied in Step 1 of MixMG-BSEM. Moreover, in 169 

theory, all combinations of exact invariance, approximate invariance and non-invariance can be 170 

used, but complex combinations may cause convergence problems.  171 

To determine which parameters are (approximately) invariant or non-invariant, MI 172 

testing should be performed prior to using MixMG-BSEM. Note that, if exact invariance does 173 

not hold for a parameter, standard MG-CFA requires a tedious process of comparing group-174 

specific parameter estimates to determine whether differences reflect non-invariance or 175 

approximate invariance. Instead, MG-BCFA (Muchen & Asparouhov, 2012) allows to test the 176 

tenability of AMI directly by imposing small-variance priors on MM parameters and assessing 177 

model fit. Muthén and Asparouhov (2012) recommend starting with a very small variance (e.g., 178 

0.001) and, if needed, the priors’ variances can be increased to reach a good model fit. In this 179 

way, MG-BCFA provides information on how large the parameter differences are (i.e., on the 180 
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level of AMI). Model fit can be assessed using the posterior predictive p value (Gelman et al., 181 

1996), but it is not very sensitive to the prior variances in case of large samples. Other fit 182 

measures include the Bayesian RMSEA (BRMSEA; Hoofs et al., 2018) and the Deviance 183 

Information Criterion (DIC; Spiegelhalter et al., 2002). The DIC balances model fit (i.e., the 184 

posterior mean deviance) and complexity (i.e., the effective number of parameters) in Bayesian 185 

models, with smaller values indicating a better balance. Regarding the prior selection in MG-186 

BSEM, Kim et al. (2017) found that the DIC often selected models with smaller prior variances 187 

when the sample size was small and Pokropek et al. (2020) found that the DIC performed better 188 

as sample size increased, and recommended using the DIC with thresholds tailored to different 189 

sample sizes. 190 

Once the marker variables and the approximately invariant loadings are confirmed by 191 

the MI testing, we obtain the specification of the MG-BCFA model that corresponds to the first 192 

step of MixMG-BSEM. In the next step, we need estimates of the factor scores and their 193 

uncertainty. To this end, the means and standard deviations of the posterior distributions of the 194 

individuals’ factor scores (i.e., estimated latent variable scores) are appended to the data file.  195 

Step 2: Single-Indicator Approach to Obtain Group-specific Factor Covariances 196 

In a single-indicator approach, the factor scores are used as the “observed” proxy (or a 197 

single indicator) for the latent variable. Since factor scores are only estimates of the true latent 198 

variable scores, we apply Croon’s correction (2002) to the factor score covariances (cov(𝐟𝑔)) 199 

to obtain unbiased estimates of the true latent variable covariances (cov(𝛈𝑔)), here denoted as 200 

𝚽𝑔
𝑠2: 201 

 𝚽𝑔
𝑠2 =  𝚲𝑔̂ −𝟏(cov(𝐟𝑔) − 𝚯𝑔̂)(𝚲𝑔̂ ′)

−𝟏
(2) 202 
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where 𝚲𝑔̂  corresponds to the 𝑄 × 𝑄  diagonal matrix of group-specific factor loadings 203 

(reflecting the reliability of the factor scores) and 𝚯𝑔̂ is the 𝑄 × 𝑄 diagonal matrix of group-204 

specific unique variances. These estimates correspond to the MM parameters of the single 205 

indicators of the factors (i.e., the factor scores) rather than the original, observed indicators. 206 

These MM parameters are derived from the posterior mean and standard deviation estimates for 207 

the factor scores, obtained from Step 1. For details, please refer to Equations (7-8) in the 208 

MixML-SEM paper (Zhao et al., 2024). 209 

Step 3: Structural Model with Mixture Clustering of the Groups  210 

In Step 3, MixMG-BSEM clusters the groups and estimates cluster-specific structural 211 

relations. The SM is thus conditional on the cluster membership, 𝑧𝑔𝑘, which denotes whether 212 

group 𝑔 belongs to cluster 𝑘. Whereas the true cluster membership is assumed to be either 1 or 213 

0, its estimation, 𝑧̂𝑔𝑘, ranges from 0 to 1 and represents the probability of group 𝑔 belonging to 214 

cluster 𝑘. The model-implied factor covariance matrix 𝚽𝑔𝑘, given that 𝑧𝑔𝑘 = 1, is defined as: 215 

𝚽𝑔𝑘 = (𝚰 − 𝚩𝑘)−1𝚿𝑔𝑘(𝚰 − 𝚩𝑘)−1′
(3) 216 

where 𝚩𝑘 contains the cluster-specific regression coefficients between latent variables, and 𝚿𝑔𝑘 217 

is the residual factor covariance matrix, which is specified as group-and-cluster-specific to 218 

ensure that clustering is driven only by the regressions 𝚩𝑘 (for details, see Perez Alonso et al., 219 

2024). The SM is estimated with maximum likelihood estimation using 𝚽𝑔
𝑠2 as input.  220 

For the mixture clustering in MixMG-BSEM, it is assumed that the (true) latent variable 221 

scores  𝛈𝑛𝑔
 are sampled from a mixture of 𝐾 multivariate normal distributions. Specifically, all 222 

latent variable scores of group 𝑔, 𝐇𝑔, are assumed to be sampled from the same distribution: 223 

𝑓(𝐇𝑔; 𝜐) = ∑ πk

𝐾

𝑘=1

 ∏ 𝑀𝑉𝑁 (𝛈𝑛𝑔
; 𝛂𝑔, 𝚽𝑔𝑘)

𝑁𝑔

𝑛𝑔=1

 𝑤𝑖𝑡ℎ ∑ πk

𝐾

𝑘=1

=  1 (4) 224 
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where 𝑓 is the population density function, 𝜐 represents the set of population parameters, and 225 

π𝑘 is the prior probability that group 𝑔 belongs to cluster 𝑘. The scores in 𝐇𝑔are assumed to 226 

follow a normal distribution with 𝛂𝑔 as the factor mean (which is zero due to centering) and 227 

𝚽𝑔𝑘 as the factor covariance matrix. The unknown parameters 𝜐 are estimated by maximizing 228 

the following log-likelihood function: 229 

log 𝐿𝜂 = log (∏ ∑ 𝜋𝑘

1

(2𝜋)𝑄 2⁄ |(𝚽𝑔𝑘)|1 2⁄
exp (−

1

2
𝑡𝑟(𝚽𝑔

𝑠2𝚽𝑔𝑘
−1))

𝑁𝑔𝐾

𝑘=1

𝐺

𝑔=1

)

=  ∑ log

𝐺

𝑔=1

(∑ 𝜋𝑘

1

(2𝜋)𝑄 2⁄ |(𝚽𝑔𝑘)|1 2⁄
exp (−

1

2
𝑡𝑟(𝚽𝑔

𝑠2𝚽𝑔𝑘
−1))

𝑁𝑔𝐾

𝑘=1

) (5)

 230 

where 𝚽𝑔
𝑠2 is the group-specific factor covariance matrix from Step 2 (Equation (2)), and 𝚽𝑔𝑘 231 

is the group-and-cluster-specific factor covariance matrix from Step 3 (Equation (3)). The 232 

maximum likelihood estimation is performed using the EM algorithm (Dempster et al., 1977). 233 

Specifically, in the E-step, the algorithm estimates the classification probabilities 𝑧̂𝑔𝑘 given the 234 

current parameter estimates. In the M-step, the algorithm estimates the unknown parameters 𝜐 235 

given the classification probabilities obtained from the E-step. The E- and M-steps are iterated 236 

until convergence. A multi-start procedure is applied to mitigate convergence to local maxima, 237 

where the converged solution with the highest loglikelihood across the different starts is selected 238 

as the final result. For an in-depth explanation of the technical details of Step 3, readers are 239 

referred to Appendix A of the paper by Perez Alonso et al. (2024). 240 

 241 

Simulation  242 

In the simulation study, we evaluated the performance of MixMG-BSEM, assuming the 243 

true number of clusters was known. Firstly, we aimed to examine how MixMG-BSEM’s 244 

performance was affected by factors related to the sample size, the number of clusters, the 245 
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cluster sizes, the AMI of the loadings, and the size of (differences in) regression parameters. On 246 

top of that, since the first step of MixMG-BSEM estimates the MM per factor, we evaluated the 247 

consequences of ignoring crossloadings in this step. Literature on traditional SEM has shown 248 

that factor correlations tend to be overestimated when crossloadings are constrained to zero 249 

(e.g., Asparouhov et al., 2015; Marsh et al., 2009, 2010, 2014), which may affect the comparison 250 

of structural relations. However, given its stepwise estimation and measurement block approach, 251 

MixMG-BSEM may be relatively robust to overlooked crossloadings (Rosseel & Loh, 2022), 252 

but the recovery of clusters and regression parameters may still decline in case of multiple 253 

crossloadings. Secondly, we examined the impact of a key aspect of the Bayesian estimation; 254 

that is, the impact of different prior variances for the loadings on the recovery of clusters and 255 

cluster-specific regressions. We expected that using too narrow priors might fail to capture the 256 

loading differences across groups, which may affect the estimation of and clustering on the 257 

structural relations. Additionally, we also evaluated which prior was selected by the DIC, since 258 

selecting this prior is an important step in empirical practice.  259 

In a complete factorial design, the following factors were manipulated: 260 

1. Number of groups 𝐺 (3 levels): 12, 24, 48; 261 

2. Within-group sample size 𝑁𝑔 (3 levels): 50, 100, 200; 262 

3. Number of clusters 𝐾 (2 levels): 2, 4; 263 

4. Cluster sizes (2 levels): balanced, unbalanced; 264 

5. Size of regression parameters 𝛽 (2 levels): 0.2, 0.4; 265 

6. Level of AMI for loadings (5 levels): 0.001, 0.005, 0.01, 0.05, 0.1; 266 

7. Size of crossloadings (3 levels): 0, 0.2, 0,4 267 
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We chose a minimum of 12 groups with group sizes ranging from 50 to 200, which 268 

partially correspond to the group sizes in other simulation studies on Bayesian AMI (Kim et al., 269 

2017; Lek et al. 2018). The number of groups in each cluster depended on the number of groups 270 

𝐺, the number of clusters 𝐾 and the cluster sizes. For the cluster sizes, in the balanced conditions, 271 

each cluster contained an equal number of groups. In the unbalanced conditions, the large 272 

cluster was three times the size of the small cluster, with the large cluster being randomly 273 

selected. For example, when 𝐺 = 24  and 𝐾 = 4 , in unbalanced conditions, the large cluster 274 

contained 12 groups, and the remaining three clusters each contained four groups. Note that 275 

larger 𝐺, larger 𝑁𝑔, smaller 𝐾, and balanced cluster sizes result in larger within-cluster sample 276 

sizes, which were expected to improve the performance of MixMG-BSEM. 277 

The data were generated from a SEM model with four latent variables, each measured 278 

by five items (see Fig 1), as in Perez Alonso et al. (2024) and Zhao et al. (2024). Specifically, 279 

the data were generated from a multivariate normal distribution (MVN) with covariance matrix 280 

𝚺𝑔𝑘, determined by the parameters 𝚩𝑘, 𝚿𝑔𝑘, 𝚲𝑔 and 𝚯𝒈 (see Equation (6) in Perez Alonso et 281 

al., 2024). 282 

 283 

Fig 1. The data-generating model with exogenous factors F1 and F2 and endogenous factors F3 and F4. 284 
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The size of the regression parameters was set to 𝛽 and, as shown in Fig 2, the differences 285 

between clusters were introduced by setting one regression parameter to zero in each cluster. 286 

Hence, larger values of  𝛽 resulted in larger differences and thus in greater separation between 287 

clusters, which should make the clusters easier to recover. 288 

 289 

Fig 2. The cluster-specific structural relations. 290 

For the group-and-cluster-specific residual factor covariances 𝚿𝑔𝑘 , we sampled the 291 

variances of the exogenous factors 𝐹1 and 𝐹2 from a uniform distribution 𝑈(0.75, 1.25) and 292 

their covariance from 𝑈(−0.3, 0.3) . The total variances of the endogenous factors 𝐹3  and 293 

𝐹4  were also sampled from 𝑈(0.75, 1.25)  and their residual variances are determined as 294 

follows: For 𝐹3  and F4, it was computed as Var(𝐹3)𝑔 − (𝛽2,𝑘
2 Var(𝐹1)𝑔 + 𝛽3,𝑘

2 Var(𝐹2)𝑔 +295 

2𝛽2,𝑘𝛽3,𝑘Cov(𝐹1, 𝐹2)𝑔  and Var(𝐹4)𝑔 − (𝛽1,𝑘
2 Var(𝐹1)𝑔 + 𝛽4,𝑘

2 Var(𝐹3)𝑔 +296 

2𝛽1,𝑘𝛽4,𝑘(𝛽2,𝑘Var(𝐹1)𝑔 + 𝛽3,𝑘Cov(𝐹1, 𝐹2)𝑔)), respectively. 297 

In loading matrix 𝚲𝑔, the first loading of each factor was fixed to one. The other loadings 298 

(except for crossloadings) were approximately invariant across groups and were sampled from 299 

a normal distribution with a mean of √0.4 and a variance that depended on the level of the AMI. 300 
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For instance, to obtain an AMI level of 0.01, which implies a variance of 0.01 for differences 301 

in loadings, we sampled loadings from a normal distribution with a variance of 0.005 for all 302 

groups.2 Per factor, one crossloading was added to the third item measuring the next factor (i.e., 303 

item 8 crossloaded on factor 1, item 13 on factor 2, item 18 on factor 3, and item 3 on factor 4). 304 

A value of 0 corresponded to no crossloading, 0.2 to a moderate crossloading, and 0.4 to a large 305 

crossloading. The unique variances on the diagonal of 𝚯𝒈 were sampled from 𝑈(0.50, 0.70).  306 

Finally, the data were sampled from MVN(𝟎, 𝚺𝑔𝑘) for each group. In total, we generated 307 

3 (number of groups) × 3 (within-group sample size) × 2 (number of clusters) × 2 (cluster sizes) 308 

× 2 (size of regression parameters) × 5 (size of AMI) × 3 (size of crossloadings) × 50 309 

(replications) = 54,000 data sets according to the described procedure, using R version 4.2.1 (R 310 

Core Team, 2022).  All data sets were analyzed with MixMG-BSEM with 50 random starts and 311 

the true number of clusters. For each data set, we performed the analysis five times, with 312 

different prior variances for the loadings (i.e., 0.001, 0.005, 0.01, 0.05, 0.1) in Step 1, to examine 313 

the performance of MixMG-BSEM across different prior variances. The average computation 314 

time was 35.9 minutes (𝑆𝐷 =  22.6) for Step 1 (mainly influenced by 𝐺 and 𝑁𝑔), 0.02 minutes 315 

(𝑆𝐷 = 0.02 ) for the intermediate Step 2, and 2.8 minutes (𝑆𝐷 =  4.2 ) for Step 3 (mainly 316 

influenced by 𝑁𝑔 and 𝛽). 3 317 

 
2 In blavaan, the estimate of a parameter in the first group is used as the mean of the prior for that same parameter 

in the other groups. Consequently, the prior reflects the differences of the other groups to the reference group. The 

variance of the difference between two factor loadings equals the sum of their individual variances, assuming there 

is no covariance between them. For all groups, including the reference group, we sampled loadings from a normal 

distribution with a variance that is half the targeted MI level for all groups, so that the variance of the loading 

differences toward the reference group equals the targeted MI level.  
3 The first step of MixMG-BSEM (i.e., estimating the MM using blavaan) can be computationally demanding, 

especially for larger sample sizes. Luckily, the stepwise estimation of MixMG-BSEM implies that the MM needs 

to be estimated only once, even when estimating the SM with different numbers of clusters for model selection. 

Alternatively, Mplus offers a more time-efficient estimation of the MM with AMI, though it is commercial 

software. For instance, for a dataset with 48 groups and 200 observations per group, blavaan took around 118 

minutes (without parallelization), while Mplus took only 3 minutes. Eliminating the mean structure by centering 

per group (see Method section) clearly helped, since the computation times of blavaan and Mplus increased to 

152 and 122 minutes, respectively, when including the mean structure in the model.  
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Results 318 

Recovery of factor loadings.  319 

We evaluated the recovery of the group-specific factor loading estimates for each item 320 

𝑗 , using the mean error (ME) and the Root Mean Squared Error (RMSE) across groups as 321 

follows: 322 

𝑀𝐸𝜆𝑗
=

∑ (𝜆̂𝑔𝑗 − 𝜆𝑔𝑗)𝐺
𝑔=1

𝐺
 (6) 323 

𝑅𝑀𝑆𝐸𝜆𝑗
= √∑ (𝜆̂𝑔𝑗 − 𝜆𝑔𝑗)

2𝐺
𝑔=1

𝐺
 (7) 324 

where 𝜆𝑔𝑗  is the true group-specific loading of the j-th item on the factor, and 𝜆̂𝑔𝑗  is the 325 

corresponding estimate. For items with crossloadings, we expect the loadings to be 326 

overestimated in all groups when the crossloadings are ignored, resulting in a positive 𝑀𝐸𝜆𝑗
. 327 

Note that when averaging 𝑀𝐸𝜆𝑗
 across replications, for instance, across all datasets pertaining 328 

to a certain level of 𝐺 (Table 1), the result is equivalent to a measure of bias (i.e., the difference 329 

between the estimated and true loading values for each 𝜆𝑔𝑗 , averaged across replications), 330 

averaged across the groups. 331 

When using MixMG-BSEM with the true prior variances for the loadings, the average 332 

𝑀𝐸𝜆𝑗
across the four factors and all simulated data sets was 0.010, 0.051, 0.010, and 0.010, 333 

respectively, for the loadings of the second to the fifth item of each factor (Table 1, last row). 334 

Note that 𝑀𝐸𝜆3
  was larger due to the disregarded crossloadings on that item. This was also the 335 

only 𝑀𝐸𝜆𝑗
 value that differed across the four factors. Specifically, the 𝑀𝐸𝜆3

 values were 0.059, 336 

0.010, 0.064, and 0.069 for 𝐹1 to 𝐹4, respectively. It seems that the third loading for  𝐹2 is 337 

unaffected by the ignored crossloading, which may be explained by the fact that, unlike the 338 
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other factors, 𝐹2 is involved in only one direct regression relation with the other factors4 and is 339 

thus less correlated with the other factors. In conditions without crossloadings, 𝑀𝐸𝜆3
  is the 340 

same across all factors, with a value of 0.11. The average 𝑅𝑀𝑆𝐸𝜆𝑗
 was 0.039, 0.075, 0.039, and 341 

0.039, respectively (Table 2, last row), where only 𝑅𝑀𝑆𝐸𝜆3
 differed across factors (i.e., 0.076, 342 

0.047, 0.081, and 0.086 for 𝐹1 to 𝐹4, respectively). When the crossloadings were zero (i.e., 343 

without crossloadings), 𝑀𝐸𝜆3
  and 𝑅𝑀𝑆𝐸𝜆3

  took on similar values as for the other loadings 344 

(𝑀𝐸𝜆3
= 0.011 and 𝑅𝑀𝑆𝐸𝜆3

= 0.039), whereas they increased with larger crossloadings: with 345 

crossloadings of 0.2, 𝑀𝐸𝜆3
= 0.051  and 𝑅𝑀𝑆𝐸𝜆3

= 0.071 ; and with crossloadings of 0.4, 346 

𝑀𝐸𝜆3
= 0.091 and 𝑅𝑀𝑆𝐸𝜆3

= 0.116. For the third loading, ME and RMSE were also higher 347 

in case of larger regression coefficients (𝛽), which imply stronger correlations between factors. 348 

Specifically, with 𝛽 = 0.2, 𝑀𝐸𝜆3
= 0.036 and 𝑅𝑀𝑆𝐸𝜆3

= 0.060; and with 𝛽 = 0.4,  𝑀𝐸𝜆3
=349 

0.065 and 𝑅𝑀𝑆𝐸𝜆3
= 0.090. Note that larger 𝑁𝑔 and smaller levels of AMI – thus applying 350 

lower prior variances – resulted in lower ME and RMSE values for all items. The latter is 351 

explained by the fact that a lower prior variance more strongly approximates an equality 352 

constraint, which lowers the sample size requirements. 353 

Table 1. The average 𝑀𝐸𝜆𝑗
 (standard deviation, SD, in brackets) for factor loading estimates when using the true prior 354 

variances for the loadings. 355 

Factor Level 𝑀𝐸𝜆2
 𝑀𝐸𝜆3

 𝑀𝐸𝜆4
 𝑀𝐸𝜆5

 

𝐺 12 0.011 (0.011) 0.051 (0.040) 0.011 (0.011) 0.011 (0.011) 

 24 0.010 (0.011) 0.050 (0.039) 0.010 (0.011) 0.010 (0.011) 

 48 0.010 (0.011) 0.050 (0.039) 0.010 (0.011) 0.010 (0.011) 

𝐾 2 0.010 (0.011) 0.051 (0.040) 0.010 (0.011) 0.010 (0.011) 

 4 0.010 (0.011) 0.050 (0.039) 0.010 (0.011) 0.010 (0.011) 

Cluster sizes balanced 0.010 (0.011) 0.051 (0.039) 0.010 (0.011) 0.010 (0.011) 

 
4 It has indirect relations with the other factors via the correlation between F1 and F2, but the expected value of 

this correlation is zero. 
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Factor Level 𝑀𝐸𝜆2
 𝑀𝐸𝜆3

 𝑀𝐸𝜆4
 𝑀𝐸𝜆5

 

 unbalanced 0.010 (0.011) 0.051 (0.040) 0.010 (0.011) 0.010 (0.011) 

𝑁𝑔 50 0.015 (0.016) 0.056 (0.041) 0.015 (0.016) 0.015 (0.016) 

 100 0.010 (0.008) 0.050 (0.039) 0.010 (0.008) 0.010 (0.008) 

 200 0.006 (0.004) 0.046 (0.038) 0.006 (0.004) 0.006 (0.004) 

𝛽 0.2 0.011 (0.011) 0.036 (0.024) 0.011 (0.011) 0.011 (0.011) 

 0.4 0.010 (0.011) 0.065 (0.046) 0.010 (0.011) 0.010 (0.011) 

AMI 0.001 -0.001 (0.002) 0.038 (0.037) -0.001 (0.002) -0.001 (0.002) 

 0.005 0.004 (0.002) 0.044 (0.037) 0.004 (0.001) 0.004 (0.001) 

 0.01 0.008 (0.002) 0.048 (0.038) 0.008 (0.002) 0.008 (0.002) 

 0.05 0.019 (0.008) 0.059 (0.039) 0.019 (0.008) 0.019 (0.008) 

 0.1 0.022 (0.012) 0.063 (0.040) 0.022 (0.012) 0.022 (0.012) 

Crossloadings 0 0.011 (0.011) 0.011 (0.011) 0.011 (0.011) 0.011 (0.011) 

 0.2 0.010 (0.011) 0.051 (0.019) 0.010 (0.011) 0.010 (0.011) 

 0.4 0.010 (0.011) 0.091 (0.032) 0.010 (0.011) 0.010 (0.011) 

Total  0.010 (0.011) 0.051 (0.040) 0.010 (0.011) 0.010 (0.011) 

Table 2. The average 𝑅𝑀𝑆𝐸𝜆𝑗
 (SD in brackets) for factor loading estimates when using the true prior variances for the 356 

loadings. 357 

Factor Level 𝑅𝑀𝑆𝐸𝜆2
 𝑅𝑀𝑆𝐸𝜆3

 𝑅𝑀𝑆𝐸𝜆4
 𝑅𝑀𝑆𝐸𝜆5

 

𝐺 12 0.040 (0.019) 0.076 (0.042) 0.040 (0.019) 0.040 (0.019) 

 24 0.039 (0.017) 0.075 (0.041) 0.039 (0.017) 0.039 (0.017) 

 48 0.038 (0.016) 0.074 (0.041) 0.038 (0.016) 0.038 (0.016) 

𝐾 2 0.039 (0.017) 0.076 (0.041) 0.039 (0.017) 0.039 (0.017) 

 4 0.039 (0.017) 0.075 (0.041) 0.039 (0.017) 0.039 (0.017) 

Cluster sizes balanced 0.039 (0.017) 0.075 (0.041) 0.039 (0.017) 0.039 (0.017) 

 unbalanced 0.039 (0.017) 0.076 (0.041) 0.039 (0.017) 0.039 (0.017) 

𝑁𝑔 50 0.051 (0.021) 0.085 (0.042) 0.051 (0.021) 0.051 (0.021) 

 100 0.038 (0.012) 0.075 (0.039) 0.038 (0.012) 0.038 (0.012) 

 200 0.028 (0.007) 0.067 (0.040) 0.028 (0.007) 0.028 (0.007) 
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Factor Level 𝑅𝑀𝑆𝐸𝜆2
 𝑅𝑀𝑆𝐸𝜆3

 𝑅𝑀𝑆𝐸𝜆4
 𝑅𝑀𝑆𝐸𝜆5

 

𝛽 0.2 0.039 (0.017) 0.060 (0.026) 0.039 (0.017) 0.039 (0.017) 

 0.4 0.039 (0.017) 0.090 (0.048) 0.039 (0.017) 0.039 (0.017) 

AMI 0.001 0.020 (0.002) 0.055 (0.037) 0.020 (0.002) 0.020 (0.002) 

 0.005 0.034 (0.006) 0.067 (0.035) 0.034 (0.006) 0.034 (0.006) 

 0.01 0.040 (0.009) 0.074 (0.036) 0.040 (0.009) 0.040 (0.009) 

 0.05 0.050 (0.017) 0.088 (0.041) 0.050 (0.017) 0.050 (0.017) 

 0.1 0.053 (0.020) 0.093 (0.044) 0.053 (0.020) 0.053 (0.020) 

Crossloadings 0 0.039 (0.017) 0.039 (0.017) 0.039 (0.017) 0.039 (0.017) 

 0.2 0.039 (0.017) 0.071 (0.023) 0.039 (0.017) 0.039 (0.017) 

 0.4 0.039 (0.017) 0.116 (0.036) 0.039 (0.017) 0.039 (0.017) 

Total  0.039 (0.017) 0.075 (0.041) 0.039 (0.017) 0.039 (0.017) 

 358 

To illustrate the effect of the prior variances for the loadings, 𝑅𝑀𝑆𝐸𝜆2
 across different 359 

prior variances is shown in Fig 3. The diagonal of the plot represents cases where the prior 360 

variances were correctly specified, while the lower part shows cases where the priors were 361 

narrower than the true level of AMI. Overall, we see that applying a too narrow prior resulted 362 

in a larger 𝑅𝑀𝑆𝐸𝜆2
. In general, applying the true priors or slightly wider priors resulted in lower 363 

𝑅𝑀𝑆𝐸𝜆2
  values. Perhaps, a slightly wider prior allowed to capture some additional loading 364 

differences due to sampling fluctuations.  365 
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 366 

Fig 3. 𝑅𝑀𝑆𝐸𝜆2
 across different prior variances, indicated by the columns, whereas the rows represent the true levels of 367 

AMI. The diagonal contains cases where the prior variances were correctly specified, while the lower part represents 368 
cases where the priors were too narrow. For each row, the cells are colored in red if the 𝑅𝑀𝑆𝐸𝜆2

 is larger than the 𝑅𝑀𝑆𝐸𝜆2
 369 

on the diagonal, and in blue if it is smaller. 370 

Since the prior variance affects the loading recovery, we also evaluated prior selection 371 

using the DIC. When looking at the prior selection per loading, the correct selection rate was 372 

28.7% across all loadings and all simulated data sets.5 For 21.4% of the data sets, the prior 373 

selection was flawless in the sense that the true priors were selected for all loadings. Generally, 374 

the DIC tended to select smaller prior variances. Specifically, for AMI levels of 0.001, 0.005, 375 

and 0.01, DIC most often selected a prior variance of 0.001, with selection rates of 100%, 100%, 376 

and 98.7%, respectively, averaged across loadings. For an AMI level of 0.05, DIC primarily 377 

selected a prior variance of 0.01 (52.0%), followed by prior variances of 0.05 (21.5%) and 0.005 378 

(15.5%). For an AMI level of 0.1, DIC mostly selected prior variances of 0.05 (70.9%) and 0.1 379 

(22.4%). Thus, overall, prior selection based on the DIC is not satisfactory, especially 380 

considering the larger ME and RMSE for loading estimates when using too narrow priors. 381 

 
5 Similar results were found with the widely applicable information criterion (WAIC; Watanabe, 2010) and leave-

one-out information criterion (LOOIC; Geisser & Eddy, 1979; Gelfand & Dey, 1994): WAIC: 28.8%; LOOIC: 

28.8%. 
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Sensitivity to local maxima. 382 

To evaluate how often (Step 3 of) MixMG-BSEM converged to a local maximum, we 383 

compared the log-likelihood of the final best solution (out of 50 random starts) to the one 384 

obtained when starting from the true clustering, which is a proxy for the global maximum. If 385 

log 𝐿𝜂was more than 0.001 lower than the proxy, the solution was considered a local maximum. 386 

Overall, when applying the true priors, MixMG-BSEM ended up in a local maximum for 1.81% 387 

of the data sets, with all local maxima occurring in case of unbalanced cluster sizes. 388 

Recovery of clusters.  389 

The Adjusted Rand Index (ARI; Hubert & Arabie, 1985) measures the similarity 390 

between two partitions while correcting for chance, with a value of one indicating perfect 391 

agreement and zero indicating the level of agreement between two random partitions. To 392 

compute the ARI, the modal clustering (i.e., assigning each group to the cluster with the highest 393 

classification probability) was compared to the true clustering. Additionally, the correct 394 

clustering rate (%CC) was computed based on an indicator variable that equals 1 for a perfect 395 

cluster recovery (i.e., ARI = 1), and 0 otherwise.  396 

When using the true priors, the average ARI across all simulated data was 0.882 and the 397 

correct clustering rate was 87.6%. As expected, fewer clusters, balanced cluster sizes, larger 398 

groups, and larger regression coefficients contributed to better cluster recovery (Table 3). The 399 

cluster recovery was the worst when Ng was 50 (𝐴𝑅𝐼 = 0.647 and %𝐶𝐶 = 63.3%), whereas 400 

increasing it to 100 significantly improved the recovery (𝐴𝑅𝐼 = 0.999 and %𝐶𝐶 = 99.6%).  401 

Across different prior variances, the ARI slightly increased with wider priors. For 402 

example, for an AMI level of 0.001, the ARI increased from 0.878 to 0.888 when a wider prior 403 

was applied (i.e., when the prior variance increased from 0.001 to 0.1). When the applied prior 404 

was too narrow, the ARI slightly dropped. For an AMI level of 0.1, it decreased from 0.891 405 
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when using the true prior variance to 0.875 when using a prior variance of 0.001. 6 This may be 406 

related to the worse loading recovery observed with too narrow priors (Fig 3).  407 

Table 3. The average ARI and correct clustering rate (%CC) (SD in brackets) when using the true prior variances for the 408 
loadings.  409 

Factor Level ARI %CC 

𝐺 12 0.882 (0.318) 0.875 (0.330) 

 24 0.883 (0.317) 0.877 (0.328) 

 48 0.880 (0.322) 0.876 (0.330) 

𝐾 2 0.930 (0.248) 0.922 (0.268) 

 4 0.834 (0.371) 0.830 (0.375) 

Cluster sizes balanced 0.916 (0.278) 0.915 (0.279) 

 unbalanced 0.848 (0.353) 0.837 (0.369) 

𝑁𝑔 50 0.647 (0.471) 0.633 (0.482) 

 100 0.999 (0.015) 0.996 (0.067) 

 200 1.000 (0.003) 1.000 (0.013) 

𝛽 0.2 0.764 (0.419) 0.752 (0.432) 

 0.4 1.000 (0.001) 1.000 (0.011) 

AMI 0.001 0.878 (0.326) 0.875 (0.331) 

 0.005 0.878 (0.326) 0.875 (0.331) 

 0.01 0.879 (0.324) 0.875 (0.331) 

 0.05 0.885 (0.314) 0.878 (0.327) 

 0.1 0.891 (0.305) 0.878 (0.327) 

Crossloadings 0 0.883 (0.319) 0.878 (0.327) 

 0.2 0.881 (0.320) 0.876 (0.329) 

 0.4 0.882 (0.318) 0.874 (0.332) 

Total  0.882 (0.319) 0.876 (0.329) 

 
6 To evaluate the recovery of clusters with exact (rather than approximate) MI constraints on factor loadings, we 

ran MixMG-SEM (Perez Alonso et al., 2024) for the first 25 replications. The average ARI values were 0.877, 

0.876, 0.875, 0.875, and 0.868 when the approximate AMI levels in the data-generating model were 0.001 to 0.1, 

respectively – all of which a bit lower than the ARI for MixMG-BSEM when using a prior variance of 0.001.  
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Recovery of regression parameters.  410 

To evaluate the recovery of the regression parameters, we computed the 𝑅𝑀𝑆𝐸𝛽  per 411 

regression parameter (i.e., 𝛽1, 𝛽2, 𝛽3, and 𝛽4): 412 

𝑅𝑀𝑆𝐸𝛽 = √∑ (𝛽̂𝑘 − 𝛽𝑘)
2𝐾

𝑘=1

𝐾
 (8) 413 

where 𝛽̂𝑘 is the estimated regression coefficient in cluster 𝑘 and  𝛽𝑘 is the corresponding true 414 

value. Note that the estimated regression coefficients can deviate from the true values in either 415 

direction, being over- or underestimated. When averaged across clusters, the deviations can thus 416 

cancel each other out which is why 𝑀𝐸𝛽 is not reported.  417 

On average, 𝑅𝑀𝑆𝐸𝛽 was 0.050, 0.022, 0.051, and 0.046 (Table 4) for 𝛽1, 𝛽2, 𝛽3, and 𝛽4, 418 

respectively. Similar to the trends observed for the cluster recovery, fewer clusters, balanced 419 

cluster sizes, larger groups, and larger regression coefficients resulted in smaller 𝑅𝑀𝑆𝐸𝛽 . 420 

Larger crossloadings resulted in larger 𝑅𝑀𝑆𝐸𝛽 values, with 𝛽2 being the least affected. This is 421 

expected as 𝛽2  is the only regression parameter between factors not involving ignored 422 

crossloadings (i.e., no crossloadings between 𝐹1  and 𝐹3 ). Note that the recovery of the 423 

regression parameters was barely affected by using different prior variances, even more narrow 424 

ones, likely due to the fact that the cluster recovery was hardly affected as well.  425 

 426 

Table 4. The average 𝑅𝑀𝑆𝐸𝛽  (SD in brackets) for each of the four estimated regression parameters when using the true 427 
prior variances for the loadings.  428 

Factor Level 𝑅𝑀𝑆𝐸𝛽1
 𝑅𝑀𝑆𝐸𝛽2

 𝑅𝑀𝑆𝐸𝛽3
 𝑅𝑀𝑆𝐸𝛽4

 

𝐺 12 0.051 (0.034) 0.022 (0.027) 0.052 (0.036) 0.049 (0.028) 

 24 0.050 (0.035) 0.022 (0.028) 0.051 (0.036) 0.046 (0.028) 

 48 0.050 (0.035) 0.022 (0.029) 0.051 (0.036) 0.043 (0.028) 
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Factor Level 𝑅𝑀𝑆𝐸𝛽1
 𝑅𝑀𝑆𝐸𝛽2

 𝑅𝑀𝑆𝐸𝛽3
 𝑅𝑀𝑆𝐸𝛽4

 

𝐾 2 0.047 (0.034) 0.017 (0.026) 0.046 (0.033) 0.040 (0.025) 

 4 0.053 (0.035) 0.026 (0.029) 0.057 (0.038) 0.052 (0.030) 

Cluster sizes balanced 0.049 (0.032) 0.020 (0.023) 0.051 (0.036) 0.045 (0.028) 

 unbalanced 0.052 (0.037) 0.024 (0.032) 0.052 (0.036) 0.047 (0.029) 

𝑁𝑔 50 0.068 (0.038) 0.045 (0.037) 0.064 (0.039) 0.057 (0.033) 

 100 0.043 (0.029) 0.011 (0.008) 0.047 (0.033) 0.042 (0.024) 

 200 0.041 (0.029) 0.010 (0.009) 0.044 (0.033) 0.040 (0.023) 

𝛽 0.2 0.060 (0.039) 0.030 (0.037) 0.056 (0.039) 0.052 (0.033) 

 0.4 0.041 (0.027) 0.014 (0.009) 0.047 (0.033) 0.041 (0.021) 

AMI 0.001 0.050 (0.035) 0.022 (0.029) 0.049 (0.036) 0.045 (0.028) 

 0.005 0.051 (0.035) 0.022 (0.029) 0.050 (0.036) 0.045 (0.028) 

 0.01 0.051 (0.035) 0.022 (0.028) 0.051 (0.036) 0.046 (0.028) 

 0.05 0.051 (0.034) 0.022 (0.027) 0.053 (0.036) 0.047 (0.029) 

 0.1 0.050 (0.034) 0.022 (0.026) 0.053 (0.036) 0.047 (0.029) 

Crossloadings 0 0.019 (0.028) 0.017 (0.029) 0.013 (0.024) 0.023 (0.023) 

 0.2 0.051 (0.022) 0.021 (0.028) 0.053 (0.016) 0.045 (0.019) 

 0.4 0.082 (0.019) 0.028 (0.025) 0.089 (0.013) 0.070 (0.019) 

Total  0.050 (0.035) 0.022 (0.028) 0.051 (0.036) 0.046 (0.028) 

 429 

Conclusion 430 

We assessed the performance of MixMG-BSEM when the true number of clusters is 431 

known. We found that performing 50 random starts in Step 3 largely prevented local maxima. 432 

The recovery of clusters and regression parameters was good to excellent when the within-433 

group sample size was at least 100 and/or in case of a larger cluster separation (i.e., 𝛽 = 0.4). 434 

Ignoring crossloadings (by estimating the MM per factor) resulted in biased estimates for factor 435 

loadings and regression parameters, but barely affected the clustering. DIC tended to select too 436 
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narrow prior variances, which come with a worse recovery of factor loadings. Luckily, the 437 

recovery of clusters and regression parameters was relatively robust to using too narrow priors.  438 

 439 

Discussion 440 

We presented MixMG-BSEM as a new addition to the novel mixture SEM framework 441 

for comparing structural relations across many groups. Unlike the existing approaches that rely 442 

on the exact MI assumption, MixMG-BSEM adopts the more realistic assumption of AMI, 443 

which accommodates small differences in MM parameters across groups. Specifically, after 444 

estimating the MM using MG-BCFA with small-variance priors, MixMG-BSEM clusters 445 

groups with the same structural relations, thereby eliminating the need for pairwise comparisons 446 

of group-specific structural relations. 447 

Currently, MixMG-BSEM estimates the MM per factor (i.e., with one factor per 448 

measurement block). In the simulation study, the cluster recovery was unaffected by ignoring 449 

crossloadings, but the recovery of the factor loadings and regression estimates was affected. 450 

Therefore, it would be valuable to investigate the performance of MixMG-BSEM when 451 

including factors with crossloadings in the same measurement block, at the cost of a longer 452 

computation time. In that case, small-variance priors could also be applied to the crossloadings 453 

to allow for small differences (Muthén & Asparouhov, 2012). However, it is important to note 454 

that the default prior mean for crossloadings is zero, whereas applying a prior mean of zero to 455 

a sizeable crossloading can negatively impact the regression parameter estimates (Wei et al., 456 

2022). Therefore, researchers should gather prior information about crossloadings before 457 

choosing an appropriate prior (Wei et al., 2022).  458 

While the simulation study evaluated the performance of MixMG-BSEM with 459 

approximate metric invariance for all loadings, except for the invariant marker variable loading, 460 
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MixMG-BSEM can theoretically accommodate all combinations of exact, approximate and 461 

non-invariance for the loadings. The stepwise estimation of MixMG-BSEM conveniently 462 

allows to tweak the MG-BCFA model, for instance, by specifying certain loadings as non-463 

invariant, before moving onto the next steps. Similarly, if group-specific loading estimates are 464 

virtually identical across groups, one may consider specifying the loading as exactly invariant. 465 

Specifying an invariant parameter as approximately invariant is rather harmless, whereas 466 

specifying a non-invariant parameter as approximately invariant may introduce bias in 467 

parameter estimation and affect the clustering. Note that MG-BCFA allows to evaluate non-468 

invariance for all parameters, which is achieved by comparing group-specific estimates to the 469 

credible intervals of the average posterior estimates across all groups (e.g., Winter & Depaoli, 470 

2020). In future research, it would be interesting to evaluate the performance of MixMG-BSEM 471 

when non-invariant loadings are specified as approximately invariant. 472 

The simulation study assumed the number of clusters to be known, whereas this is 473 

typically unknown for empirical data. To determine the number of clusters, different methods 474 

are available, such as the Bayesian Information Criterion (BIC; Schwarz, 1978), Akaike 475 

Information Criterion (AIC; Akaike, 1973), and convex hull procedure (CHull; Ceulemans & 476 

Kiers, 2006). In brief, all these methods balance model fit (i.e., the log-likelihood) and model 477 

complexity (i.e., the number of parameters). BIC and AIC do so by combining model fit and a 478 

penalty for model complexity into a single criterion, whereas CHull uses a generalized scree 479 

test. Previous studies on model selection for MixMG-SEM (Perez Alonso et al., 2024) and 480 

MixML-SEM (Zhao et al., 2024) have shown that combining AIC and CHull – with visual 481 

inspection of the scree plot – is an effective way to determine the number of clusters. Since 482 

MixMG-BSEM performs the same mixture clustering on group-specific factor covariances as 483 

these methods, we expect these recommendations to generalize to MixMG-BSEM. However, 484 

in the future, it would still be useful to evaluate model selection for MixMG-BSEM specifically.  485 
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Currently, MixMG-BSEM combines Bayesian and maximum likelihood estimation, 486 

assuming continuous items. In empirical practice, we often work with ordinal items with a few 487 

response categories (e.g., Likert scale items). To accommodate ordinal data in MixMG-BSEM, 488 

only the first step (i.e., MG-BCFA) would need to be adjusted to deal with ordinal data (Muthén 489 

& Asparouhov, 2013), whereas the subsequent steps would remain unchanged. In future studies, 490 

it will be valuable to evaluate the performance of MixMG-BSEM adapted to ordinal data.  491 

In conclusion, MixMG-BSEM is an effective method for accommodating AMI while 492 

clustering structural relations of interest. By relaxing the strict assumption of exact MI, it 493 

extends the framework of novel mixture SEM methods in an important way, making it more 494 

suited for empirical applications where small differences in parameters across groups are 495 

expected.  496 
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