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Abstract Bias-adjusted three-step latent class analysis (LCA) is widely popular
to relate covariates to class membership. However, if the causal effect of a treat-
ment on class membership is of interest and only observational data is available,
causal inference techniques such as inverse propensity weighting (IPW) need to be
used. In this article, we extend the bias-adjusted three-step LCA to incorporate
IPW. This approach separates the estimation of the measurement model from the
estimation of the treatment effect using IPW only for the later step. Compared to
previous methods, this solves several conceptual issues and more easily facilitates
model selection and the use of multiple imputation. This new approach, imple-
mented in the software Latent GOLD, is evaluated in a simulation study and its
use is illustrated using data of prostate cancer patients.
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1 Introduction

Latent class analysis (LCA) [1,2], a statistical technique for model-based cluster-
ing, is widely used in the field of social and behavioral science. LCA identifies
classes of people that are homogenous with respect to their scores on a set of
indicators. Covariates can be related to class membership, for instance, by using
multinomial logistic regression [3,4]. More recently, LCA is becoming more popular
in medical research, for instance, to asses health-related quality of life (HRQOL)
based on patient reported outcome measures (PROMS) [5–8]. Furthermore, the
effect of a certain treatment strategy on such HRQOL classes might be of interest.
Such treatment effects can be assessed with randomized controlled trials [9,10].
However, randomization into treatment and control groups is not always possi-
ble or there is an explicit choice for observational studies with a non-randomized
design. Under the identifiability conditions of consistency, exchangeability, and
positivity, causal inference techniques such as inverse propensity weighting (IPW)
can be used to identify average treatment effects (ATE) [11]. Lanza, Coffman, and
Xu [12] presented one approach for using IPW and matching on the propensity
score in LCA and several extensions have been proposed thereafter [13–15]. In this
paper, we will discuss a conceptual problem with this approach and propose an
alternative strategy for including IPW in LCA.

In randomized controlled trials, assignment into treatment vs. control groups
is randomized with the effect that both groups will, at baseline, be balanced on
their covariates such as demographics and clinical characteristics. However, when
randomization into intervention groups is not possible, causal inference techniques
allow for the identification of the ATE based on observational data under previ-
ously mentioned identifiability conditions [16]. Most commonly, direct matching
[17], matching on the propensity score [18], inverse propensity weighting (IPW)
[11,19], subclassification [20], and doubly robust methods [21] are used. The com-
mon idea behind these methods is to generate synthesized data as if it comes from
a randomized controlled trial.

When data is observational rather than randomized, the selection into a treat-
ment group vs. control group usually follows clinical indication. E.g., for low-stage
prostate cancer patients, immediate treatment such as the resection of the tumor
is not always necessary as this particular type of cancer progresses very slowly. For
many of these patients, an active surveillance strategy is a beneficial alternative
to a cancer treatment with considerable risks of severe side effects [22]. However,
patients with a high Gleason score indicating an aggressive tumor, will usually
receive treatment [23]. As for these patients also a worse outcome is to be ex-
pected, the effect of the received treatment when comparing these two groups will
be confounded by the Gleason score. The idea of the previously mentioned causal
inference methods is to control for this confounding. For propensity score methods,
a model for predicting the probability of receiving treatment is estimated based on
all observed confounding variables. This propensity score reduces each individual’s
set of covariates to a single score [11]. Most commonly, logistic or probit regres-
sion models are used but more complex machine learning algorithms are recently
explored for this purpose as well [18]. For instance, each patient that received
treatment can be matched with a patient that did not receive treatment if that
patient has a similar propensity score. Alternatively, each patient can be weighted
with an individual weight based on the inverse of the propensity score [11]. A pa-
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tient with a low probability of receiving treatment that actually received treatment
(hence, a combination that is rather uncommon in the data) will be up-weighted
while a patient with a high probability of receiving treatment that actually re-
ceived treatment (hence, a common combination) will be down-weighted. Under
the identifiability conditions, both strategies will achieve a synthesized data set
where the treatment group and the control group are balanced on the observed
confounders [18]. Any difference in outcome between these groups can, hence, be
attributed to the difference in treatment. In real-life applications, there might be
a substantial number of confounding variables and, naturally, not all of them will
be observed. This is a well-known problem in the causal inference literature and
will not be discussed here.

These causal inference methods are easily combined with standard statistical
models such as generalized linear models or survival analysis. However, often the
outcome of interest is not directly observable and a measurement model for the
outcome is needed. In cancer survivorship research, patient reported outcome mea-
sures (PROMS) such as the European Organisation for Research and Treatment
of Cancer (EORTC) Quality of Life Questionnaire [24] or the EuroQol 5D [25]
are widely used tools to asses a patient’s HRQOL. One obvious research ques-
tion in this case is to identify the effect of a certain cancer treatment on the
survivors’ HRQOL. PROMS use items to measure the construct of HRQOL and
when assessed in an observational study, a combination of LCA and causal infer-
ence techniques is needed.

To include propensity score methods in LCA, Lanza and colleagues [12] in-
troduced an analysis strategy consisting of variable selection, a multiple imputa-
tion step for missing covariates, estimation of the propensity scores, calculation of
weights or matching based on the propensity score, assessing balance, conducting
LCA with treatment as a covariate, and pooling of the results from the imputation
steps. Crucially, this approach consist of weighting or matching the full data set
and then conducting LCA on this weighted or matched data in one step. While
this strategy should, in theory, achieve the correct estimation of the treatment
effect, it is problematic for two reasons.

First, it is unknown how using IPW as proposed by these authors affects the
measurement model estimates in LCA. The authors indicated that by conducting
a LCA on a weighted or matched data set, they are able to deal with the fact that
the measurement model parameters, i.e., the item response probabilities, may be
affected by the confounders used to constructed the propensity scores. That is,
they seem to claim to be able to deal with measurement non-invariance (MNI)
or differential item functioning (DIF). However, it is unclear whether using IPW
or matching resolves MNI, since the state-of-art approach is to include covariates
causing DIF in the LCA and allow them to have direct effects on the indicators
[26]. Second, when estimating the LCA model on weighted or matched data, the
classes can no longer be interpreted as being based on the indicators alone as all
confounders included in a propensity score model may also affect the estimates. In
fact, it is unknown how the use of IPW affects the measurement model estimates in
LCA. In their illustrative application of the their method, the authors showed that
the use of IPW can alter the measurement model parameters substantially even in
terms of the number of classes [12], which is problematic for the interpretation of
the ATE too as it may no longer represent the effect on class membership reflecting
the outcome of interest. Furthermore, in LCA, selecting the right number of classes
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is an important and far from straight forward process. Information criteria such
as the Bayes information criteria (BIC) [27] or the Akaike information criteria
(AIC) [28] and significance testing approaches such as the bootstrap likelihood
ratio test (BLRT) [29] are frequently used. However, these criteria are often in
disagreement with each other and domain knowledge needs to be used to decide
on the optimal number of classes. When conducting LCA with covariates, the
recommended strategy is to perform model selection on the latent class model
without covariates (thus, the measurement model) and, in a second step, include
the covariates in the LCA with the pre-defined number of classes [30]. Using IPW or
matching complicates this process further. As both alter the original data set, the
model selection process may result in a different number of classes when performed
on the weighted or matched data set.

We propose an alternative strategy for incorporating IPW in LCA in which
the estimation of the measurement model is fully separated from the estimation
of the ATE. Our approach is based on a modification of the three-step approach
proposed by Vermunt [31] by using IPW in the third step. First, the measure-
ment model, that is, the LCA without covariates, is estimated on the unweighted
data and model selection is performed in the usual way. Second, observations are
classified based on their posterior class membership probabilities obtained in step
one and the resulting classification error probabilities for each class are calculated.
Third, treatment as the only covariate is related to the assigned classes, where the
classification errors are included as part of the model to obtain unbiased estimates
for the treatment effects. For our approach, we introduce a weight, the inverse of
the propensity score, in this last step. This stepwise approach not only simplifies
model selection but also resolves several of the conceptual problems associated
with the approach by Lanza and colleagues and therefore allowing for a clearer
interpretation of the classes and the treatment effect.

In the following sections, we describe the new three-step approach which in-
cludes IPW for determining treatment effects, investigate its performance in a
simulation study, and illustrate its use in a real data application. We end with a
discussion and conclusion section.

2 Three-step LCA with IPW

In this section, we first present the three steps of a bias-adjusted three-step LCA
with covariates, after which we show how this approach can be extended to include
IPW weighting in the third step.

2.1 Bias-adjusted three-step LCA

Let Yij denote the response of individual i on the jth categorical response variable,
J the number of response variables, and Rj the number of categories of the jth
response variable. Moreover, let X represent the discrete latent variable, t a partic-
ular latent class, and T the number of classes. A latent class model for the response
vector Yi of individual i can be defined using the following mixture equation:

P (Yi) =

T∑
t=1

P (X = t)P (Yi|X = t), (1)
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with the fundamental local independence assumption stating that responses are
independent given class membership:

P (Yi|X = t) =

J∏
j=1

P (Yij |X = t) =

J∏
j=1

Rj∏
r=1

α
δijr
tjr . (2)

Here, αtjr is the probability of response r on the item j given membership in class t
and δijr is an indicator variable for individual i on this response. Class proportions
Θt = P (X = t) and item response probabilities αtjr = P (Yij = r|X = t) can be
estimated by maximum likelihood.

Estimation of the measurement model described in equations 1 and 2 defines
the first step of a three-step LCA [31]. In the second step, the class memberships
of the individuals are determined using their posterior class membership probabil-
ities P (X = t|Yi). The most common methods are modal and proportional class
assignment, which involve assigning individuals to the class with the largest poste-
rior probability and to all classes with weights equal to the posterior probabilities,
respectively. We refer to the resulting class assignments as W . Essential to the
bias-adjusted three-step approach is the identification of the (imperfect) relation-
ship between the assigned class memberships W and the true class memberships
X. The classification error probabilities P (W = s|X = t) can be easily obtained
as follows:

P (W = s|X = t) =

∑N
i=1 P (X = t|Yi)P (Wi = s|Yi)

N ∗ P (X = t)
. (3)

Here, P (Wi = s|Yi) depends on the classification rule. Under modal assignment, it
equals 1 for the class with the highest posterior class membership probability and
0 for all other classes, while under proportional assignment, it equals the posterior
class membership probability itself [32,33].

In the third step, the relationship between class membership and covariates is
investigated. For this purpose, the class membership probabilities are modelled by
means of a multinomial logistic (MNL) regression:

P (X = t|Zi) = Θt|Zi
=

exp(γ0t +
∑Q
q=1 γqtZiq)∑T

t=1 exp(γ0t +
∑Q
q=1 γqtZiq)

, (4)

with Ziq being one of Q covariates and γ′s representing free parameters. Key
of the bias-adjusted three-step approach is that this regression equation can be
estimated using the class assignments W . More specifically, Bolck, Croon, and
Hagenaars [34] showed that P (W = s|Zi) is related to P (X = t|Zi) as follows:

P (W = s|Zi) =

T∑
t=1

P (X = t|Zi)P (W = s|X = t). (5)

As pointed out by Vermunt [31], the model parameters of this model can be ob-
tained by maximizing the following log-likelihood function:

logLW =

N∑
i=1

T∑
s=1

P (Wi = s|Yi)ln{
T∑
t=1

Θt|Zi
P (W = s|X = t)}, (6)
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where the P (Wi = s|Yi) serve as weights which as discussed above depend on the
classification rule. The P (W = s|X = t) are obtained as shown in equation 3 and
do not need to be estimated anymore. Optimizing 6 will yield the γ parameters
appearing in the MNL regression of Θt|Zi

(see equation 4).

2.2 Modification of the third step for the estimation of a treatment effect

Let us now look at how to modify the third step of a three-step LCA for the esti-
mation the ATE using IPW. Here, we define the ATE as the difference between the
class membership probabilities of a certain class when receiving treatment vs. be-
ing in the control group. First of all, we need to obtain propensity scores, typically
denoted by π̂, that reflect the probability of receiving a treatment conditional on
a set of measured confounders C. In this study, we derive propensity scores using
logistic regression:

π̂i =
exp(β0 +

∑Q
q=1 βqCiq)

1 + exp(β0 +
∑Q
q=1 βqCiq)

. (7)

However, as alternatives probit regression and machine learning algorithms are
frequently used [18]. The weights for IPW equal ipwi = 1/π̂i for individuals that
received treatment and ipwi = 1/1− π̂i for individuals that did not receive treat-
ment. While these weights are used for estimating the ATE for the entire pop-
ulation, alternatively weights yielding estimates of the ATE among the treated
could be used. To derive causal relations from the estimates, it is crucial to check
for assumptions underlying these causal inference techniques such as overlap of
propensity scores and balance on the confounders for the treatment and control
group [18].

The inverse propensity weights ipwi can be included in the estimation of the
third step of a three-step LCA by rewriting the pseudo-log-likelihood function as:

logLW =

N∑
i=1

T∑
s=1

ipwiP (Wi = s|Yi)ln{
T∑
t=1

Θt|Zi
P (W = s|X = t)}. (8)

Note that the MNL model for Θt|Zi
now contains the treatment variable as the

single predictor. As can be seen, the modification compared to equation 6 is that
the weights used in the estimation of the parameters in Θt|Zi

are now a product

of the ipwi and the class assignment weights P (Wi = s|Yi). As in a standard
step-three LCA, cluster robust standard errors [35] can be used to account for the
weighting and in the case of proportional assignment also for the fact that each
person has T observations.

3 Simulation study

We conducted a simulation study to compare the performance of our newly pro-
posed “three-step” method with the “one-step” method proposed by Lanza and
colleagues [12] and with an “adjusted” method for estimating the ATE. The “ad-
justed” method consists of a one-step LCA where the two confounders are entered
in the model as covariates additional to the treatment variable. This adjusted
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model represents the direct paths of the treatment and the confounders on the
outcome in the population model. The performance was assessed based on the
parameter bias and variation of the ATE for varying sample sizes, strength of the
ATE, and strength of the confounding.

3.1 Design

As the population model, we used a latent class model with 3 classes, 6 dichoto-
mous indicators (high/ low), one treatment variable Z (0 = control, 1 = treat-
ment), and two categorical confounders (-.5; .5 for C1 and -2; -1; 0; 1; 2 for C2).
Class 1 was most likely to give a high response on all 6 indicators (item response
probability of .8) and class 3 was most likely to give a low response on all 6 in-
dicators (item response probability of .2). Class 2 was most likely to give a high
response on the first 3 indicators (item response probability of .8) and most likely
to give a low response the last 3 indicators (item response probability of .2). These
values were taken from the simulation setup in Vermunt [31] and refer to moderate
class separation and a pseudo R2 of .63. We choose this setting because moderate
class separation is the situation in which the bias adjustment in the third step
is most useful, but at the same time has been found to be challenging for the
three-step approach. With very good class separation, the three-step approach al-
ways performs very well, while with very poor class separation, it is questionable
whether it makes sense to look at covariate effects (here the treatment effects) on
class membership in the first place.

The effect of the treatment and the confounders on the classes were modeled
using logistic regression with class 1 as the reference category:

logit(X|C1, C2, Z) = .5 + 1 ∗ C1 + 1 ∗ C2 + γZ ∗ Z (9)

where γZ was kept constant for class 2 (γZ=1) and varied for class 3 (γZ=[1;2;3]).
The effect of the confounders on the treatment assignment was also modeled using
logistic regression:

logit(Z|C1, C2) = 0 + β1 ∗ C1 + 1 ∗ C2 (10)

where β1 took the values 1, 2, and 3.
The ATE can then be defined as the average difference in class proportions

between the treatment and the control group across values of C1 and C2 (Table
1). As γZ was varied for class 3, we compared the performance of the three methods
on the parameter for the ATE of class 3. Therefore, the effect of γZ=1 relates to
class proportions of 34.7% for individuals who did not receive treatment and 41.3%
for individuals who did receive treatment and an ATE of 6.6%. For γZ=2, the ATE
is 30.2% and for γZ=2, the ATE is 48.2%. Note that the three levels for the γZ
parameter yield a non-linear increase in the ATE. Furthermore, a large ATE also
yields more unequal class proportions (class 3 becomes larger). The bias of the
ATE for class 3 is defined as the difference between the estimate of the ATE and
the true ATE. The variation of the estimate was assessed by the standard deviation
(SD) of the ATE over 1000 replications. Furthermore, the standard error averaged
over all replications was compared to the SD of the estimate to asses bias in the
SE. We used sample sizes of 500, 1000, and 2500.
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4 Results

Figure 1 and 2 present the average bias and the SD of the estimates of the ATE
averaged over 1000 replications for the nine conditions investigated (γZ=[1,2,3]
and β1=[1,2,3]) for sample sizes of 500, 1000 and 2500.

For a small effect size, all methods produce parameter estimates with almost
no bias. For larger effect sizes, this is also true for a large sample size of N = 2500.
For smaller sample sizes and large effect sizes, the three-step approach underesti-
mates the ATE. However, note that the largest ATE relates to a difference of 48.2
percentage points between the treatment and the control group. A bias of about
two percentage points might, therefore, be regarded as small. The strength of the
confounding only has a small effect for N = 500.

Both, the three-step and the one-step method, are less efficient (show larger
variability) than the adjusted method. This loss of efficiency is a well-documented
finding for estimating methods that make use of weighting of observations. Further-
more, the variability of the estimates is mainly affected by sample size. However,
while the adjusted method is unaffected by varying levels of confounding, both,
the one-step and the three-step method, show higher variability for larger effects of
confounding (when more unequal weighting is needed). Effect size does not affect
the variability of the estimates. Overall, the SEs (Figure 3) are returned without
noticeable bias for large sample sizes and with small bias for small sample sizes.

5 Real-world application using prostate cancer treatment data

Prostate cancer is the most prevalent cancer in men in the Western countries [36].
Patients newly diagnosed with localized prostate cancer can choose between several
treatment options (such as surgical resection of the tumor, external beam radio-
therapy, brachytherapy, and active surveillance) that have equivalent outcomes
in survival but differ in their risk of adverse side effects and long-term HRQOL
[37–39]. Active surveillance refers to the systematic monitoring of patients with
low-risk prostate cancer who choose against curative treatment at diagnosis. When
the tumor shows signs of progression or the patient decides to change treatment,
patients receive subsequent curative treatment [23]. While active surveillance is
the least invasive treatment option it has been found to be associated with higher
levels of anxiety and feelings of uncertainty [40]. In this section, we demonstrate
how our newly proposed method can be used to estimate the ATE of receiving
curative treatment vs. active surveillance for a sample of low-risk prostate cancer
patients.

5.1 Settings and participants

In 2011, a random selection of patients diagnosed with prostate cancer between
2006 and 2009 in 7 hospitals in the south of the Netherlands were invited by
their medical specialist for participation in a study. In total, 999 participants were
approached and 697 patients agreed to participate (70% response rate).

Data were collected in October 2011 within Patient Reported Outcomes Fol-
lowing Initial Treatment and Long-Term Evaluation of Survivorship (PROFILES)
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[41]. PROFILES is linked directly to clinical data from the Netherlands Cancer
Registry. Urologists sent their (former) patients a letter to inform them about the
study and to invite them to complete an online questionnaire. On request, patients
received a paper questionnaire that could be returned in a pre-stamped envelope.
A reminder was send within two months to non-respondents. For this analysis, only
patients with tumor stage I or II were included as only for this group of patients
it is reasonable to assume both treatment strategies to be realistic options.

The study was approved by the Medical Ethics Committee of the Maxima
Medical Centre, the Netherlands.

5.2 Data collection

Socio-demographic data was collected by means of questionnaires. Clinical data
was extracted from the Eindhoven Cancer Registry. HRQOL was assessed through
the European Organization for Research and Treatment of Cancer Quality of Life
Questionnaire(QLQ)-C30 [42]. The EORTC QLQ-C30 includes 30 items, divided
in five functional scales (physical, role, emotional, social and cognitive functioning),
three symptom scales (fatigue, pain and nausea/vomiting) and seven single items
resulting in 15 dimensions. Scores were linearly transformed to a 0–100 scale, with
higher scores representing better HRQOL/functioning [43].

5.3 Analysis strategy

First, a LCA without covariates was estimated using the 15 EORTC QLQ-C30
dimension scores as ordinal indicators. Models with 1 to 10 classes were estimated
and the BIC was used to determine the optimal number of classes. Second, propen-
sity scores for all patients were estimated using logistic regression. Confounders
included in this model were age (in categories of 5 year intervals), tumor stage, and
the Gleason score (in categories, <7, 7 and 8-10). For these confounders, missing
values were included as an additional category (Table 2, supplementary materi-
als). Subsequently, overlap of the propensity scores and balance on the included
confounders between the treatment and active surveillance group were assessed.
Other possible confounders such as BMI, smoking, and alcohol consumption were
included in subsequent sensitivity analyses but did not show any improvement
for achieving balance between the treatment groups. Lastly, the effect of receiving
curative treatment on class membership was estimated using the new three-step
method. Additionally, the treatment effect was estimated with the one-step and
the adjusted method. All analyses were conducted in R version 3.6.0 [44] and La-
tentGOLD version 6.0 [45] and the code is freely available at GitHub [46]. The
data can be made available upon request.

5.4 Results

In total 496 prostate cancer patients were included in this analysis. In this sample,
about 50% of the male patients were between 65 and 75 years old, 59% had a tumor
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stage I, 41% tumor stage II, 60% had a Gleason score <7, 25% had a Gleason score
of 7, and 12% had a Gleason score of 8-10 (3% missing values).

Figure 5 (supplementary materials) shows the BIC for the 1 to 10 class models.
The 3 class solution yielded the lowest BIC and was selected. Note that for the
approach proposed by Lanza and colleagues, the BIC on this data was inconclusive
indicating >10 classes. With 46% the biggest class, class 1 is characterized by
very good overall HRQOL. Class 2 (39%) is characterized by moderate to good
HRQOL and class 3 (15%) is characterized by low to moderate HRQOL (Figure 6,
supplementary materials).

Propensity scores for the treatment and active surveillance group show suffi-
cient overlap (Figure 7, supplementary materials). Table 2 (supplementary mate-
rials) shows the standardized mean differences (SMD) on confounders before and
after weighting. With almost all SMD below .1 in absolute value, there is evidence
that balance was achieved using IPW.

Figure 4 represents the effect of receiving curative treatment vs. active surveil-
lance on the probability of class membership estimated with our proposed three-
step method. Additionally, the figure shows the same parameters estimated with
the one-step and adjusted method. For the three-step method, the probability of
class membership in class 1 (44% vs. 40%) was slightly higher for the treatment
group than for the active surveillance group. For class 2, this probability was al-
most the same for both groups (40% vs. 39%) and for class 3, it was higher for
the active surveillance group (16% vs. 21%). The results for the one-step method
were similar in the direction of the effect, however, the differences in class mem-
bership probabilities between the treatment and active surveillance group were
larger (48% vs. 40% for class 1, 39% vs 41% for class 2, and 14% vs. 20% for class
3). In contrast, for the adjusted method, the effect of initial treatment vs. active
surveillance pointed in opposite directions (45% vs. 46% for class 1, 37% vs. 46%
for class 2, and 19% vs. 8% for class 3). Furthermore, the treatment effects pre-
sented here did not yield statistically significant differences, presumably because
of small sample size.

6 Discussion

In this study, we proposed a novel approach of incorporating IPW in LCA to es-
timate ATEs by adjusting for confounding in observational data. This method is
based on the three-step approach [31] and separates the estimation of the mea-
surement model from the estimation of the ATE. We compared this new approach
to the existing one-step approach by Lanza and colleagues [12] and an adjusted
approach in which the confounders are entered in the model as covariates in a
simulation study and a real data application investigating the effect of treatment
vs. active surveillance on HRQOL classes in prostate cancer patients. Both, the
one-step and the three-step approach, performed reasonably well with a bias of
mainly below one percentage point. This result is to be expected as weighting
generally does not induce bias if the model for the weights is correctly specified.
That IPW in the one-step approach also affects the measurement model does not
change this as, overall, the average of all patient specific measurement models re-
flects a measurement model that would have been estimated without weighting.
Compared to the three-step approach, this shows that altering the measurement
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model on average still leads to the correct estimation of the ATE. For large ef-
fect sizes, the three-step method may underestimate the ATE. This slightly higher
bias, especially for small sample sizes, is to be expected as well, as introducing
an additional step of accounting for the classification errors (additional to the
IPW) when estimating the ATE may cause additional bias. Note, that we used a
simulation setting with moderate class separation because this setting is known
to be challenging for the three-step approach. With better class separation, the
ATE will be less underestimated and with worse separation, it is questionable if
covariates should be related to class membership in the first place. However, IPW
does not seem to increase this problem as long as the model for the propensity
scores is correctly specified. Introducing IPW, as introducing weights of any kind,
increases the variation of the estimates. As the one-step approach also uses the
differential weighting for the estimation of the measurement model, an additional
source of variation is introduced compared to the three-step approach where the
measurement model is estimated without weighting.

The one-step and the three-step approach use the same conceptual framework
for estimating the ATE. In both cases, weights based on the probability of receiving
treatment are used to achieve a data set that is balanced on observed confounders
at baseline and the models for estimating these propensity scores are identical. The
only difference between the two approaches is the order in which the estimation
is conducted. In the one-step approach, the data set is weighted first and the
ATE is estimated simultaneously with the measurement model of the LCA. In the
three-step approach, the measurement model is estimated first and IPW is only
used to estimate the ATE in a separate step. This difference has a major practical
implication when the data contains missing values on the observed confounders.
As the propensity score model does not allow for missing values in the predictors,
an additional step of conducting multiple imputation is needed. However, since
also the measurement model needs to be estimated for each imputed data set,
model selection might be ambiguous as different sets might show different results
for the optimal number of classes. Even with the same number of classes, there is
no guarantee that the classes have the same interpretation over the imputed sets.
As a consequence, it is impossible to obtain a meaningful result for the ATE when
pooling estimates over the imputed data sets. The three-step approach prevents
this issue by estimating the measurement model before the missing values need to
be imputed.

There are some limitations to our study worth mentioning. To draw valid
conclusions from results obtained with causal inference tools, a set of assump-
tions needs to be met. In our simulation study, we did not investigate any conse-
quences of violating these assumptions. However, in our real data application, we
observed different results obtained with the IPW methods compared to the ad-
justed method. It is possible that these differences are due to violations of these as-
sumptions. Furthermore, we investigated the scenario of the confounders affecting
the treatment and the class membership but not the item response probabilities.
While it is, in principal, possible to include measurement non-invariance in our
three-step method, the consequences of such effects need further research. Lastly,
in this simulation study, we assumed no missingness in the confounders. While it
is possible to include multiple imputation for the propensity score model in the
three-step method, the effect of missing information was not investigated.
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7 Conclusion

In this study, we proposed a method for incorporating IPW in LCA using the
three-step approach. This approach separates the estimation of the measurement
model from the estimation of the ATE, which among others allows for using mul-
tiple imputation in the propensity score model. The simulation study showed a
good performance of our three-step method and we recommend its use when es-
timating ATEs from observational data. Further research on possible interesting
extensions of this new approach is needed, such as its application in the context of
latent Markov models for longitudinal data [13] and its modification to deal with
situations in which there is measurement non-invariance [47].
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Table 1 Class membership probabilities for the control and treatment group and resulting
average treatment effects (ATE) for varying levels of effect size (γZ). Note that changes in
confounding have no effect on the ATEs.

Class 1 Class 2 Class 3

γZ = 1 Control Group 0.307 0.347 0.347
Treatment Group 0.174 0.413 0.413
ATE -0.133 0.067 0.067

γZ = 2 Control Group 0.307 0.347 0.347
Treatment Group 0.113 0.239 0.649
ATE -0.194 -0.108 0.302

γZ = 3 Control Group 0.307 0.347 0.347
Treatment Group 0.059 0.112 0.829
ATE -0.248 -0.234 0.482

Fig. 1 Bias of the estimate of the average treatment effect (ATE) for the adjusted, one-step,
and three-step method, averaged over 1000 replications, respectively. Results are presented for
three levels of effect size, confounding, and sample size, respectively.



16 F.J. Clouth et al.

Fig. 2 Standard deviation (SD) of the estimate of the average treatment effect (ATE) for
the adjusted, one-step, and three-step method over 1000 replications, respectively. Results are
presented for three levels of effect size, confounding, and sample size, respectively.
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Fig. 3 Bias of the standard error (SE) of the estimate of the average treatment effect (ATE)
for the adjusted, one-step, and three-step method, averaged over 1000 replications, respectively.
Results are presented for three levels of effect size, confounding, and sample size, respectively.

Fig. 4 Class membership probabilities for the treatment and the active surveillance group
estimated with the three-step, one-step, and adjusted method.
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8 Supplementary Materials

Table 2 Supplementary Table. Descriptive statistics before and after weighting for the three
confounders used to estimate the propensity scores. Differences between the active surveillance
and the treatment group were assessed with the standardized mean differences (SMD) and the
p-value.

No weighting IPW
active surv. treatment p SMD active surv. treatment p SMD

N 109 387 444.02 508.08
Stage [mean (SD)]
I 0.82 (0.39) 0.52 (0.50) < 0.001 0.658 0.65 (0.48) 0.60 (0.49) 0.542 0.103
II 0.18 (0.39) 0.48 (0.50) < 0.001 0.658 0.35 (0.48) 0.40 (0.49) 0.542 0.103
Gleason [mean (SD)]
2 - 6 0.84 (0.37) 0.57 (0.50) < 0.001 0.622 0.67 (0.47) 0.63 (0.48) 0.634 0.084
7 0.13 (0.34) 0.29 (0.45) 0.002 0.397 0.28 (0.45) 0.25 (0.43) 0.709 0.072
8 - 10 0.03 (0.18) 0.15 (0.35) 0.003 0.407 0.05 (0.22) 0.12 (0.33) 0.034 0.261
missing 0.14 (0.35) 0.01 (0.07) < 0.001 0.530 0.04 (0.19) 0.04 (0.20) 0.930 0.013
Age [mean (SD)]
<= 60 0.06 (0.25) 0.08 (0.27) 0.583 0.061 0.12 (0.32) 0.07 (0.26) 0.523 0.158
> 60 - <= 65 0.15 (0.36) 0.18 (0.39) 0.407 0.092 0.14 (0.35) 0.16 (0.37) 0.604 0.063
> 65 - <= 70 0.23 (0.42) 0.26 (0.44) 0.538 0.067 0.20 (0.40) 0.26 (0.44) 0.310 0.128
> 70 - <= 75 0.19 (0.40) 0.23 (0.42) 0.440 0.085 0.21 (0.41) 0.22 (0.42) 0.791 0.036
> 75 - <= 80 0.17 (0.38) 0.16 (0.36) 0.628 0.052 0.19 (0.40) 0.15 (0.36) 0.478 0.112
> 80 0.16 (0.36) 0.04 (0.21) < 0.001 0.379 0.09 (0.28) 0.09 (0.28) 0.945 0.008
missing 0.04 (0.19) 0.05 (0.23) 0.460 0.084 0.05 (0.22) 0.05 (0.22) 0.990 0.002
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Fig. 5 Supplementary Figure. Bayesian Information Criterion (BIC) for models with 1 - 10
classes estimated with the one-step method and the three-step method, respectively.
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Fig. 6 Supplementary Figure. Profiles of the three classes estimated with the three-step
method. Per class, the average score on all 15 dimensions of the EORTC QLQ-C30 are pre-
sented. Abbreviations: ql = global quality of life score, pf = physical functioning, rf = role
functioning, ef = emotional functioning, cf = cognitive functioning, sf = social functioning, fa
= fatigue, nv = nausea/ vomiting, pa = pain, dy = dyspnea, sl = insomnia, ap = appetite
loss, co = constipation, di = diarrhea, fi = financial problems.
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Fig. 7 Supplementary Figure. Overlap of the propensity scores for the treatment and the
active surveillance group.


