Covariates and Distal Outcomes: 1-Step and 3-Step Approaches

Jeroen K. Vermunt

Department of Methodology and Statistics, Tilburg University www.jeroenvermunt.nl

Introduction

- In the introductory video, I presented the three steps/goals of a LC analysis
 - Building a clustering model
 - Classifying individuals
 - Investigating the relationship with external/other variables
- This video deals with the last step/goal
 - Exploring the association between class membership and other variables
 - Predicting class membership using covariates
 - Using class membership as predictor of a (distal) outcome

Four possible approaches

1. <u>1-step approach</u>: covariates (and/or a distal outcome) are included in the estimated LC model

2a. <u>Inactive covariates</u> option in LatentGOLD: it computes Profile and ProbMeans output using posterior class membership probabilities

2b. <u>Standard 3-step</u> approach: after modal classification, analysis with other programs

2c. <u>Bias-adjusted 3-step</u> approach: classification to a file and subsequent analyses with the LatentGOLD Step3 module

1-step approach (covariates)

• LC model with two covariates z_1 and z_2

1-step approach (covariates)

• Formula for a LC model with two covariates z_1 and z_2 :

$$P(y_1, ..., y_J \mid z_1, z_2) = \sum_{c=1}^{C} P(X = c \mid z_1, z_2) \prod_{j=1}^{J} P(y_j \mid X = c)$$

with a multinomial logit model for the latent variable:

$$P(X = c \mid z_1, z_2) = \frac{\exp(\gamma_{0c} + \gamma_{1c} z_1 + \gamma_{2c} z_2)}{\sum_{c'=1}^{C} \exp(\gamma_{0c'} + \gamma_{1c'} z_1 + \gamma_{2c'} z_2)}$$

1-step approach (covariates)

- Seems to be straightforward, but this is clearly not the case
- Important to note the additional local independence assumption: covariates affect indicators only indirectly via the latent classes
- What if this does not hold in selected LC model:
 - Solution with original number of classes changes a lot
 - Number of classes needs to be increased
 - Direct effects need to be included for some covariate-indicator pairs
- But also if this holds, class definition will change somewhat, which in turn depends on the set of covariates included in the model

1-step approach (distal outcome)

• LC model with distal outcome z

1-step approach (distal outcome)

- Note from the graph that a distal outcome is in fact an additional indicator
- As in the covariate case, additional local independence assumptions need to made
- Moreover, when z is a continuous variable, distributional assumptions need to be made for f(z|X=c), say normality, which may "distort" the classes if incorrect
- As in the covariates case, class definitions will always change somewhat when a distal outcome is included in the LC model

Other approaches

- Because of the practical issues associated with the 1-step approach, applied researchers prefer using approaches in which one does not include the covariates or distal outcome in the LC model itself
- Moreover, it looks a bit like cheating to allow the definition of the classes to depend on covariates and/or a distal outcome
- Other approaches:
 - Inactive covariates option in Latent GOLD
 - Standard 3-step analysis
 - Bias-adjusted 3-step analysis

Inactive covariates

- This is a feature specific for Latent GOLD, and yields a quick way to see how classes are related to other variables, including with plots.
- The LC model is estimated *without* covariates.
- Two-way covariate-class tables are created using the posterior class membership probabilities from this model.
- Profile and ProbMeans report the covariate distribution/mean given class and the class distribution given covariate value, respectively.
- Limitations: 1) associations are underestimated; 2) no statistical tests;
 3) only bivariate relationships

Step 1: Building a clustering model

Step 2: Classifying individuals

Step 3: Investigating the relationship between the classifications and external/other variables

Fits naturally with the three goals/steps of LC modeling

• Step 1: Building a clustering model

• Step 2: obtaining classifications W (and adding these to the data file)

• Step-3 model with covariates (say using SPSS logistic regression):

• Step-3 model with a distal outcome (say using SPSS Anova or Crosstabs):

$$W \longrightarrow Z$$

Problem with standard step-3 analysis

- You are investigating the relationship of z's with W and not with X.
- W is an imperfect version of X, which contains classification errors.
- Result: associations/effects are underestimated (biased downwards).
- Solution: correct for classification errors.
- Bolck, Croon and Hagenaars (BCH, 2004) proposed a bias-adjusted step-3 approach which was expanded and made practically applicable by Vermunt (2010).
- This has become the state-of-art approach.

Bias-adjusted step-3 analysis

Covariates:

Distal outcome (dependent):

Bias-adjusted step-3 analysis

- As can be seen, we now model the relationship between z's and X, which is exactly what we want.
- We define a LC model in which W is use as a single indicator of X.
- Important: P(W=t|X=c) is computed in step 2; it is the classification table rescaled to sum to 1 in the rows.
- One can use either modal or proportional classification.
- Two different estimation methods are ML and BCH, where BCH is mainly needed for continuous dependent variables.

Bias-adjusted 3-step analysis

- Also this approach has its limitations.
- It works less well when class separation is very bad; when the entropy R-squared is (much) smaller than .5.
- It is based on the same (additional) local independence assumptions as the 1-step approach (z's and y's are independent given X).
- Vermunt and Magidson (online first, Structural Equation Modeling) extended the 3-step approach to allow for direct effects between z's and y's (for differential item functioning).
- Many other extensions have been proposed to 3-step LC analysis.

/ariables	Advanced	Model	Residuals	ClassPred	Output	Technical		
id			Indicat	tors>	accuracy	1	Nominal	2
marital		•			cooperat	t	Nominal	3
					understa	1	Nominal	2
					purpose		Nominal	3
			Covaria	ates>	race sex educr age		Nominal Nominal Num-Fixed Num-Fixed	2 2 6 72
			Clusters 3	•				

- I included the predictors of class membership in the 3-class model (which was best according to BIC)
- On the positive side:
 - Covariate-indicator BVRs are all quite small
 - A 4-cluster models does not perform better according to BIC
- On the somewhat negative side:
 - Sample size slightly smaller because of missing values on age
 - Class definitions change somewhat and class one becomes quite a bit larger

- For interpretation, several output sections are of interest
- Parameters: Model for Clusters
 - Effect coded or dummy coded logit coefficients
 - Wald tests
 - See also Paired Comparisons (nested in Parameters)
- Profile: distribution/mean of covariates given class
- ProbMeans: class distribution given covariate values
- EstimatedValues: full model probabilities

Parameters output (effect and dummy-first coding)

Model for Clusters						Model for Clusters					
Intercept	Cluster1	Cluster2	Cluster3	Wald	p-value	Intercept	Cluster1	Cluster2	Cluster3	Wald	p-value
	0.4273	0.6938	-1.1211	16.3582	0.00028		-0.0000	0.0453	-1.7963	18.1943	0.00011
Covariates	Cluster1	Cluster2	Cluster3	Wald	p-value	Covariates	Cluster1	Cluster2	Cluster3	Wald	p-value
race						race					
WHITE	0.1347	-0.0953	-0.0394	8.7468	0.013	WHITE	0.0000	-0.0000	-0.0000	8.7468	0.013
BLACK	-0.1347	0.0953	0.0394			BLACK	-0.0000	0.4599	0.3481		
sex						sex					•
MALE	0.0217	0.0304	-0.0521	0.7271	0.70	MALE	0.0000	-0.0000	-0.0000	0.7271	0.70
FEMALE	-0.0217	-0.0304	0.0521			FEMALE	-0.0000	-0.0174	0.1477		
educr						educr					
	0.2831	-0.4965	0.2134	128.8204	1.1e-28		-0.0000	-0.7797	-0.0698	128.8204	1.1e-28
age						age					
	-0.0058	0.0032	0.0026	5.6375	0.060		-0.0000	0.0089	0.0084	5.6375	0.060
	I I										·····

• ProbMeans and Profile

Covariates			
race			
WHITE	0.6943	0.1597	0.1460
BLACK	0.5774	0.2529	0.1698
sex			
MALE	0.6773	0.1823	0.1404
FEMALE	0.6517	0.1869	0.1614
educr			
0 - 1	0.4077	0.4603	0.1320
2 - 2	0.6391	0.2247	0.1362
3 - 3	0.7093	0.1255	0.1652
4 - 4	0.7930	0.0615	0.1455
5 - 5	0.8063	0.0197	0.1739
age			
18 - 26	0.7118	0.1508	0.1373
27 - 34	0.7519	0.0995	0.1485
35 - 47	0.6959	0.1462	0.1579
<mark>48 - 61</mark>	0.6035	0.2144	0.1821
62 - 8 9	0.5515	0.3134	0.1351

0.7640	0.6297	0.6985
0.2360	0.3703	0.3015
0.4355	0.4200	0.3923
0.5645	0.5800	0.6077
•		
0.1478	0.5980	0.2081
0.0696	0.0876	0.0644
0.3664	0.2323	0.3710
0.2399	0.0666	0.1913
0.1763	0.0155	0.1652
3.1975	1.5463	3.0063
0.1970	0.1496	0.1651
0.2379	0.1128	0.2043
0.2118	0.1594	0.2089
0.1848	0.2353	0.2424
0.1684	0.3429	0.1793
42.0402	51.4287	44.7274
	0.7640 0.2360 0.4355 0.5645 0.5645 0.1478 0.0696 0.3664 0.2399 0.1763 3.1975 0.1970 0.2379 0.2118 0.1848 0.1848 0.1684 42.0402	0.7640 0.6297 0.2360 0.3703 0.4355 0.4200 0.5645 0.5800 0.1478 0.5980 0.1478 0.5980 0.1478 0.5980 0.3664 0.2323 0.2399 0.0666 0.1763 0.0155 3.1975 1.5463 0.1970 0.1496 0.2379 0.1128 0.2118 0.1594 0.1848 0.2353 0.1684 0.3429 42.0402 51.4287

• EstimatedValues (or Classification-Model)

				Cluster		
race	sex	educr	age	1	2	3
WHITE	MALE	<8	28	0.3917	0.5261	0.0822
WHITE	MALE	<8	37	0.3729	0.5428	0.0844
WHITE	MALE	<8	40	0.3667	0.5482	0.0851
WHITE	MALE	<8	44	0.3585	0.5555	0.0860
WHITE	MALE	<8	48	0.3504	0.5626	0.0870
WHITE	MALE	<8>	49	0.3484	0.5644	0.0872
WHITE	MALE	<8>	50	0.3464	0.5662	0.0874
WHITE	MALE	<8>	51	0.3444	0.5680	0.0876
WHITE	MALE	<8>	56	0.3345	0.5768	0.0888
WHITE	MALE	<8>	57	0.3325	0.5785	0.0890
WHITE	MALE	<8>	60	0.3266	0.5837	0.0896
WHITE	MALE	<8>	66	0.3150	0.5940	0.0909
WHITE	MALE	<8>	67	0.3131	0.5957	0.0911
WHITE	MALE	<8>	68	0.3112	0.5974	0.0914
WHITE	MALE	<8>	69	0.3093	0.5991	0.0916
WHITE	MALE	<8>	70	0.3075	0.6008	0.0918
WHITE	MALE	<8>	74	0.3000	0.6074	0.0926
WHITE	MALE	<8>	75	0.2981	0.6091	0.0928
WHITE	MALE	<8>	79	0.2908	0.6157	0.0936
WHITE	MALE	<8>	81	0.2871	0.6189	0.0940
WHITE	MALE	<8>	82	0.2853	0.6205	0.0942
WHITE	ΜΔΙΕ	~ 2	83	0 2825	0.6221	0 0044

GSS82.sav data: inactive covariates

- Pattern of associations is the same as with 1-step approach, but associations are somewhat weaker
- See, for example, mean age of the classes (Profile) or the class probabilities for educational categories (ProbMeans)

• First we should save the classifications to an output data file:

Variables	Advanced	Model	Residuals	ClassPred	Output	Technical		
			Know	/n Class>				
Lexica	al Order			<Кеер	id race sex			· ^ 2 2
✓ (lassification	- Poster	ior		marita	al		5
	lassification	- Model			аде			73 ×
P	redicted Va	lues						
I	ndividual Co	efficients	3					
	ook's D							
L L	og Density							
C:\	Users\Jeroe	n Vermu	nt\Documer	nts\LatentGC	LD6.0\De	emoData\gss	s8 Brov	wse

• With the file containing the classifications and the Step3 module ...

ariables Advanced	Model Output	Technical			
Advanced	inouch output	reenneur			
accuracy	· Po	steriors>	clu#1		33
cooperat			clu#2		33
understa			clu#3		33
purpose					
d	• <-	-Covariates	race	Nominal	2
marital		cordinated	sex	Nominal	2
clu#			educr	Num-Fixed	6
			age	Num-Fixed	72
	Cas	e Weiaht>			
	C	ase ID>			
	C	ase ID>			
		ase ID> Select>			
	Ana	ase ID> Select> lysis	Classification	Adjustment	
	Ana	ase ID> Select> lysis Covariates	Classification Proportional	Adjustment	
	Ana	ase ID> Select> lysis Covariates Dependent	Classification Proportional Modal	Adjustment ML BCH	
Lexical Order		ase ID> Select> lysis Covariates Dependent Scoring	Classification Proportional Modal	Adjustment ML BCH Bakk-Kuba	

Note that I am using the options:

- Covariates
- Proportional
- ML

 Instead you may use the dependent (=bivariate analysis) option, where for age using BCH would be preferred.

Advanced N	Model Output Technical			
accuracy	Posteriors>	clu#1	3	33
cooperat		clu#2	3	33
understa		clu#3	3	33
purpose				
id	Dependents>	race	Nominal	2
marital		sex	Nominal	2
age		educr	Ord-Fixed	6
clu#	•			
	Case Weight>			
	Case Weight>			
	Case Weight> Case ID>			
	Case Weight> Case ID> Select>			
	Case Weight> Case ID> Select> Analysis	Classification	Adjustment	
	Case Weight> Case ID> Select> Analysis O Covariates	Classification Proportional	Adjustment ML	
	Case Weight> Case ID> Select> Analysis O Covariates O Dependent	Classification Proportional Modal	Adjustment ML BCH	
Lexical Order	Case Weight> Case ID> Select> Analysis O Covariates O Dependent Scoring	Classification Proportional Modal	Adjustment ML BCH Bakk-Kuha	

- Relevant output for Step3-Covariates: same as for 1-step approach
 - Parameters, Wald tests, and Paired comparisons
 - Profile
 - ProbMeans
 - EstimatedValues
- Most relevant output for Step3-Dependent
 - Wald tests and Paired comparisons
 - Profile