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Abstract

In social sciences, the study of group differences concerning latent constructs is ubiqui-

tous. These constructs are generally measured by means of scales composed of ordinal

items. In order to compare these constructs across groups, one crucial requirement is

that they are measured equivalently or, in technical jargon, that measurement invariance

holds across the groups. This study compared the performance of multiple group categor-

ical confirmatory factor analysis (MG-CCFA) and multiple group item response theory

(MG-IRT) in testing measurement invariance with ordinal data. A simulation study was

conducted to compare the true positive rate (TPR) and false positive rate (FPR) both at

the scale and at the item level for these two approaches under an invariance and a non-

invariance scenario. The results of the simulation studies showed that the performance,

in terms of the TPR, of MG-CCFA- and MG-IRT-based approaches mostly depends on

the scale length. In fact, for long scales, the likelihood ratio test (LRT) approach, for

MG-IRT, outperformed the other approaches, while, for short scales, MG-CCFA seemed

to be generally preferable. In addition, the performance of MG-CCFA’s fit measures,

such as RMSEA and CFI, seemed to depend largely on the length of the scale, especially

when MI was tested at the item level. General caution is recommended when using these

measures, especially when MI is tested for each item individually. A decision flowchart,

based on the results of the simulation studies, is provided to help summarizing the results

and providing indications on which approach performed best and in which setting.
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Scale length does matter: Recommendations for Measurement Invariance Testing with

Categorical Factor Analysis and Item Response Theory Approaches

1 Introduction

One of the main missions of psychological and social sciences is to study individuals

as well as group differences with regard to latent constructs (e.g., extraversion). Such

constructs are commonly measured by means of psychological scales in which subjects

rate their level of agreement on various Likert-scale type of items by selecting one out

of the possible response options. Most items’ response options range from 3 to 5 with a

clear ordering (e.g., a score of 3 is higher than a score of 2 which is then higher than 1).

Such items with few naturally ordered categories are called ordinal items.

In order to compare psychological constructs across groups one crucial requirement is

that the construct is measured equivalently (Borsboom, 2006; Meredith & Teresi, 2006).

Equivalence in the measurement of a psychological construct across groups is generally

defined as measurement invariance (MI).

Latent variable modeling is one of the most popular frameworks in the context of psycho-

logical measurement. Within this framework various approaches have been developed to

model ordinal data as well as to test for MI. Among them, two of the most used ones are

multiple group categorical confirmatory factor analysis (MG-CCFA) and multiple group

item response theory (MG-IRT)(E. S. Kim & Yoon, 2011; Millsap, 2012). These two

approaches have been commonly seen as separate but they show quite some overlap in

the context of ordinal data. For instance, parameters in MG-CCFA and MG-IRT models

are known to be directly related (Takane & De Leeuw, 1987). Moreover, Chang, Hsu,

and Tsai (2017) proposed a set of minimal identification constraints to make MG-CCFA

and MG-IRT models fully equivalent.

The equivalence of these models does not necessarily match the way MI is conceptualized

and tested within each of the two approaches. For example, one main difference between

MG-CCFA and MG-IRT pertains to which hypotheses are tested. On the one hand, in

MG-CCFA equivalence of measurement is mainly investigated at the scale level. That

is, the tested hypothesis is that the complete set of items functions equivalently across
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groups. On the other hand, in MG-IRT more attention is dedicated toward the study of

each individual item. For this reason, MI is tested for each item in the scale separately.

Another crucial difference is in the way these hypotheses are tested. In fact, different

testing strategies are used to determine whether MI holds, either at the scale or at the

item level.

The impact that these differences have in terms of the performance to detect MI has not

yet been thoroughly assessed. Previous studies focused either on comparing MG-CCFA

and MG-IRT using different models (Meade & Lautenschlager, 2004; E. S. Kim & Yoon,

2011) or, in the case of equivalent models, by solely using an item-level testing perspective

(Chang et al., 2017). Providing clear guidelines on which approach to choose and in which

setting is particularly helpful for applied researchers. In fact, it might facilitate decisions

regarding the level at which (non)invariance will be tested (e.g., scale or item level) as

well as what the most powerful tools to test it are. However, in the current literature,

clear guidelines have not been yet provided. In this paper, by means of two simulation

studies, we bring three main contributions: (i) assess to what extent performing a scale-

or an item-level test affects the power to detect MI, (ii) determine what MG-CCFA- or

MG-IRT-based testing strategies/measures are more powerful to test MI, and (iii) based

on the results of the simulation studies, provide guidelines on what approach to choose

and in which conditions.

To this end, in Section 2 will discuss both MG-CCFA- and MG-IRT-based models and

illustrate how they are equivalent under a set of minimal identification constraints. Addi-

tionally, in the same section, for each of the two approaches, we will discuss the differences

in the set of hypotheses and the testing strategies in the context of MI. Afterwards, in Sec-

tion 3 we will assess the performance of MG-CCFA- and MG-IRT-based testing strategies

in testing MI by means of two simulation studies. Finally, in Section 4 we will conclude by

giving remarks and recommendations along with a summary of the main results obtained

in the simulation studies.
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2 MG-CCFA, MG-IRT models and their MI test

2.1 The models

Imagine to have data composed of J items for a group of N subjects. Also, assume that

a grouping variable exists such that subjects can be divided in G. Let Xj be the response

on item j and further assume that Xj is a polytomously scored response which might

take on C possible values, with c = {0,1,2,...,C -1}. Without loss of generality, it can be

assumed that a unidimensional construct η underlies the observed responses.

2.1.1 MG-CCFA. In MG-CCFA it is assumed that C possible observed values are

obtained from a discretization of a continuous unobserved response variable X∗
j via some

threshold parameters. The threshold τ (g)
j,c indicates the dividing point for the categories

(e.g., division between a score of 3 and 4). Additionally, they are created such that

the first and the last threshold are defined as τ (g)
j,0 = -∞ and τ

(g)
j,C = +∞, respectively.

Rewriting formally what we just described, we have:

Xj = c, if τ
(g)
j,c < X∗

j < τ
(g)
j,c+1 c = 0, 1, 2, ..., C − 1. (1)

If it is also assumed that the construct under study is unidimensional, according to a

factor analytical model we have:

Xj = λ
(g)
j η + εj, j = 1, 2, ..., J. (2)

Equation (2) shows that the unobserved continuous response variable X∗
j is determined

by a latent variable score η via the factor loading λ(g)
j and a residual component εj. The

latter represents an error term that is item specific. It is important to note that the

thresholds τ (g)
j,c and loadings λ(g)

j are group specific. Additionally, within group g both the

latent variable η and the item-specific residual component εj are mutually independent

and both normally distributed, with:

η ∼ N(κ, ϕ), and εj ∼ N(0, σ2
j ). (3)

where κ is the factor mean, ϕ the factor variance and σ2
j is the unique variance.
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2.1.2 MG-noGRM. MG-IRT models the probability of selecting a specific item cate-

gory, given a score on the latent construct and given a specific group membership. These

conditional probabilities, in the case of ordinal items, are modeled indirectly through

building blocks thar are constructed by means of specific functions. Different functions

exist for ordinal items which, in turn, are used by different MG-IRT models. Because of

its similarities with MG-CCFA (Chang et al., 2017), in the following, we only consider

the multiple group normal ogive graded response model (MG-noGRM; Samejima, 1969).

The MG-noGRM uses cumulative probabilities as its building blocks, and the underly-

ing idea is to treat the multiple categories in a dichotomous fashion (Samejima, 1969).

First, for every score the probability of obtaining that score or higher is calculated (e.g.,

selecting 2 or above), given the latent construct η. Based on this set of probabilities, the

probability of selecting a specific category (e.g., 2) is calculated, given a certain score on

η. In the MG-noGRM, like in MG-CCFA, it is assumed that the observed values arise

from an underlying continuous latent response variable X∗
j .

Rewriting formally what we just described, the probability of scoring a certain category

c is then:

P (X∗
j = c|η, g) = Φ(α(g)

j (η − δ(g)
j,c+1))− Φ(α(g)

j (η − δ(g)
j,c ))

= Φ(α(g)
j η − α(g)

j δ
(g)
j,c+1)− Φ(α(g)

j η − α(g)
j δ

(g)
j,c )

=
∫ α

(g)
j η−α(g)

j δ
(g)
j,c+1

α
(g)
j η−α(g)

j δ
(g)
j,c

φ(uj)duj

(4)

where, for group g α(g)
j is the discrimination parameter for item j, and δ(g)

j,c is the threshold

parameter. The latter represents the point at which the probability of answering at or

above category c is .5 for group g. Since ordered categories are modeled, the probability

of getting at least the lowest score is 1, and the first threshold δ(g)
j,0 is not estimated and

set to -∞. That is, C -1 threshold parameters per group need to be estimated. It is

relevant to highlight that, like in MG-CCFA, also in the case of the MG-noGRM the

model parameters α(g)
j and δ

(g)
j,c are group specific. Also, φ is the cumulative density

function for the standard normal variable uj and Φ(u) is the cumulative distribution

function.



MEASUREMENT INVARIANCE TESTING FOR ORDINAL DATA 7

2.1.2.1 Similarities with MG-CCFA. The similarities between MG-CCFA and

the MG-noGRM can be revealed by taking a closer look at how the parameters in the

two models are related (Takane & De Leeuw, 1987; Kamata & Bauer, 2008; Chang et

al., 2017):

α
(g)
j =

λ
(g)
j

σj
, uj = εj

σj
, δ

(g)
j,c =

−τ (g)
j,c

α
(g)
j

, (5)

and how it is possible to write the probability of X∗
j given η in MG-CCFA terms:

P (X∗
j = c|η, g) =

∫ λ
(g)
j η−τ (g)

j,c+1

λ
(g)
j η−τ (g)

j,c

φ(εj)dεj

=
∫ λ

(g)
j η/σj−τ (g)

j,c+1/σj

λ
(g)
j η/σj−τ (g)

j,c /σj

φ(uj)duj.
(6)

The difference between (4) and (6) is that in MG-CCFA the loadings λ(g)
j and the thresh-

olds τ (g)
j,c can be inferred only in a relative sense. In fact, they can only be calculated

through the ratio with the residual variance σj (Takane & De Leeuw, 1987; Kamata &

Bauer, 2008; Chang et al., 2017). This is due to the absence of a scale for the latent

response variable X∗
j . For ease of reading, in the following, only the term loading will be

used to refer to both the discrimination parameters and the loadings.

2.1.3 Identification constraints and models equivalence. In order to identify

measurement models such as the ones considered here, constraints are usually imposed

either via specification of an arbitrary value for some parameters or by setting equalities

across them. This way the number of parameters to be estimated is reduced, and it is

possible to find a unique solution in the estimation process (Chang et al., 2017; San Martín

& Rolin, 2013; Millsap & Yun-Tein, 2004).

In testing MI with multiple groups, both for MG-CCFA and the MG-noGRM, it is nec-

essary to ensure that a scale is set for (i) the latent response variable X∗
j , (ii) the latent

construct η, and that (iii) the scale of the latent construct is aligned across groups such

that the parameters can be directly compared (Kamata & Bauer, 2008, Chang et al.,

2017). Interestingly, these constraints are commonly imposed in a different way in MG-

CCFA and in the MG-noGRM.

The observed response for each item is assumed to arise, in both models, from an unob-

served continuous response variable X∗
j . These underlying continuous response variables
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do not have a scale. For this reason, a scale has to be set by constraining their variances

and means. In both models the means of the latent response variables are constrained to

be 0. However, different ways to constrain the variances are generally used. It is common

to either set their total variances V (X∗
j ) to 1 or its unique variances σ2

j to 1. The former

is much more common in MG-CCFA while the latter is closer to what is usually done

with the MG-noGRM (Kamata & Bauer, 2008). The other unobserved element for which

a scale has to be set is the latent construct η. Again, this is commonly approached in

a different way in the two frameworks. On the one hand, in MG-CCFA a fixed value is

commonly chosen for a threshold and a loading. On the other hand, in the MG-noGRM

the scale of the latent variable is commonly defined by setting its mean and variance to

0 and 1, respectively. In both cases these constraints are applied only for one of the two

groups, which is usually called the reference group.

Finally, it is necessary to align the scale of both groups to make them comparable. This

is commonly achieved by imposing equality constraints on some of the parameters in the

model. Again, in MG-CCFA and in the MG-noGRM the common way to address this

issue is different. On the one hand, in MG-CCFA for each latent construct, the factor

loading and the threshold of a single item are constrained to be equal across groups.

Generally, the loading and the threshold of the first item of the scale are selected. On the

other hand, in MG-IRT multiple items, assumed to function equivalently in both groups,

are set equal by constraining their parameters. These items form what is then called the

anchor. Note that, in the MG-noGRM, and more generally in MG-IRT models, a bigger

attention is devoted to choosing the items that are constrained to be equal across groups

while in MG-CCFA this is not necessarily the case.

Chang et al. (2017) have recently proposed a set of minimal constraints to make MG-

CCFA and the MG-noGRM fully comparable which will also be presented here. Without

loss of generality, imagine that two groups, g = r,f where r represents the reference group

and f the focal group, exist. Following Chang et al. (2017):

σ
2(r)
j = 1, for j= 1,..,J (7)
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E(η(r)) = 0, (8)

λ
(r)
1 = λ

(f)
1 , σ

2(r)
1 = σ

2(f)
1 , τ

(r)
1,c = τ

(f)
1,c , for some c ∈ (0,1,2,...,C -1) (9)

σ
2(r)
j = σ

2(f)
j for j = 2,..,J . (10)

These constraints serve the purpose to set a scale for the latent response variable X∗
j ,

for the latent construct η and to make the scale comparable across groups. That is, (7)

and (8) set the scale of the latent construct η for the reference group, while (9) makes

the scale comparable across groups using the anchor. Finally, (10) guarantees a common

scale across all the other items. Furthermore, the above-mentioned constraints can be

seen as MG-IRT-type constraints where the unique variances σ2
j are constrained to be 1

both for the focal and the reference group, the mean of the latent construct η is set to 0

and at least one item is picked as the anchor item, which parameters are set to be equal

across groups (Chang et al., 2017).

By means of these constraints the two models are exactly the same. Thus, the remain-

ing differences between MG-CCFA and the MG-noGRM in testing MI can be attributed

to the level at which it can be tested (scale vs. item) as well as what testing strate-

gies/measures are used to test it.

2.2 MI hypotheses

Generally, a measurement is said to be invariant if the score that a person obtains on a

scale does not depend on his/her belonging to a specific group but only on the underlying

psychological construct. Formally, assume that a vector of scores on some items X is

observed, where X = {X1, X2,..., Xj}, and that a vector of scores on some latent variables

η underlies these scores, where η = {η1, η2,...,ηr}. Then, measurement invariance holds

if:

P (X|η,g) = P (X|η). (11)
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Equation (11) shows that the probability of observing a set of scores X given the under-

lying latent construct (η) is the same across all groups. Moreover, the equation is quite

general in the sense that no particular model is yet specified for P (X|η).

As discussed above, an equivalent model for P (X|η) can be specified for MG-CCFA and

the MG-noGRM. Then, one of the main differences in the way these two approaches

test MI is whether a test is conducted for the whole vector of scores at once or for each

element of the vector separately. The former is more common in MG-CCFA while the

latter is generally used within MG-IRT. However, in principle, both types of test can be

conducted within each framework.

2.2.1 Scale level. In MG-CCFA MI is tested for all items at once. Different model

parameters can be responsible for measurement non-invariance, and they are tested in

a step-wise fashion. In each step a new model is estimated, with additional constraints

imposed, to test the invariance of a specific set of parameters. The fit of the model to

the data is then evaluated to test whether these new constraints worsen it significantly.

The latter being true indicates that at least some of the constrained parameters are

non-invariant.

2.2.1.1 Configural. The starting point in MG-CCFA is testing configural invari-

ance. In this step the aim is to test whether, across groups, the same number of factors

hold and that each factor is measured by the same items. This is generally done by

first specifying and then estimating the same model for all groups. Afterwards, fit mea-

sures are examined to determine whether the hypothesis of the same model underlying

all groups is rejected or not.

2.2.1.2 Metric. If the hypothesis of configural invariance is not rejected, the next

step is to test the equivalence of factor loadings. This step is also called the weak or

metric invariance step. Commonly, the factor loadings of all items are constrained to be

equal across groups. The hypothesis being tested here is that:

Hmetric : Λ(g) = Λ. (12)
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If (12) is supported, the equivalence of factor loadings indicates that each measured

variable contributes to each latent construct to a similar extent across groups (Putnick

& Bornstein, 2016).

2.2.1.3 Scalar. If metric invariance holds, scalar invariance or invariance of the

intercepts can be tested. In MG-CCFA, though, the observed data are assumed to come

from an underlying continuous response variable X∗
j . This variable does not have a scale

and, generally, its intercept is fixed to 0. That is why the thresholds are tested instead of

the intercepts. In order to do that, the thresholds for all items are constrained to be equal

across groups, while keeping the previous contraints in place. Formally, the hypothesis

being tested is:

Hscalar : T (g)
j,c = Tj,c for j = 1, 2, .., J, c = 0,1,2,...,C -1. (13)

If the hypothesis in (13) is not rejected it can be concluded that the thresholds parameters

for all items are the same across groups. Finally, it is worth noting that, to obtain full

factorial invariance, equivalence of the residual variances should also be tested (Meredith

& Teresi, 2006). However, many researchers do not consider this step, since it is not

relevant when comparing the mean of the latent constructs across groups (Vandenberg

& Lance, 2000).

2.2.2 Item level. In MG-IRT the functioning of each item is tested separately. An

item shows differential item functioning (DIF) if the probability of selecting a certain

category on that item differs across two groups, given the same score on the latent

construct. It is worth noting that, when DIF is tested following a typical MG-IRT-

based approach, configural invariance is generally assumed. Also, compared to MG-CCFA

where item parameters are firstly allowed to differ and then constrained to be equal across

groups, testing DIF follows a different rationale. That is, the starting assumption is that

all items function equivalently across groups. Formally:
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H0 : α(g)
j = αj =

λ
(g)
j

σj
= λj
σj
, δ

(g)
j,c = δj,c =

−τ (g)
j,c

λ
(g)
j

σj

= −τj,cλj

σj

for j = 1,2,..,J, c = 0,1,2,...,C -1.

(14)

The constraints on one item are then freed up to test whether its parameters are invariant,

while keeping the other items constrained to be equal across groups. The procedure is

then iteratively repeated for all the other items in the scale. DIF can take two different

forms: uniform and nonuniform.

2.2.2.1 Uniform DIF. Given two groups, an ordinal item shows uniform DIF

when, between groups, the thresholds parameters differ. In formal terms:

Hno uniformDIF : δ(g)
J/k,c = δJ/k,c =

−τ (g)
J/k,c

λ
(g)
J/k

σJ/k

= −τJ/k,cλJ/k

σJ/k

for j = 1,2,..,J, c = 0,1,2,...,C -1 and for some k, where k = 1,2,...,J .

(15)

Where the subscript J/k stands for all items except item k. Equation (15) shows the

hypothesis of no uniform DIF indicating that the thresholds of all items except item k

(τJ/k,c) are the same across groups. Furthermore, it is interesting to note the connection

between uniform DIF and scalar invariance, since both can be seen as tests for shifts in

the thresholds parameters.

2.2.2.2 Nonuniform DIF. An ordinal item shows nonuniform DIF when the load-

ing parameter differ across two groups. The tested hypothesis can be formally written

as:

Hno nonuniformDIF : α(g)
J/k = αJ/k =

λ
(g)
J/k

σJ/k
= λJ/k
σJ/k

for j = 1,2,..,J, c = 0,1,2,...,C -1 and for some k, where k = 1,2,...,J .
(16)

Equation (16) shows the hypothesis of no nonuniform DIF indicating that for all items

except item k the loadings are the same for all groups. This is similar to testing metric

invariance in MG-CCFA, but note that here items are evaluated individually.
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2.3 MI testing strategies

2.3.1 MG-CCFA-based. Besides commonly testing different hypotheses, MG-CCFA

and MG-IRT differ in terms of what testing strategies/measures are used to test these

hypotheses. Within MG-CCFA the common strategy is to estimate two nested models

and then compare how well they fit the data. A measure of how well a model fits the

data is commonly obtained by means of a goodness of fit index. A goodness-of-fit index

is a measure of the similarity between the model-implied covariance structure and the

covariance structure of the data (Cheung & Rensvold, 2002). To date many fit indices

exist, and they can be mainly divided into three categories: measures of absolute fit,

misfit and comparative fit (for a more detailed review on the available measures we refer

the reader to Schreiber, Nora, Stage, Barlow, & King, 2006).

2.3.1.1 Absolute fit indices. Absolute fit indices focus on the exact fit of the model

to the data and one of the most commonly used is the chi-squared (χ2) test. Imagine

that we have a MG-CCFA model A, with χ2
ModA and dfModA indicating the model χ2 and

degrees of freedom, which fits sufficiently well the data. To test one of the MI hypotheses

(e.g., metric invariance) a new model is specified by constraining the parameters of interest

(e.g., loadings) of all items to be equal across groups. Let us call this model B, with χ2
ModB

and dfModB. A χ2 test is then conducted by looking at the difference in these two models:

T ∼ χ2
D(dfD) = χ2

ModB − χ2
ModA(dfModB − dfModA). (17)

A significant T (e.g., using a significance level of .05) indicates that model B fits signif-

icantly worse, and thus that model A should be preferred. This implies that invariance

of the constrained parameters (e.g., loadings) does not hold.

Two considerable limitations of the χ2 test are that, on the one hand, its performance is

largely underpowered for small samples because the test statistic is only χ2-distributed

as N goes to infinity (i.e., only with large samples). On the other hand, it is highly strict

with large samples indicating, for example, that two models are significantly different

even when the differences in the parameters are small.
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2.3.1.2 Misfit indices. On top of the well known limitations of the χ2 test, a general

counterargument towards the use of absolute fit indices is that we might not be necessarily

interested in the exact fit as much as the extent of misfit in the model (Millsap, 2012). In

this case, misfit indices, such as the root mean square error approximation (RMSEA) can

be used. This index quantifies the misfit per degrees of freedom in the model (Browne &

Cudeck, 1993). Specifically, in the case of multiple groups, it can be expressed as:

RMSEA =
√
G

√√√√max

[
χ2
ModA

dfModA

− 1
N − 1 , 0

]
. (18)

Based on which MI hypothesis is tested, different criteria and procedures are used to

determine whether the RMSEA is acceptable. In the configural step, the absolute value

of RMSEA is used. Specifically, values between 0 and .05 indicate a “good" fit and values

between .05 and .08 are thought to be a “fair" fit (Browne & Cudeck, 1993; Brown, 2014).

In the subsequent steps, the change in the RMSEA (∆RMSEA) is used instead of the

absolute value of the measure. Specifically, a ∆RMSEA of .01 has been suggested as a

cut-off value in the case of metric invariance and, similarly, a value of .01 should be used

for scalar invariance (Cheung & Rensvold, 2002 Chen, 2007). When the change in the

∆RMSEA is higher than the specific cut-off, invariance is rejected.

2.3.1.3 Comparative fit indices. The third category of fit indices is the one of

comparative fit, where the improvement of the hypothesized model compared to the

null model is used as an index to test MI. Differently from exact fit indices, where the

hypothesized model is compared against a saturated model (a model with df = 0), in

comparative fit indices a comparison is conducted between the hypothesized model and

the null model, with χ2
ModNull and dfModNull. The null model is a model in which all

the measured variables are uncorrelated (i.e., a model where there is no common factor).

Numerous of these measures exist and, among them, a well-known one is the comparative

fit index (CFI) (Bentler, 1990). The CFI measures the overall improvement in the χ2 in

the tested model compared to the null model, and can be formally written as:

CFI = 1− χ2
ModA − dfModA

χ2
Null − dfNull

(19)
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where a value of .95 is used as a cut-off value in the configural invariance step to indicate

a “good" fit (Bentler, 1990). In the subsequent steps, the common guidelines for cut-

off values focus on the change in CFI (∆CFI). Specifically, a ∆CFI higher than .01 is

considered to be problematic both in the case of testing for loadings and thresholds

invariance (Cheung & Rensvold, 2002 Chen, 2007).

2.3.2 MG-IRT-based. In MG-IRT-based approaches both parametric and nonpara-

metric methods exist to test for uniform and nonuniform DIF. In this paper the focus is

on parametric methods, where a statistical model is assumed. Specifically, methods that

compare the models’ likelihood functions will be discussed (for a more detailed discussion

on both parametric and nonparametric methods for DIF detection, we refer the reader

to Millsap, 2012).

2.3.2.1 Likelihood-Ratio test. One well known technique for the study of DIF

is the likelihood-ratio test (LRT) (Thissen, Steinberg, and Gerrard 1986; Thissen 1988;

Thissen, Steinberg, and Wainer 1993). In this test, the log-likelihood of a model with the

parameters of all items constrained to be equal across groups is compared against the

log-likelihood of the same model with freed parameters for one item only. The former

is sometimes called the compact model (LC), while the latter is sometimes called the

augmented model (LA, S.-H. Kim and Cohen 1998; Finch 2005). Once these two models

are estimated and the log-likelihood (lnLC and lnLA) is obtained, the test statistic (G2)

can be calculate using the following formula:

G2 = −2lnLC − (−2lnLA) = −2lnLC + 2lnLA. (20)

The G2 is χ2 distributed with df equal to the difference in the number of parameters

estimated in the two models (Thissen, 1988). The same procedure is then iteratively

repeated for all items. It is important to highlight that the above equation represents a

omnibus test of DIF, which in case of a significant result could be further inspected by

constraining only specific parameters. For example, it would be possible to test uniform

DIF by allowing only the thresholds to vary across groups.
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2.3.2.2 Logistic regression. Logistic regression (LoR; Swaminathan & Rogers,

1990) is another parametric approach that has recently gained interest among DIF ex-

perts (Yasemin, Leite, & Miller, 2015). The intuition behind the LoR approach is similar

to the one of step-wise regression in which one can test whether the model improves by

sequentially entering new predictors. The common order in which the variables are intro-

duced, starting with a null model where only the intercept is estimated, is by first adding

the latent construct, then the grouping variable, and finally an interaction between the

latent construct and the grouping variable. Formally, this sequence of models is written

as:

Model 0 : logitP (yj ≥ c) = νc; (21)

Model 1 : logitP (yj ≥ c) = νc + β1η; (22)

Model 2 : logitP (yj ≥ c) = νc + β1η + β2G; (23)

Model 3 : logitP (yj ≥ c) = νc + β1η + β2G+ β3ηG. (24)

In the equations above P (yj ≥ c) is the probability of the score on item j falling in

category c or higher, and νc is a category specific intercept. It is worth to point out that,

compared to the LRT, the latent variable scores are in this case only estimated once

and then treated as observed. One clear disadvantage is that, since the latent variable

scores are estimated and not observed, there might be uncertainty in the estimates,

which could, in turn, affect the performance of this method. Moreover, some alternative

formulations make use of sum scores instead of estimates of latent variable scores (Rogers

& Swaminathan, 1993). Once the logistic regression models are estimated and a G2 is

obtained, an omnibus DIF test can be conducted by:

G2
omnibus = G2

Model3 −G2
Model1, (25)
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which is asymptotically χ2 distributed with df=2 (Swaminathan & Rogers, 1990). Zumbo

(1999) suggested to investigate the source of bias by separately testing for uniform and

nonuniform DIF, respectively:

G2
uniDIF = G2

Model2 −G2
Model1 (26)

and:

G2
nonuniDIF = G2

Model3 −G2
Model2 (27)

where both (26) and (27) are χ2 distributed with df=1.

The omnibus test procedure (25) turned out to have an inflated number of incorrectly

flagged DIF items (Type I error; Li and Stout 1996). To solve this issue, a combination

of a significant 2-df LRT (25) and a measure of the magnitude of DIF using a pseudo-R2

statistic has been suggested as an alternative criterion (Zumbo, 1999). The underlying

idea is to treat the β coefficients as weighted least squares estimates and look at the

differences in pseudo-R2 (∆R2) measures between the model with and without the added

predictor (e.g., Cox & Snell, 1989). Specifically, to flag an item as DIF, both a significant

χ2 test (with df=2) and an effect size measure with an ∆R2 of at least .13 is suggested

to be used (Zumbo, 1999).

3 Simulation studies

Two simulation studies were performed to evaluate the impact of MG-CCFA- and MG-

IRT-based hypotheses and testing strategies on the power to detect violations of MI. In

the first study, an invariance scenario was simulated where parameters were invariant

between groups. In the second study, a non-invariance scenario was simulated where

model parameters varied between groups.

3.1 Simulation Study 1: invariance

In the first study three main factors were manipulated:

1. The number of items at 2 levels: 5, 25, to simulate a short and a long scale;
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2. The number of categories for each item at 2 levels: 3, 5;

3. The number of subjects within each group at 2 levels: 250, 1000.

A full-factorial design was used with 2 (number of items) x 2 (number of categories)

x 2 (number of subjects within each group) = 8 conditions. For each condition 500

replications were generated.

3.1.1 Method.

3.1.1.1 Data generation. Data were generated from a factor model with one fac-

tor and two groups. The population values of the model parameters were chosen prior to

conducting the simulation study and are reported in Table 1. The choice of the values

began with specifying the standardized loadings. Specifically, they were selected to re-

semble the ones commonly found in real applications with items having medium to high

correlation with the common factor but differing among them.

The second step was to select the thresholds and, in order to choose them, continuous data

with 10,000 observations were firstly generated under a factor model using the loadings

in Table 1. Afterwards, using the distribution of the item scores for item 1, which was

subsequently used as the anchor item, the tertiles (for items with three categories) and

the quintiles (for items with five categories) were calculated. In particular, the generation

of the remaining thresholds proceeded by shifting the tertiles/quintiles of the first item

by half a standard deviation. In detail, for both the three- and five-categories case, we

shifted the thresholds value of the second and fifth item by + .50 and of the third and

fourth item by - .50 (as can be seen from Table 1). In the conditions with 25 items, the

same parameters in Table 1 were repeated five times. In all estimated models item 1 was

used as the anchor item.

3.1.1.2 Data analysis.

Scale level. 3.1.1.2.1 The specification of the MG-CCFA models to test MI followed

the common steps of a general MI testing procedure as described in Section 2.2.1. Specif-

ically, in the configural step, a unidimensional factor model was fitted to both groups

allowing loadings and thresholds to differ between groups (configural invariant model).
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In the metric step, factor loadings were constrained to be equal across groups while al-

lowing the thresholds to be freely estimated (metric invariant model). In the scalar step,

both factor loadings and thresholds were constrained to be equal across groups (scalar

invariant model). Afterwards, a χ2 test (α = .05) was conducted between: (i) the model

estimated in the configural and the metric step to test for loadings invariance, and (ii)

the model estimated in the metric and scalar scalar step to test for thresholds invariance.

Additionally, the change in RMSEA (∆RMSEA) and in CFI (∆CFI) was calculated be-

tween the just mentioned models. Loadings non-invariance was concluded if at least one

of the following criteria was met: a significant χ2 test, a ∆RMSEA > .01 or a ∆CFI > .01.

Additionally, since the common guidelines reported in the literature recommend to base

decisions about (non)invariance of parameters using various indices, a combined criterion

was created. According to this combined criterion, loadings non-invariance at the scale

level was concluded if both a significant χ2 test and at least one between a ∆RMSEA >

.01 or a ∆CFI > .01 was found (Putnick & Bornstein, 2016). Thresholds non-invariance

at the scale level was concluded if at least one of the following criteria was met: a signifi-

cant χ2 test, a ∆RMSEA > .01 or a ∆CFI > .01. Also, in this case a combined criterion

was created. Specifically, a scale was considered non-invariant with respect to thresholds

if both a significant χ2 and at least one between a ∆RMSEA > .01 or a ∆CFI > .01 was

found. In addition, all MG-CCFA models were estimated using diagonally weighted least

square (DWLS). This is a two-step procedure where in the first step the thresholds and

polychoric correlation matrix are estimated and then, in the second step, the remaining

parameters are estimated using the polychoric correlation matrix from the previous step.

In MG-IRT-based procedures MI is tested for each item individually. Therefore, to con-

duct a test at the scale level, we decided to flag the scale as non-invariant if at least one

item was flagged as non-invariant, correcting for multiple testing. Two different testing

strategies were considered: the logistic regression (LoR) procedure and the likelihood-

ratio test (LRT). Within LoR, two different criteria were used to flag an item as non-

invariant. The first criterion is based on the likelihood-ratio test (LRT). Specifically, an

item was non-invariant, either with respect to loadings or thresholds, in the case of a sig-
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nificant χ2 test (α = .05) between a model where the latent construct score, the grouping

variable and an interaction between the two are included (24) and a model with only

the latent construct score (22) (Swaminathan & Rogers, 1990). The second criterion,

which will from this point on be called R2, combines the just mentioned χ2 test with

a measure of the magnitude of DIF. The latter is obtained by computing the difference

between a pseudo-R2 measure between the two above mentioned models (∆R2). Using

this approach, an item was flagged as non-invariant when both a significant χ2 test and

a ∆R2 > .02 were found (Choi, Gibbons, & Crane, 2011). Specifically, in this simulation

study, the McFadden pseudo-R2 measure was used (Menard, 2000). In the case of the

LRT, two different models per item were estimated. In one model the constraints on the

thresholds were released for a specific item (uniform DIF model), while in the other the

constraint on the loading was released (nonuniform DIF model). Additionally, a model

with all items constrained to be equal was estimated (fully constrained model). An item

was flagged as non-invariant with respect to thresholds in case of a significant LRT (α =

.05) between the fully constrained model and the uniform DIF model. Similarly, an item

was flagged as non-invariant with respect to loadings in case of a significant LRT (α =

.05) between the fully constrained model and the nonuniform DIF model. This procedure

was repeated iteratively for all the other items. Since multiple tests are conducted for

the scale, a Bonferroni correction was used.

Item level. 3.1.1.2.2 In order to test MI at the item level using a MG-CCFA-based

testing strategy a backward/step-down procedure was used (E. S. Kim & Yoon, 2011;

Brown, 2014). The rationale is the same as the one just described in the LRT for MG-

IRT. Specifically, the constraints (either on the thresholds or on the loading) were released

for only one item, while keeping all the other items constrained to be equal. Hence, for

each item two different models were estimated. Then, the χ2 test (α = .05) was conducted

and the ∆RMSEA and ∆CFI calculated. This procedure was then repeated iteratively for

all the other items. Note that, due to the multiple tests conducted, Bonferroni correction

was used. For MG-IRT-based procedures, the same procedures and criteria used at the

scale level were used to test MI at the item level (but without applying a Bonferroni
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correction).

3.1.1.3 Outcome measures. The convergence rate (CR) and the false positive rate

(FPR) were calculated both for MG-CCFA- and MG-IRT-based procedures both at the

scale and at the item level. The CR indicates the proportion of models that converged

while the FPR represents the scales/items incorrectly flagged as non-invariant. If models

did not converge, new data were generated and models were rerun in order to always

calculate the FPR based on 500 repetitions.

3.1.1.4 Data simulation, softwares and packages. The data were simulated

and analyzed using R (R Core Team, 2013). Specifically, for estimating MG-CCFA and

obtaining fit measures the R package lavaan was used (Rosseel, 2012), while for LoR and

the LRT lordif (Choi et al., 2011) and mirt (Chalmers, 2012) were used, respectively.

3.1.2 Results.

3.1.2.1 Convergence Rate. The convergence rate was almost 100% for all the

considered approaches across all the conditions. Models’ non-convergence was observed

only for a few conditions with small sample size as well as short scales and never exceeded

1%. The tables showing the complete results can be found in the appendix (Tables A1

through A4)

3.1.2.2 Scale level performance. The scale-level results when loadings equiva-

lence was tested are reported in Table 2. For MG-CCFA, with long scales only the χ2

test produced a high number of false positives. Hence, long scales were falsely flagged as

non-invariant while no differences existed in the population parameters. Also, ∆RMSEA

and ∆CFI showed a FPR higher than the chosen α level for small sample size and short

scales. Within MG-IRT-based approaches, the results were quite different, depending on

the testing strategy. For the LoR approach, using the LRT criterion, the results obtained

in this simulation study aligns with the ones in the existing literature, with an evident

inflation of the FPR (overall, FPR > .40) (Rogers & Swaminathan, 1993; Li & Stout,

1996). For the R2 criterion, where a combination of the LRT and a pseudo-R2 measure

was used, the FPR was at or below the chosen α level using the R2 criterion, with an

inflated FPR only in the case with N = 250, C = 3 and J = 25 (FPR = 0.182). One
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possible explanation is that, due to the small amount of information available for each

person in this condition there is more uncertainty in the estimated scores of the latent

construct. Since these estimates are then used as observed variables in the LoR procedure,

they are likely to produce a larger number of items incorrectly flagged as non-invariant.

Finally, the LRT showed an acceptable FPR in all conditions when testing for loadings

equivalence at the scale level.

The results of the simulation study when equivalence of thresholds was tested at the scale

level are reported in Table 3. For MG-CCFA, the FPR was always above .10 level using

the χ2 test with long scales compared to short scales. Also, ∆RMSEA showed a FPR

higher than the chosen α level with short scales, while the ∆CFI showed a FPR higher

than the chosen α level in the conditions with both short scales and small sample size.

The combined criterion seemed to be the only one, across the ones used for MG-CCFA,

that provided an acceptable FPR rate across conditions with the only exception when

N = 1000, C = 5 and J = 25 (FPR = .102). For MG-IRT-based testing strategies, the

obtained results are similar to the ones observed in the case of testing loadings equivalence.

Specifically, for the LoR approach, the R2 criterion performed well in all conditions except

when N = 1000, C = 3 and J = 5 (FPR = .189). Moreover, the LRT criterion for LoR

showed an evident inflation across all conditions. Finally, the LRT performed well in all

conditions.

3.1.2.3 Item-level performance. The results when loadings equivalence was tested

at the item level are reported in Table 4. Similarly to the results observed at the scale

level, for MG-CCFA the FPR appeared to be highly inflated using the χ2 test with long

scales. For MG-IRT using the LoR procedure, the LRT criterion produced a high number

of false positives with short scales. Moreover, the results for both the R2 criterion and

the LRT were within the chosen α level in all conditions.

Finally, the results when testing thresholds equivalence at the item level are reported

in Table 5. For MG-CCFA, all the criteria performed reasonably well with some small

inflations of the χ2 test. A FPR slightly higher than the chosen α level was also observed

for ∆RMSEA and ∆CFI in the condition with both short scales and small sample. For
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MG-IRT-based testing strategies, only the LRT criterion for the LoR approach showed a

FPR higher than the chosen α level with J = 5.

3.2 Simulation Study 2: non-invariance

In the second simulation study, three more factors were included to evaluate the per-

formance of the studied approaches, with their respective testing strategies, in detecting

violations of MI when parameters were non-invariant across groups. On top of varying

the scale length, the number of categories and the sample size we now also vary:

1. Percentage of items with non-invariant loadings at 3 levels: 20%, 40% aligned, and

40% misaligned;

2. Percentage of items with non-invariant thresholds at 3 levels: 20%, 40% aligned,

and 40% misaligned;

3. The amount of bias imposed for each non-invariant parameter at two levels: small

and large.

The first three factors were the ones used in the previous simulation study. Additionally,

to simulate differences in loadings/thresholds across groups the values of the parameters

were changed either for 20% or 40% of the items. Moreover, in the condition with 40%

of the items having non-invariant loadings, the values were either increased for all items

(e.g., all loadings on one group are higher), or increased for half of the items and decreased

for the other half (e.g., in the condition with 5 items, where the values of two loadings

are changed, one was increased and the other decreased). The former was labeled as an

aligned change while the latter as a misaligned change.

The same procedure was followed for the shifts in thresholds both in terms of percentage

of items with non-invariant thresholds and for the aligned or misaligned shifts. Note that,

since each item has more than one threshold, all the thresholds of that item were shifted.

The manipulated violations of MI, both for loadings and thresholds, were either small

or large. On the one hand, a difference of .1 or .2 was used to simulate small and large

changes in the standardized factor loadings, respectively. The chosen values substantially
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increase the variance accounted by the factor for the item. For example, in a standardized

factor loading of .7 the explained variance of the item by the factor is .72 = .49. If the

loading is increased by .1 the explained variance will then be .82 = .64. Also, in case of a

big change (.2), the explained variance will become .92 = .81. On the other hand, for the

shifts in thresholds, the parameters of one group were shifted by either a quarter (.25)

or half a standard deviation (.50) to simulate small and large violations of thresholds

non-invariance.

In total, 2 (number of items) x 2 (number of categories) x 2 (number of subjects within

each group) x 3 (percentage of non-invariant loadings) x 3 (percentage of non-invariant

thresholds) x 2 (amount of bias imposed) = 144 conditions were simulated for the con-

ditions with non-invariance in the loadings and the thresholds. For each condition 500

replications were generated.

3.2.1 Method.

3.2.1.1 Data analysis. Like in the first simulation study, the data were generated

from a factor model with one factor and two groups. The population parameters were the

same as used in the first simulation study and they were varied, based on the condition, as

just explained above. Moreover, the procedures used to specify and estimate the models,

both at the scale and at the item level, were the same ones used previously. Differently

from before, only a subset of the criteria was used to flag a scale/item as non-invariant.

Specifically, only the criteria that showed an acceptable FPR across all conditions in the

first simulation study are reported. This was done because procedures with unacceptable

FPRs should not be considered for testing MI, and hence considering them here would not

make sense. Thus, for MG-CCFA only the results of the combined criterion are reported,

while for MG-IRT-based procedures the LRT approach and, for the LoR approach, only

the results of the R2 criterion.

3.2.1.2 Outcome measures. The convergence rate (CR), true positive rate (TPR)

and false positive rate (FPR) were calculated both for the MG-CCFA- and MG-IRT-

based procedures both at the scale and at the item level. Here, the TPR represents the

proportion of non-invariant scales/items that are correctly identified as such, while the
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FPR represents the proportion of non-invariant scales/items that are incorrectly identified

as such. If models did not converge, new data were generated and models were rerun in

order to always calculate the TPR and the FPR for 500 repetitions.

3.2.2 Results.

3.2.2.1 Convergence Rate.

Scale level. 3.2.2.1.1 The results of the CR when testing loadings equivalence at the

scale level in the non-invariance scenario are displayed in Table A5 in the Appendix. In

the conditions with large sample size, the CR when testing loadings equivalence at the

scale level was 99% for all the approaches. Compared to the conditions with a large

sample size, the CR dropped in the conditions with small sample size and 40% of the

items showing large misaligned changes in loadings. Specifically, the CR for MG-CCFA

was .978 when J = 5 and C = 3 while for MG-IRT using the LoR approach the CR was

around .9 with N = 250, J = 25 and both for items that had 3 or 5 categories.

The results of the CR when testing thresholds equivalence at the scale level in the non-

invariance scenario are displayed in Table A6 in the Appendix. For MG-CCFA, the CR

was generally lower in the conditions with large shifts in the thresholds compared to the

conditions with small shifts. For example, with N = 250, J = 5, and large shifts in the

thresholds parameters the CR was .808. This lower CR could be due to a specific issue

with the estimation procedure. In fact, using DWLS, the estimation heavily relies on the

first step, where the the thresholds and the polychoric correlation matrix are estimated.

Large differences in thresholds between the two groups might affect this first step and, in

turn, the remaining part of the procedure. On the contrary, for MG-IRT-based approaches

the CR was always above 99%.

Item level. 3.2.2.1.2 The results of the CR when testing loadings equivalence at the

item level in the non-invariance scenario are displayed in Table A7 in the Appendix.

These results closely resemble the ones observed when loadings equivalence were tested

at the scale level. Specifically, the CR was below .98 for MG-CCFA only in the condition

with N = 250, C = 3, J = 5, and large misaligned changes in loadings in 40% of the

items. Moreover, for MG-IRT using the LoR approach the CR was around .89 when N =
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250, J = 25, and with large misaligned changes in the loadings, regardless of the number

of categories for each item.

The results of the CR when testing thresholds equivalence at the item level in the non-

invariance scenario are displayed in Table A7 in the Appendix. For MG-CCFA, similar

to what was observed at the scale level, the CR dropped in the conditions with small

sample size, big shifts in thresholds and short scales compared to the other conditions.

For example, the lowest CR was observed in the condition with N = 250, C = 3, J =

5 and large misaligned shifts in thresholds (CR = 0.796). However, for MG-IRT-based

approaches the CR was always above 99%.

3.2.2.2 Scale-level performance. The results of the TPR when testing loadings

equivalence at the scale level in the non-invariance scenario are displayed in Table 6.

Overall, in the conditions with small changes in the loadings, the TPR for all the con-

sidered approaches was below .4. For example, the highest TPR was observed using

the LRT, which was only .398. Since, in the non-invariance scenario, for MG-CCFA, a

combined criterion was used to flag scales/items as non-invariant, we further inspected

the TPRs for each of the measures that form this combined criterion. These results are

displayed in the appendix in Table A11. For ∆CFI, the results seemed to highly depend

on the length of a scale, especially when aligned changes were simulated in 20% and

40% of the loadings. For short scales, MG-CCFA generally outperformed both MG-IRT

approaches, regardless of the other factors. For long scales, MG-IRT LRT outperformed

both MG-CCFA and MG-IRT LoR. Also, since in the first simulation study the LoR

approach with N = 250, J = 5 and C = 3 had an unacceptable FPR, the results in this

simulation study are reported in red indicating that they should not be considered.

The results of the TPR when testing thresholds equivalence at the scale level in the non-

invariance scenario are displayed in Table 7. MG-CCFA outperformed both MG-IRT

approaches in the conditions with short scales, regardless of the other factors. However,

for long scales the LRT for MG-IRT outperformed both MG-CCFA and the LoR approach.

In addition, LoR’s TPR was lower than the one of MG-CCFA and the LRT, in almost

all conditions, and especially when the sample size was big. However, in the case of
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misaligned shifts the TPR was almost always the same as it was for MG-CCFA and the

LRT.

3.2.2.3 Item-level performance. The results of the TPR when testing loadings

equivalence at the item level in the non-invariance scenario are displayed in Table 8. The

results of the FPR were also calculated and are displayed in Table A9 in the Appendix.

Similar to the results observed at the scale level, MG-CCFA hardly detects non-invariance

whensmall changes in the loading exist at the item level, reaching a maximum TPR of

.479 with misaligned changes affecting 40% of the items, N = 1000, C = 5 and J =

5. Furthermore, difficulties in flagging non-invariant items were even more pronounced

for long scales, showing that loadings nonequivalence was not detected in most cases.

Similar to what was done at the scale level, the performance of ∆RMSEA and ∆CFI,

for MG-CCFA, was further investigated. These results are displayed in the appendix in

Table A12. For both fit measures, the results seemed to highly depend on the length

of a scale. In fact, for long scales, both measures rarely detected changes in loadings.

For MG-IRT-based approaches, differences in loadings were rarely detected by the LoR

approach regardless of the condition, and with even lower frequencies when the sample

size increases. The LRT outperformed both MG-CCFA and LoR in all conditions in

terms of the TPR.

The results of the TPR when testing thresholds equivalence at the item level in the

non-invariance scenario are displayed in Table 9. The results of the FPR were also

calculated and are displayed in Table A10 in the Appendix. For short scales MG-CCFA

outperformed both LoR and LRT regardless of the other factors. However, for longer

scales, the LRT had a higher TPR compared to the LoR approach and MG-CCFA.

3.3 Conclusion

Based on the results observed in the invariance scenario, we can conclude that, for only

some of the MG-CCFA- and MG-IRT-based testing strategies a FPR below or at the

chosen α level was found. In fact, among the considered testing strategies used to flag

a scale/item as non-invariant, quite many methods had an inflated type I error. For
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MG-CCFA-based criteria, the FPR was often below or at the chosen α level when a

combination of a χ2 test and an alternative fit measure (e.g., RMSEA or CFI) was used.

Only in one case, with large sample size (N = 1000), a short scale (5 items) and items

with five categories an inflation of the FPR was noted (FPR = .102). Additionally, using

only the χ2 test with long scales (25 items) produced a high number of false positives,

especially when loadings non-invariance was tested. For MG-IRT, the LRT provided a

well-controlled FPR in all conditions regardless of whether the test was conducted at

scale or at the item level. The LoR approach for MG-IRT showed an inflated FPR when

the LRT criterion was used, while adopting a combination of both the LRT criterion and

a pseudo-R2 measure resulted in a low FPR in (almost) all conditions.

Based on the results observed in the non-invariance scenario, we can conclude that, when

testing loadings equivalence, all the studied approaches hardly detect small changes in

loadings. Furthermore, when loadings equivalence was tested at the scale level, MG-

CCFA outperformed both MG-IRT-based approaches for short scales, while, for long

scales, MG-IRT LRT outperformed MG-CCFA and MG-IRT LoR. Additionally, when

loadings equivalence was tested at the item level, MG-IRT LRT generally outperformed

the other approaches. Finally, when thresholds equivalence was tested, MG-CCFA out-

performed both MG-IRT-based approaches for short scales, while, for long scales, MG-

IRT LRT outperformed MG-CCFA and MG-IRT LoR.

The results of the simulation studied were summarized in a flowchart (Figure 1) and its

paths will be now discussed to facilitate the reader’s interpretation. As indicated in

the second node of the flowchart, configural invariance is tested only with MG-CCFA. In

fact, for MG-IRT-based testing strategies, configural invariance is commonly assumed.

If configural invariance is not tested, one of the most relevant factors in deciding what

approach could be preferred, according to our results, is the length of a scale. As indicated

by the right branch of the third node, for long scales, MG-IRT LRT outperformed both

MG-CCFA and MG-IRT LoR. Since, in the non-invariance scenario, for MG-CCFA, a

combined criterion was used to flag scales/items as non-invariant, we further inspected

the TPRs for each of the measures that form this combined criterion. These results, for
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the scale- and item-level tests, are displayed in the appendix in Table A11 and Table A12,

respectively. In particular, the TPRs for ∆RMSEA and ∆CFI were heavily affected by

both scale length and the level at which loadings equivalence was tested (scale or item).

Specifically, for long scales, these two measures hardly detected changes in loadings,

especially when the test was conducted at the item level. Thus, we would discourage

researchers the use of these fit measures, in particular when testing MI for each item

individually. In addition, in our simulation studies, the length of the scale was varied only

at two levels (5,25). For this reason, we advise the reader to be cautious in generalizing

these results to scales of different lengths.

For short scales, choosing a specific approach should depend on which parameters are

tested for MI (i.e., loadings or thresholds). The results, in terms of the TPR, specifying

which approach performed better and for which parameters, are indicated by the three

branches of the fourth node. If loadings are tested, a different approach should be pre-

ferred based on the level at which MI is tested (i.e., scale or item). When the test was

conducted at the scale level, MG-CCFA outperformed both MG-IRT-based approaches,

while, if the test was conducted at the item level, MG-IRT LRT outperformed both MG-

CCFA and MG-IRT LoR. It should be pointed out that, the simulated differences in

loadings were, overall, small in magnitude (e.g., at the largest .2). It should not come

as a surprise, then, that overall the TPR for all the approaches was quite low (FPR <

.40), especially in the case of small changes. When thresholds equivalence was tested for

short scales, MG-CCFA outperformed both MG-IRT-based approaches. This result is

summarized by the right branch of the fourth node.

Finally, if both loadings and thresholds are tested, for short scales, we recommend to use

MG-CCFA. This is specified by the central branch of the fourth node. In fact, in terms of

detecting loading differences, MG-CCFA outperformed both MG-IRT-based approaches

when the test was conducted at the scale level, while, at the item level, it performed

slightly worse than (or at least as good as) MG-IRT-based approaches. In addition,

for thresholds differences, MG-CCFA (almost) always outperformed both MG-IRT-based

approaches. Importantly, the combination of non-invariant loadings and thresholds was
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not explicitly tested in the simulation studies. Still, in common practice, both could

be present and are generally tested using one specific approach. For these reasons, it is

useful to indicate what might be, based on the observed results, the preferred approach

to test for both loading and threshold differences.

4 Discussion

When comparing psychological constructs across groups, testing for measurement invari-

ance (MI) plays a crucial role. With ordinal data, multiple group categorical confirmatory

factor analysis (MG-CCFA) and multiple group item response theory (MG-IRT) models

can be made equivalent using a set of minimal identification constraints (Chang et al.,

2017). Still, differences between these two approaches exist in the context of MI testing.

These differences are reflected in: (i) the hypotheses being tested, and (ii) the testing

strategies/measures used to test these hypotheses. In this paper, two simulation stud-

ies were conducted to evaluate the performance of the different testing strategies and

measures in testing MI when: (i) the test is conducted at the scale or at the item level

and, (ii) MG-CCFA- or MG-IRT-based testing strategies are used. In the first simulation

study, an invariance scenario was simulated where no differences existed in the parame-

ters across groups. In addition, a second simulation study was conducted to assess the

performance of these approaches when non-invariance was simulated between groups.

A key result of these simulation studies, is that the performance of MG-CCFA- and

MG-IRT-based testing strategies and measures mostly depends on the length of a scale.

In fact, the likelihood ratio test (LRT) procedure for MG-IRT outperformed both the

logistic regression (LoR) procedure and MG-CCFA for long scales, while, for short scales,

the results differed based on the parameters being tested (i.e., loadings or thresholds).In

general we recommend, based on the observed results, to use MG-CCFA for short scales.

In addition, another key result pertains to how the length of a scale and the level at

which MI is tested affects the performance of MG-CCFA’s fit measures. In fact, both

RMSEA and CFI hardly detected non-invariant parameters when MI was tested for each

item individually, especially with long scales. That is, the more items on a scale, the
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harder it is, for these measures, to detect whether a specific item is non-invariant. These

results identify a fundamental issue when using these fit measures to test MI at the item

level. In fact, the cut-off values that are commonly used seem to be inadequate for item-

level testing, since their performance heavily depends on the scale’s length. Commonly,

MG-CCFA is used to test for MI at the scale level, which might explain why most papers

focused on defining optimal cut-off values for these measures when MI is tested at this

level (Cheung & Rensvold, 2002; Chen, 2007; Rutkowski & Svetina, 2014; Rutkowski

& Svetina, 2017). If non-invariance is detected, researchers might decide to inspect its

source by conducting a test for each item individually (E. S. Kim & Yoon, 2011; Putnick

& Bornstein, 2016). Based on our results, we would discourage researchers from using

such measures to this aim since the cut-off values need to be re-evaluated for item-level

testing in future research.

The simulation studies conducted provide a useful indication in terms of the performance

of testing strategies and measures in testing MI for model applied to ordinal data. Still,

they are not free of limitations and it is relevant to highlight some of those. For ex-

ample, we focused on unidimensional scales, while researchers are frequently confronted

with scales that capture multiple dimensions. Generally, MG-CCFA is used for multi-

dimensional constructs, while MG-IRT-based models are preferred with unidimensional

constructs. It might therefore be interesting to inspect if similar results as the ones ob-

served here would be obtained when model complexity is increased by having multiple

dimensions.

Another set of limitations pertains to the grouping. Firstly, in the current simulation

studies we inspected the performance of MG-CCFA- and MG-IRT-based testing strate-

gies with only two groups. However, cross-cultural and cross-national data, where many

groups are compared simultaneously, are rapidly increasing in psychological sciences. For

this reason, it might be useful to investigate differences in the performance of the studied

approaches when many groups are compared. Secondly, in these simulation studies we

knew which subject belonged to which group, and differences were created between the

groups’ measurement models. However, the grouping of subjects is not always known
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and/or researchers might not have access to those variables that are thought to cause

heterogeneity (e.g., nationality, gender). In this case a different approach might be pre-

ferred to disentangle the heterogeneity across participants (e.g., factor mixture models;

Lubke & Muthén, 2005).

One last important set of limitations concern the anchoring of the scale. That is, which

items’ parameters are set equal across groups in order to identify the model and to make

the scale comparable across groups. First, the item that was used as the anchor in the

simulation studies was known to be invariant across groups. In real applications this

information is never known beforehand, and estimating a model relying on an inade-

quate anchor item could impact model’s convergence as well as the ability to detect

non-invariance of parameters. This issue has been partly discussed in previous studies

comparing different type of identification constraints (Chang et al., 2017). It could be

interesting to inspect how the choice of a “good" or “bad" anchor item influences the

detection of MI in a more comprehensive study. Second, in these simulation studies, a

set of minimal constraints was used to make the measurement models equivalent, and

only one item was constrained to be equal across groups. Minimal constraints allow most

parameters to be freely estimated. However, when specific items are known to function

similarly across groups (e.g., knowledge based on prior studies or strong motivations to

consider them invariant across groups) it might be beneficial, both in terms of the esti-

mation and the power to detect non-invariance of the model’s parameters, to constrain

them to be equal across groups. To our knowledge, the choice of what item(s) should

be constrained is often neglected in MG-CCFA where, commonly, the first item is picked

without specific theoretical or statistical knowledge of its invariance. In MG-IRT more

attention is devoted to this topic. Still, further research might be dedicated to investigate

thoroughly how the choice of the anchor (e.g., how many items? what happens if the

chosen ones are non-invariant?) affects the performance of both frameworks in detecting

MI.

Open practices: The code and data can be made available upon request.
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Table 1

Population values

Item 3 categories 5 categories

λ τ1 τ2 τ1 τ2 τ3 τ4

1 .5 -0.38 0.38 -0.84 -0.25 0.25 0.84

2 .7 0.12 0.88 -0.34 0.25 0.75 1.34

3 .6 -0.88 -0.12 -1.34 -0.75 -0.25 0.34

4 .4 -0.88 -0.12 -1.34 -0.75 -0.25 0.34

5 .3 0.12 0.88 -0.34 0.25 0.75 1.34
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Table 2

Loadings’ FPR scale level - invariance scenario

FPR scale level- loadings

MG-CCFA MG-IRT LoR MG-IRT LRT

N C J Comb χ2 ∆RMSEA ∆CFI LRT R2 LRT

250

3
5 0.077 0.083 0.144 0.105 0.577 0.182 0.030

25 0.010 0.998 0.010 0 0.399 0.026 0.032

5
5 0.068 0.076 0.170 0.092 0.502 0.022 0.026

25 0.006 0.996 0.006 0 0.406 0 0.038

1000

3
5 0.046 0.080 0.060 0.010 0.628 0 0.032

25 0 0.996 0 0 0.438 0 0.048

5
5 0.062 0.072 0.094 0.002 0.546 0 0.038

25 0 0.996 0 0 0.366 0 0.032

Note. MG-CCFA = Multiple-group categorical confirmatory factor analysis; MG-IRT LoR =

Logistic regression with MG-IRT; MG-IRT LRT = Likelihood-ratio test with MG-IRT; N =

Sample size within each group; C = Number of categories; J = Number of items; Comb =

combination of χ2, ∆RMSEA and ∆CFI.
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Table 3

Thresholds’ FPR scale level - invariance scenario

FPR scale level - thresholds

MG-CCFA MG-IRT LoR MG-IRT LRT

N C J Comb χ2 ∆RMSEA ∆CFI LRT R2 LRT

250

3
5 0.078 0.078 0.225 0.211 0.660 0.189 0.036

25 0 0.126 0 0 0.404 0.020 0.032

5
5 0.088 0.088 0.224 0.202 0.527 0.020 0.036

25 0.002 0.126 0.002 0 0.370 0 0.042

1000

3
5 0.072 0.076 0.124 0.050 0.626 0.002 0.042

25 0 0.116 0 0 0.442 0 0.030

5
5 0.102 0.102 0.152 0.072 0.528 0 0.034

25 0 0.150 0 0 0.384 0 0.036

Note. MG-CCFA = Multiple-group categorical confirmatory factor analysis; MG-IRT LoR =

Logistic regression with MG-IRT; MG-IRT LRT = Likelihood-ratio test with MG-IRT; N =

Sample size within each group; C = Number of categories; J = Number of items; Comb =

combination of χ2, ∆RMSEA and ∆CFI.
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Table 4

Loadings’ FPR item level - invariance scenario

FPR scale level- loadingss

MG-CCFA MG-IRT LoR MG-IRT LRT

N C J Comb χ2 ∆RMSEA ∆CFI LRT R2 LRT

250

3
5 0.036 0.067 0.048 0.029 0.243 0.053 0.047

25 0.001 0.312 0.001 0 0.022 0.001 0.050

5
5 0.037 0.071 0.060 0.023 0.202 0.005 0.051

25 0.001 0.326 0.001 0 0.020 0 0.049

1000

3
5 0.020 0.068 0.021 0.002 0.239 0 0.045

25 0 0.307 0 0 0.021 0 0.057

5
5 0.024 0.074 0.025 0.001 0.200 0 0.059

25 0 0.319 0 0 0.021 0 0.047

Note. MG-CCFA = Multiple-group categorical confirmatory factor analysis; MG-IRT LoR =

Logistic regression with MG-IRT; MG-IRT LRT = Likelihood-ratio test with MG-IRT; N =

Sample size within each group; C = Number of categories; J = Number of items; Comb =

combination of χ2, ∆RMSEA and ∆CFI.



MEASUREMENT INVARIANCE TESTING FOR ORDINAL DATA 41

Table 5

Thresholds’ FPR item level - invariance scenario

FPR item level - thresholds

MG-CCFA MG-IRT LoR MG-IRT LRT

N C J Comb χ2 ∆RMSEA ∆CFI LRT R2 LRT

250

3
5 0.052 0.070 0.059 0.067 0.236 0.053 0.051

25 0 0.057 0 0 0.022 0.001 0.053

5
5 0.059 0.076 0.076 0.075 0.194 0.010 0.048

25 0 0.078 0 0 0.020 0 0.050

1000

3
5 0.022 0.062 0.022 0.004 0.256 0 0.048

25 0 0.064 0 0 0.021 0 0.049

5
5 0.025 0.072 0.024 0.010 0.179 0 0.040

25 0 0.079 0 0 0.020 0 0.048

Note. MG-CCFA = Multiple-group categorical confirmatory factor analysis; MG-IRT LoR =

Logistic regression with MG-IRT; MG-IRT LRT = Likelihood-ratio test with MG-IRT; N =

Sample size within each group; C = Number of categories; J = Number of items; Comb =

combination of χ2, ∆RMSEA and ∆CFI.
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Table 6

Loadings’ TPR scale level - non-invariance scenario

TPR scale level - loadings

MG-CCFA MG-IRT LoR MG-IRT LRT

N C J % small large small large small large

20% 0.079 0.063 0.177 0.154 0.048 0.043

40% 0.107 0.163 0.183 0.242 0.054 0.0795

40%± 0.116 0.277 0.193 0.310 0.048 0.088

20% 0.022 0.040 0.030 0.092 0.076 0.094

40% 0.012 0.134 0.044 0.176 0.064 0.166

3

25

40%± 0.078 0.624 0.075 0.365 0.109 0.300

20% 0.076 0.091 0.018 0.018 0.048 0.030

40% 0.100 0.176 0.032 0.052 0.054 0.0865

40%± 0.179 0.325 0.052 0.103 0.080 0.154

20% 0.010 0.076 0 0.008 0.062 0.164

40% 0.028 0.214 0.002 0.020 0.080 0.256

250

5

25

40%± 0.076 0.766 0.002 0.118 0.114 0.376

20% 0.072 0.110 0 0 0.044 0.098

40% 0.158 0.408 0 0.032 0.084 0.3225

40%± 0.234 0.722 0.004 0.064 0.092 0.506

20% 0.002 0.396 0 0 0.138 0.584

40% 0.028 0.806 0 0 0.216 0.718

3

25

40%± 0.204 1 0 0.008 0.298 0.980

20% 0.074 0.122 0 0 0.052 0.128

40% 0.178 0.554 0 0 0.108 0.4405

40%± 0.290 0.864 0 0.006 0.144 0.692

20% 0.016 0.574 0 0 0.186 0.720

40% 0.062 0.952 0 0 0.260 0.858

1000

5

25

40%± 0.366 1 0 0 0.398 1

Note. MG-CCFA = Multiple-group categorical confirmatory factor analysis; MG-IRT LoR =

Logistic regression with MG-IRT; MG-IRT LRT = Likelihood-ratio test with MG-IRT; N =

Sample size within each group; C = Number of categories; J = Number of items; % =

percentage of items affected by DIF (± misaligned); small = small bias; large = large bias;

values in red = FPR ≥ .10 in the invariance scenario.
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Table 7

Thresholds’ TPR scale level - non-invariance scenario

TPR scale level - thresholds

MG-CCFA MG-IRT LoR MG-IRT LRT

N C J % small large small large small large

20% 0.388 0.898 0.338 0.672 0.130 0.456

40% 0.732 0.998 0.336 0.760 0.284 0.7585

40%± 0.674 0.996 0.584 0.996 0.246 0.862

20% 0.004 0.416 0.144 0.932 0.264 0.884

40% 0.002 0.426 0.168 0.948 0.268 0.902

3

25

40%± 0.012 1 0.832 1 0.468 0.996

20% 0.512 0.984 0.078 0.458 0.104 0.504

40% 0.836 1 0.120 0.466 0.232 0.8045

40%± 0.862 1 0.318 0.990 0.272 0.914

20% 0.028 0.930 0.022 0.602 0.254 0.922

40% 0.046 0.948 0.032 0.592 0.244 0.876

250

5

25

40%± 0.220 1 0.612 1 0.400 0.996

20% 0.966 1 0.026 0.478 0.550 1

40% 1 1 0.022 0.560 0.888 15

40%± 1 1 0.202 1 0.978 1

20% 0.144 1 0 0.556 0.954 1

40% 0.130 1 0 0.556 0.944 1

3

25

40%± 0.992 1 0.626 1 1 1

20% 0.996 1 0 0.228 0.598 1

40% 1 1 0 0.222 0.910 15

40%± 1 1 0.018 1 0.986 1

20% 0.758 1 0 0.024 0.958 1

40% 0.756 1 0 0.030 0.964 1

1000

5

25

40%± 1 1 0.430 1 1 1

Note. MG-CCFA = Multiple-group categorical confirmatory factor analysis; MG-IRT LoR =

Logistic regression with MG-IRT; MG-IRT LRT = Likelihood-ratio test with MG-IRT; N =

Sample size within each group; C = Number of categories; J = Number of items; % =

percentage of items affected by DIF (± misaligned); small = small bias; large = large bias;

values in red = FPR ≥ .10 in the invariance scenario.
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Table 8

Loadings’ TPR item level - non-invariance scenario

TPR item level - loadings

MG-CCFA MG-IRT LoR MG-IRT LRT

N C J % small large small large small large

20% 0.018 0.033 0.004 0.004 0.061 0.064

40% 0.047 0.082 0.055 0.088 0.067 0.1165

40%± 0.071 0.181 0.063 0.119 0.068 0.142

20% 0.001 0.017 0.004 0.019 0.087 0.224

40% 0.001 0.016 0.003 0.015 0.084 0.200

3

25

40%± 0.006 0.059 0.006 0.041 0.096 0.252

20% 0.032 0.044 0 0 0.074 0.114

40% 0.047 0.112 0.005 0.028 0.071 0.1735

40%± 0.082 0.254 0.016 0.056 0.085 0.205

20% 0.002 0.019 0 0.002 0.110 0.251

40% 0.003 0.017 0 0.002 0.111 0.230

250

5

25

40%± 0.009 0.086 0.001 0.012 0.111 0.303

20% 0.016 0.046 0 0 0.098 0.178

40% 0.060 0.177 0.001 0.013 0.109 0.3385

40%± 0.124 0.434 0.001 0.045 0.136 0.421

20% 0 0.020 0 0 0.250 0.618

40% 0.001 0.002 0 0 0.217 0.621

3

25

40%± 0.002 0 0 0.001 0.261 0.707

20% 0.024 0.074 0 0 0.112 0.206

40% 0.084 0.251 0 0 0.156 0.4545

40%± 0.151 0.479 0 0.002 0.159 0.507

20% 0.001 0.036 0 0 0.283 0.725

40% 0.001 0.002 0 0 0.288 0.732

1000

5

25

40%± 0.007 0 0 0 0.298 0.812

Note. MG-CCFA = Multiple-group categorical confirmatory factor analysis; MG-IRT LoR =

Logistic regression with MG-IRT; MG-IRT LRT = Likelihood-ratio test with MG-IRT; N =

Sample size within each group; C = Number of categories; J = Number of items; % =

percentage of items affected by DIF (± misaligned); small = small bias; large = large bias.
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Table 9

Thresholds’ TPR item level - non-invariance scenario

TPR item level - thresholds

MG-CCFA MG-IRT LoR MG-IRT LRT

N C J % small large small large small large

20% 0.502 0.960 0.014 0.108 0.214 0.668

40% 0.649 0.987 0.059 0.296 0.311 0.7635

40%± 0.568 0.983 0.237 0.545 0.294 0.780

20% 0.001 0.195 0.010 0.372 0.349 0.886

40% 0 0.182 0.018 0.342 0.335 0.886

3

25

40%± 0.002 0.014 0.153 0.655 0.360 0.885

20% 0.622 0.996 0.002 0.012 0.198 0.746

40% 0.740 1 0.018 0.078 0.304 0.8025

40%± 0.732 0.999 0.131 0.504 0.309 0.816

20% 0.004 0.298 0.002 0.098 0.362 0.880

40% 0.008 0.317 0.001 0.098 0.353 0.879

250

5

25

40 %± 0.042 0.053 0.100 0.526 0.339 0.875

20% 0.962 1 0 0 0.758 1

40% 0.985 1 0 0.056 0.869 15

40%± 0.969 1 0.116 0.500 0.857 0.998

20% 0.002 0 0 0.157 0.918 1

40% 0.003 0 0 0.182 0.908 1

3

25

40%± 0 0 0.072 0.579 0.920 1

20% 0.992 1 0 0 0.808 1

40% 0.998 1 0 0 0.894 15

40%± 0.992 1 0.009 0.500 0.889 1

20% 0.026 0.002 0 0.004 0.904 1

40% 0.016 0.003 0 0.007 0.903 1

1000

5

25

40 %± 0 0.005 0.046 0.497 0.907 1

Note. MG-CCFA = Multiple-group categorical confirmatory factor analysis; MG-IRT LoR =

Logistic regression with MG-IRT; MG-IRT LRT = Likelihood-ratio test with MG-IRT; N =

Sample size within each group; C = Number of categories; J = Number of items; % =

percentage of items affected by DIF (± misaligned); small = small bias; large = large bias.
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Decision Making for MI testing

Is the scale long or short? Long MG-IRT LRT

Testing for Loadings and/or 
Thresholds differences?

MG-CCFAIs the test conducted at the scale or 
at the item level?

Loadings

MG-IRT LRT

Thresholds

Short

Scale

Testing for configural invariance?

No

Yes MG-CCFA

Item

MG-CCFA

Loadings and Thresholds

MG-CCFA

Figure 1 . Flowchart, based the results of the simulation study, to provide

recommendations to test meaurement invariance for ordinal data


