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Abstract 

Invariance of the measurement model (MM) between subjects and within subjects over time is 

a prerequisite for drawing valid inferences when studying dynamics of psychological factors in 

intensive longitudinal data. To conveniently evaluate this invariance, latent Markov factor 

analysis (LMFA) was proposed. LMFA combines a latent Markov model with mixture factor 

analysis: The Markov model captures changes in MMs over time by clustering subjects’ 

observations into a few states and state-specific factor analyses reveal what the MMs look like. 

However, to estimate the model, the authors employed a full information maximum likelihood 

(FIML) approach that is counterintuitive for applied researchers and entails cumbersome model 

selection procedures in the presence of many covariates.  In this paper, we simplify the complex 

LMFA estimation and facilitate the exploration of covariate effects on state memberships by 

splitting the estimation in three intuitive steps: (1) obtain states with mixture factor analysis 

while treating repeated measures as independent, (2) assign observations to the states, and (3) 

use these states in a discrete- or continuous-time latent Markov model taking into account 

classification errors. A real data example demonstrates the empirical value. 

Keywords: experience sampling, measurement invariance, factor analysis, latent Markov 

modeling, three-step approach 
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1. Introduction 

New methods such as Experience Sampling Methodology (ESM; Scollon, Kim-Prieto, & 

Diener, 2003) enable the assessment of psychological constructs or “factors” (e.g., depression) in 

daily life by repeatedly questioning multiple participants via smartphone apps, for example, nine 

times a day for one week. Such intensive longitudinal studies (say with more than 50 measurement 

occasions) are often conducted to analyze dynamics in factor means. For instance, researchers 

investigated how emotional dynamics relate to subjects’ mental health (Myin‐Germeys et al., 

2018) or tailored interventions to subject’s daily experience of negative affect (Van Roekel et al., 

2017). For drawing valid inferences about the dynamics, it is crucial that the measurement model 

(MM) is invariant (i.e., constant) between and within persons over time. The MM indicates which 

factors are measured and how these factors are measured by items, which is expressed by means 

of “factor loadings”. In case of continuous data, the MM is obtained with factor analysis (FA). If 

the MM is invariant, the factors are conceptually equal across subjects and time-points and 

therefore comparable. However, the MM might be affected by subject- or time-point-specific 

response styles or substantive changes in item interpretation. As a result, the MMs might differ 

between subjects (e.g., the item interpretation might depend on subjects’ psychopathology) but the 

MM might also differ within one subject (e.g., the response style of choosing only the extreme 

categories might depend on situational motivation to complete the questionnaire). If invariance 

stays undetected, inferences may be invalid. For example, a mean score change in negative affect 

might be at least partly due to changes in item interpretations.  

To conveniently evaluate (violations of) invariance of intensive longitudinal data for multiple 

subjects simultaneously, latent Markov factor analysis (LMFA; Vogelsmeier, Vermunt, van 

Roekel, & De Roover, 2019; Vogelsmeier, Vermunt, Böing-Messing, & De Roover, 2019) was 
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proposed, which combines a discrete- or continuous-time latent Markov model with mixture factor 

analysis.1 As will be described in more detail in Section 2.3., the Markov model clusters subject- 

and time-point-specific observations according to their underlying MM into dynamic latent MM 

classes or “states”, which implies that subjects can transition between latent states and thus 

between MMs over time. State-specific factor analyses reveal which MM applies to each state. 

Observations that belong to the same state are invariant. Observations that belong to different states 

are non-invariant, for instance, with regard to the number or nature of the underlying factors or the 

size of factor loadings. Note that some subjects might stay in one state, which implies within-

person invariance (i.e., over time). Other subjects may transition (more or less frequently) between 

different MMs, which implies within-person non-invariance. Moreover, comparing state 

memberships across subjects provides information about between-person (non-)invariance.   

The aim of assessing non-invariance patterns is usually twofold. On the one hand, detecting 

non-invariance is important for deciding how to proceed with the data analysis. For example, if 

the invariance violation is strong, one may decide to conduct factor-mean analyses with 

observations from one state only. If only a few MM parameters differ across states (i.e., “partial 

invariance” holds; Byrne, Shavelson, & Muthén, 1989), one may decide to investigate dynamics 

in the factor means but let the corresponding MM parameters differ across states. More 

specifically, if discrete (i.e., abrupt) changes are of interest, one could continue with LMFA by 

adding factor means to the model and constraining invariant parameters to be equal across states. 

The state memberships would then (also) capture discrete changes in factor means (this is further 

explained in Section 2.3.1).2 If continuous (i.e., smooth) changes are of interest, researchers could 

                                                 
1 Note that it is also possible to apply LMFA to a single subject if the number of observations was large enough. For 

guidelines on the required number of observations, see Vogelsmeier, Vermunt, van Roekel, et al. (2019). 
2 This analysis would be comparable to the factor-mean modeling approach that was proposed by Bartolucci and Solis-

Trapala (2010). 
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opt for a latent growth model (Muthén, 2002) with state-specific parameters. 

On the other hand, researchers would typically like to include explanatory variables (in the 

following referred to as “covariates”) that can possibly explain MM changes so they can learn 

about these substantively interesting aspects of their data. As an example, when studying 

adolescents’ affective well-being in daily life, the situational context (e.g., being with friends 

versus being with parents) might lead to different MMs in that some items may be more relevant 

for measuring affect in one over the other context. For instance, “being excited” might be more 

related to the positive affect factor when being with friends whereas “being content” might be 

more related to positive affect when being with parents.  

Exploring the relations between covariates and state memberships is theoretically possible by 

adding different (sets of) covariates to the “structural model” (SM). Note that the SM generally 

refers to the causal relationships between latent variables (and/or exogenous variables) or between 

latent variables at consecutive measurement occasions. Specifically, in LMFA, the SM refers to 

the transitions between states and thus between MMs. However, with the currently implemented 

full information maximum likelihood (FIML) approach, that estimates all parameters (i.e., from 

the MM and the SM) at the same time, exploring covariate effects is cumbersome. LMFA is an 

exploratory method, which entails that researchers have to select the best model in terms of number 

of latent states and number of factors within the states. To this end, one needs to estimate a large 

number of plausible models and compare them with the Bayesian information criterion 

(Vogelsmeier, Vermunt, van Roekel, et al., 2019) or an alternative model selection criterion. For 

example, comparing models with 1 − 3 states and 1 − 3 factors per state would already result in 

19 models that have to be estimated by the researchers. Model selection with covariates is even 

more cumbersome because the whole model (i.e., the MMs and the SM) would have to be re-
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estimated for every set of covariates. Especially in exploratory studies, where researcher might 

want to add or remove covariates until only significant covariates are left, the model selection 

procedure quickly becomes unfeasible (e.g., if there are only three different sets of covariates for 

the 19 different model complexities, this would already result in 19 × 3 = 57 models).  

To avoid the model selection problem with covariates in any latent class analysis (the latent 

Markov model is a specific variant thereof), researchers sometimes first select the MM (or MMs 

if they differ across latent classes) without including the covariates to the SM. Once the choice 

about the complexity of the MM has been made, researchers include the covariates in the SM and 

re-estimate the whole model (i.e., only 19 + 3 = 21 models have to be estimated). However, this 

is problematic because, in the FIML approach, both parts of the model, the MM and the SM, are 

estimated at the same time so that specifications of the SM may also influence the MM. Thus, the 

optimal number of states or factors can change when including covariates.  

A better strategy that considerably simplifies the estimation is the so-called “three-step” 

(“3S”) approach, which decomposes the estimation into three manageable pieces. More 

specifically, the steps for a latent Markov model are as follows: Step 1: obtain state-specific MMs 

by conducting mixture factor analysis on the repeated measures data while disregarding the 

dependency of these observations; Step 2: assign the observations to the states (and thus the MMs) 

based on posterior state probabilities; Step 3: pass the state-specific MMs to a latent Markov model 

in order to estimate the probabilities to transition between the states (the three steps will be 

elaborated in Section 2.5). Although the MMs are also estimated first without considering the SM 

with its covariates (step 1), the MMs are kept fixed when adding the covariates to the SM (step 3).  

Next to facilitating the inclusion of covariates, the step-wise approach is also more intuitive 

because it better corresponds with how researchers prefer to approach their analyses, that is, they 
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rather see the investigation of the SM (i.e., in our case the transitions between states and the 

influence of covariates) as a final step that comes after investigating what the MMs look like. 

Because of the separate steps, the analyses could even be distributed across researchers such that 

one researcher carries out the first step to obtain the different underlying MMs. A second 

researcher could take the results and continue with the analyses of the transitions between the 

MMs. If everything has to be done in one step, it may quickly become overwhelming. Thus, 

applied researchers are used to and typically prefer such step-wise approaches and perceive 

simultaneous “one-step approaches” as counter-intuitive and more difficult to interpret (Vermunt, 

2010). Especially for complex analyses such as LMFA, offering step-wise approaches can 

therefore help to reach applied researchers and motivate them to apply the new method.  

When splitting the estimation of latent class models in general—and latent Markov models in 

particular—into the estimation of the MM(s) and the SM, estimates of the SM would be biased, 

however. In order to prevent this bias, the estimation procedure has to take into account the 

classification error that results from classifying observations into classes or states because 

classification is never perfect. To this end, Bolck, Croon, and Hagenaars (2004) proposed the 

“BCH” method in which the classification error is used to reweight the data prior to conducting 

logistic regressions to predict class membership. Moreover, Vermunt (2010) developed an 

alternative, more flexible, maximum likelihood correction (“ML” method) in which the estimation 

of the latent class model in the third step explicitly incorporates the classification error. More 

recently, the ML approach (or an extension thereof) was applied to the 3S estimation of latent 

Markov models (e.g., Asparouhov & Muthén, 2014; Bartolucci, Montanari, & Pandolfi, 2015; Di 

Mari, Oberski, & Vermunt, 2016; Nylund-Gibson, Grimm, Quirk, & Furlong, 2014) and showed 

to be a trustworthy alternative to the one-step FIML approach. 
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The aims of the current study are (1) to tailor the ML correction method to LMFA (in the 

following referred to as 3S-LMFA) to provide a more accessible alternative to the FIML estimation 

(in the following referred to FIML-LMFA) that is more convenient to use (especially with 

covariates) and easier to interpret for applied researchers and (2) to evaluate whether 3S-LMFA 

approaches the good performance of FIML-LMFA in terms of state and parameter recovery. Note 

that both, FIML-LMFA as well as the 3S-LMFA, can be estimated by means of Latent GOLD 

(LG) syntax (Vermunt & Magidson, 2016), which is also used for the current study. 

 The remainder of this paper is structured as follows: In Section 2, we first describe the data 

structure, provide a motivating example, outline the general LMFA model, and explain the steps 

of the 3S-LMFA. In Section 3, by means of a simulation study, we evaluate the performance of 

3S-LMFA and compare it to the performance of FIML-LMFA. Section 4 illustrates the empirical 

value of the 3S-LMFA by means of a real-data application. In Section 5, we discuss limitations of 

3S-LMFA and directions for future research.  

2. Method 

In the following, we first describe the data structure, the LMFA model, and the FIML 

estimation before we explain the three steps of the 3S estimation in detail. 

2.1. Data Structure  

We assume ESM data with repeated measures observations (with multiple continuous 

variables) that are nested within subjects and are denoted by 𝑦𝑖𝑗𝑡 (where 𝑖 = 1,… , 𝐼 refers to 

subjects, 𝑗 = 1, … , 𝐽 refers to items, and 𝑡 = 1,… , 𝑇 to time-points). Note that 𝑇 may differ across 

subjects but we omit the index 𝑖 in 𝑇𝑖 for simplicity. The 𝑦𝑖𝑗𝑡 are collected in the 1 × 𝐽 vectors 

𝐲𝑖𝑡 = (𝑦𝑖1𝑡, … , 𝑦𝑖𝐽𝑡) that themselves are collected in the 𝑇 × 𝐽 data matrices 𝐘𝑖 = (𝐲𝑖1
′ , … , 𝐲𝑖𝑇

′ )′.  

2.2. Motivating Example 
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In order to motivate the use of LMFA in general and the 3S approach in particular, consider 

the following ESM data that was collected within the larger ADAPT project (Keijsers, Boele, & 

Bülow, 2017).3 Dutch adolescents (N = 27; MAge = 15.8; 67% girls) received five questionnaires a 

day for 13 consecutive days via the “Ethica Data” mobile app (Ethica Data Services Inc, 2018), 

resulting in a maximum of 65 potential measurement occasions per participant. In total, the 27 

participants completed 1168 questionnaires (compliance rate 67%). During each ESM 

questionnaire the participants indicated their current affect with the Dutch version of the Positive 

and Negative Affect Schedule for Children (PANAS-C-NL; Ebesutani et al., 2012; Keijsers, 

Boele, & Bülow, 2019; Watson, Clark, & Tellegen, 1988), where five items indicated positive 

affect and another five items indicated negative affect (all items are displayed in Table 4). All 

affect items were measured on a Visual Analog Scale (VAS) from 0 (not at all) to 100 (very much). 

The visual display of the items in the app can be found in the Online Supplement S.3. Next to the 

affect questionnaire, adolescents also completed questionnaires to assess time-varying covariates 

(e.g., participants’ current company) at each measurement occasion. Furthermore, before the ESM 

study, participants completed a baseline questionnaire about time-constant covariates (e.g., on 

emotion clarity and emotion differentiation capability). A typical next step of substantive or 

applied researchers would be to investigate changes in positive and negative affect over time. 

However, if response styles or item interpretation differ across time-points and/or subjects, the 

MM is not invariant within and between subjects and conclusions about dynamics in affect may 

be invalid. LMFA can be used to trace MM differences between subjects and MM changes over 

time. More specifically, there are two main research questions that can be answered using LMFA: 

1. Which MMs underlie which parts of the data and how do the MMs differ? 

                                                 
3 Materials can be found at https://osf.io/svyau. 
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2. Are the MMs related to time-varying and/or time-constant covariates? 

For answering only the first question, FIML-LMFA can be used. However, if researcher also want 

to answer the second question, the model selection including covariates would be too cumbersome 

with FIML-LMFA and 3S-LMFA is indispensable. In Section 4, we answer both research 

questions using 3S-LMFA. 

2.3. Latent Markov Factor Analysis 

LMFA consists of two parts. First, the measurement part concerns the state-specific response 

variable distributions that, in the case of LMFA, consist of the MMs for the constructs, which are 

defined by a mixture of factor models. Second, the structural part concerns the discrete latent 

process that is either defined by a “discrete-time” latent Markov model (Bartolucci, Farcomeni, & 

Pennoni, 2014, 2015; Collins & Lanza, 2010; Zucchini, MacDonald, & Langrock, 2016), which 

assumes equal time-intervals, or by a “continuous-time” latent Markov model (Böckenholt, 2005; 

Jackson & Sharples, 2002), which allows time-intervals to differ. Additionally, it is possible to 

include covariates to the SM. Figure 1 depicts the relations between the parameters from the SM 

and zooms in on the relation between the states from the SM and the state-specific MMs by means 

of an artificial example. The different parts including the notation will be described next. 

[Insert Figure 1 about here] 

2.3.1. Measurement part 

The measurement part shows how the state memberships define the responses. Thereby, it 

is important to note that the responses at time-point 𝑡, 𝐲𝑖𝑡, depend only on the latent state 𝑘 (𝑘 =

1, … , 𝐾) at that time-point and the responses are thus independent of the responses at other time-

points given that state (“independence assumption”), which is also illustrated in Figure 1. In 

LMFA, the responses are defined by state-specific factor models (Lawley & Maxwell, 1962): 
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 𝐲𝑖𝑡 = 𝛎𝑘 + 𝚲𝑘 𝐟𝑖𝑡 + 𝐞𝑖𝑡. (1) 

In this equation, 𝚲𝑘 is the state-specific 𝐽 ×  𝐹𝑘 loading matrix (where 𝐹𝑘 is the state-specific 

number of factors); 𝐟𝑖𝑡 ~ 𝑀𝑉𝑁(𝟎,𝚿𝑘) is the subject-specific 𝐹𝑘 × 1 vector of factor scores at time-

point 𝑡 (where 𝚿𝑘 is the state-specific factor covariance matrix); 𝛎k is the state-specific 𝐽 ×  1 

intercept vector; and 𝐞𝑖𝑡 ~ 𝑀𝑉𝑁(𝟎,𝐃𝑘) the subject-specific 𝐽 ×  1 vector of residuals at time-

point 𝑡 (with 𝐃𝑘 containing the unique variances 𝑑𝑘𝑗 on the diagonal and zeros on the off-

diagonal). Thus, the state-specific response densities, 𝑝(𝐲𝑖𝑡|𝑠𝑖𝑡𝑘 = 1), are defined by state-specific 

multivariate normal distributions with means 𝛎𝑘 and covariance matrices 𝚺𝑘 = 𝚲𝑘𝚲𝑘
′ + 𝐃𝑘. To 

obtain the state-specific factor models, LMFA employs exploratory factor analysis within the 

states in order to retain maximal flexibility regarding the differences in MMs that can be traced. 

In contrast to confirmatory factor analysis, exploratory factor analysis puts no a priori constraints 

on the factor loadings. However, if desired, confirmatory factor analysis can also be used. 

From Equation (8) we can see that the state-specific MMs may differ with regard to their 

loadings 𝚲𝑘, intercepts 𝛎𝑘, unique variances 𝐃𝑘, and factor (co)variances 𝚿𝑘, implying that LMFA 

explores all levels of measurement non-invariance, that is, configural invariance (invariant number 

of factors and pattern of zero loadings), weak factorial invariance (invariant loading values), strong 

factorial invariance (invariant intercepts), and strict invariance (invariant unique variances) (for 

more details see, e.g., Meredith, 1993). For identification purposes, the factor variances are equal 

to 1 in all the states and rotational freedom is dealt with by means of criteria to optimize simple 

structure and/or the between-state agreement of the factor loadings (e.g., Kiers, 1997; Clarkson & 

Jennrich, 1988; De Roover & Vermunt, 2019). 

It is important to note that restricting the factors to have a mean of 0 and a variance of 1 has 

the consequence that changes in factor scores may be captured as changes in the intercepts (i.e., if 
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an additional state is selected for such a change). Therefore, when all intercepts that pertain to the 

same factor are higher or lower in one state compared to the other, it might be a sign that the factor 

means rather than individual intercepts differ across these states. However, as long as configural 

and weak invariance is violated across the states, it does not make sense to disentangle intercept 

differences from factor-mean differences. In contrast, if the loadings and intercepts are (at least 

partially) invariant, one could go ahead with an adjusted LMFA – that means, with equality 

restrictions on the MM parameters and including state-specific factor means – and capture discrete 

changes in factor scores over time, as was already mentioned in the Introduction. 

Furthermore, LMFA currently assumes that factors have no auto- and cross-lagged correlations 

at consecutive time-points. By means of a dynamic factor analysis, it would be possible to 

incorporate such autocorrelations but factor rotation would be more intricate as auto- and cross-

lagged relations have to be rotated towards a priori specified target matrices (Browne, 2001; 

Zhang, 2006). This would require a priori hypotheses about MM changes that are often not present 

or incomplete and that are thus undesired in exploratory studies. In addition, one would require 

more measurement occasions per subject (Ram, Brose, & Molenaar, 2012), which is often 

unfeasible. In order to investigate whether ignoring autocorrelations in the data would pose 

problems for LMFA, Vogelsmeier, Vermunt, van Roekel, et al. (2019) conducted a simulation 

study using the FIML estimation and showed that the state and parameter recovery of the MMs 

were largely unaffected. Note, however, that ignoring dependency in the data leads to an 

underestimation of standard errors (SEs) of the MM parameters. This is only relevant when using 

hypothesis tests to trace significant differences in the MMs across states, which is possible by 

means of Wald tests using De Roover and Vermunt (2019)’s recently developed “multigroup factor 
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rotation”.4 One would then have to correct for the dependency in the data (e.g., with the “primary 

sampling unit” identifier in LG; Vermunt & Magidson, 2016). Otherwise, invariance of parameters 

would be rejected too easily. However, the hypothesis tests are outside the scope of this paper. 

2.3.1. Structural part 

A latent Markov model generalizes a latent class model—the statistical method to identify 

subgroups with a similar set of indicator values—because subjects can transition between classes 

in a latent Markov model, while subjects remain in the same classes in a latent class model. The 

classes in a latent Markov model are therefore referred to as “states”. For an extensive description 

of latent Markov models, see, for example, Bartolucci, Farcomeni, et al. (2015) and Zucchini et 

al. (2016). In brief, transitions between the states are captured by a latent “Markov chain” defined 

by the probabilities to start in a state 𝑘 at time-point 𝑡 = 1 (“initial state probabilities”) and the 

probability of being in a state 𝑘 at time-point 𝑡 > 1 conditional on the occupied state 𝑙 (𝑙 =

1, … , 𝐾) at 𝑡 − 1 (“transition probabilities”). Note that, according to the first-order Markov 

assumption, the probability of being in a certain state 𝑘 at time-point 𝑡 depends only on the state 

at 𝑡 − 1. The initial state probabilities are given by the 𝐾 × 1 probability vector 𝛑, which contains 

the elements 𝜋𝑘 = 𝑝(𝑠1𝑘 = 1) with 𝑠𝑡𝑘 referring to the state membership 𝑘 at time-point 𝑡 (e.g., if 

a subject is in state 1 at time-point 1, then 𝑠11 = 1 and 𝑠12 = ⋯ = 𝑠1𝐾 = 0). These binary variables 

are in turn collected in the membership vectors 𝐬𝑖𝑡 = (𝑠𝑖𝑡1, … , 𝑠𝑖𝑡𝐾)′, for 𝑡 = 1,… , 𝑇, which are in 

turn collected in the 𝐾 × 𝑇 state membership matrix 𝐒 = (𝐬𝑖1, 𝐬𝑖2, … , 𝐬𝑖𝑇). The transition 

probabilities are collected in the 𝐾 × 𝐾 matrix 𝐏, which contains the elements 𝑝𝑙𝑘 = 𝑝(𝑠𝑡𝑘 =

1|𝑠𝑡−1,𝑙 = 1). Note that the rows indicate the state that a person comes from and the columns 

                                                 
4 The method solves the rotation problem for multiple groups simultaneously by rotating group-specific factor loadings 

to simple structure and between-group agreement with user-defined weights on these two aspects of the rotation. 
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determine the state where the person transitions to. Hence, the diagonal elements represent the 

probabilities to stay in a state and the off-diagonal elements the probabilities to transition to another 

state. Therefore, diagonal values close or equal to 1 indicate stable state memberships and, thus, 

within-person invariance. It applies that the sum of the initial state probabilities, ∑ 𝜋𝑘
𝐾
𝑘=1 , and the 

row sums of the transition probabilities, ∑ 𝑝𝑙𝑘,
𝐾
𝑘=1  equal 1.  

In the discrete-time latent Markov model, the time-intervals between observations are assumed 

to be equal. This assumption is often not tenable in empirical data. For instance, the questionnaires 

in ESM are usually send out at random moments and participants may skip certain measurement 

occasions, which automatically increases the distance between two subsequent observations. To 

accommodate such data, a continuous-time latent Markov model can be employed, which allows 

for differing intervals across time-points and subjects by considering the length of time spent in a 

state, 𝛿. In the following, we provide a brief summary. The interested reader is referred to 

Böckenholt (2005) and Jackson and Sharples (2002) for general information about continuous-

time latent Markov model and to Vogelsmeier, Vermunt, Böing-Messing, et al. (2019) for more 

specific information on continuous-time-LMFA. In brief, transitioning from the origin state 𝑙 to 

destination state 𝑘 is defined by the “intensities” (or rates) 𝑞𝑙𝑘 (collected in the 𝐾 × 𝐾 intensity 

matrix 𝐐) that replace the transition probabilities 𝑝𝑙𝑘 and can be seen as probabilities to transition 

between states per very small time unit: 

 
𝑞𝑙𝑘 = lim

𝛿→0

𝑝(𝑠𝑡𝑘 = 1|𝑠𝑡−𝛿,𝑙 = 1)

𝛿
, (2) 

for all 𝑘 ≠ 𝑙 (thus, for the off-diagonal elements in the intensity matrix 𝐐).  The diagonal elements 

are equal to the negative row sums (−∑ 𝑞𝑙𝑘𝑘≠𝑙 ; Cox & Miller, 1965). The transition probabilities 

for any interval of interest can be computed by taking the matrix exponential of 𝐐 × 𝛿. Note that 

larger time-intervals 𝛿 increase the probability to transition to a different state. In turn, 𝐐 can be 
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obtained by taking the matrix logarithm of 𝐏.5 

In the following, we expand the structural part by including 𝑈 subject and possibly time-point 

specific covariates 𝑧𝑖𝑡𝑢 (collected in the 𝑈 × 1 vectors 𝐳𝑖𝑡) such that they affect the initial and 

transition probabilities. Note that the measurement part is assumed to be not (directly) affected by 

the covariates, which can also be seen in Figure 1. Also note that the parameters of the structural 

part are typically modelled using a logit model (for initial and transition probabilities) or via a log-

linear model (for transition intensities) in order to prevent parameter space restrictions, which is 

also what LG does. The covariates enter the model through these parameterizations. For the initial 

state probabilities, we use the parameterization 

  
log
𝑝(𝑠𝑖1𝑘 = 1|𝐳𝑖1)

𝑝(𝑠𝑖11 = 1|𝐳𝑖1)
= 𝛽0𝑘 + 𝛃𝑘

′ 𝐳𝑖𝑡=1, (3) 

with 𝑘 = 2,… , 𝐾 and 𝑘 = 1 as the reference category. The coefficients 𝛽0𝑘 are the initial state 

intercepts and 𝛃𝑘
′ = (𝛽𝑘,𝑍𝑖11 , … , 𝛽𝑘,𝑍𝑖1𝑈)′ are the initial state slopes, which quantify the effect of 

the covariates on the initial state memberships. In DT-LMFA, the multinomial logistic model for 

the transition probabilities is 

 
log
𝑝(𝑠𝑖𝑡𝑘 = 1|𝑠𝑖𝑡−1,𝑙 = 1, 𝐳𝑖𝑡)

𝑝(𝑠𝑖𝑡𝑙 = 1|𝑠𝑖𝑡−1,𝑙 = 1, 𝐳𝑖𝑡)
= 𝛾0𝑙𝑘 + 𝛄𝑙𝑘

′ 𝐳𝑖𝑡 (4) 

with 𝑘 ≠ 𝑙. Thus, the logit is modeled by comparing the transition from state 𝑙 to state 𝑘 with the 

probability of staying in state 𝑙. The coefficients 𝛾0𝑙𝑘 are the transition intercepts and 𝛄𝑙𝑘
′ =

(𝛾𝑙𝑘,𝑍𝑖𝑡𝑢 , … , 𝛾𝑙𝑘,𝑍𝑖𝑡𝑈)′ are the transition slopes, which quantify the effect of the covariates on 

transitioning to another state. In continuous-time-LMFA, we use a log-linear model for the 

transition intensities (for 𝑘 ≠ 𝑙): 

                                                 
5 Note that the 𝐐 matrix with the particular structure on the off-diagonals follows naturally from taking the matrix 

logarithm of the 𝐏 matrix with its restriction ∑ 𝑝𝑙𝑘
𝐾
𝑘=1 = 1. 
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 log 𝑞𝑙𝑘 = 𝛾0𝑙𝑘 + 𝛄𝑙𝑘
′ 𝐳𝑖𝑡. (5) 

Finally, the joint distribution of observations and states, given the covariates, is 

 𝑝(𝐘𝑖 , 𝐒𝑖|𝐙𝑖) = 𝑝(𝐲𝑖1, … , 𝐲𝑖𝑇,𝐬𝑖1, … , 𝐬𝑖𝑇|𝐳𝑖1, … , 𝐳𝑖𝑇)

= 𝑝(𝐬𝑖1|𝐳𝑖1)∏𝑝𝛿𝑡𝑖(𝐬𝑖𝑡|𝐬𝑖𝑡−1, 𝐳𝑖𝑡)

𝑇

𝑡=2

∏𝑝(𝐲𝑖𝑡|𝐬𝑖𝑡)

𝑇

𝑡=1

. 

(6) 

Note that the 𝛿𝑡𝑖 in 𝑝𝛿𝑡𝑖(𝐬𝑖𝑡|𝐬𝑖𝑡−1, 𝐳𝑖𝑡) refers to the transition probabilities’ dependency on the 

subject- and time-point-specific time-interval in continuous-time-LMFA. The term reduces to 

𝑝(𝐬𝑖𝑡|𝐬𝑖𝑡−1, 𝐳𝑖𝑡) in discrete-time-LMFA. 

2.4. FIML Estimation of Latent Markov Factor Analysis (FIML-LMFA) 

In order to obtain the maximum likelihood (ML) parameter estimates with FIML estimation, 

the following loglikelihood function has to be maximized: 

 

log 𝐿𝐹𝐼𝑀𝐿 =∑log(∑…∑𝑝(𝐘𝑖, 𝐒𝑖|𝐙𝑖)

𝐬𝑖𝑇𝐬𝑖1

)

𝐼

𝑖=1

, (7) 

with 𝑝(𝐘𝑖, 𝐒𝑖|𝐙𝑖) as given in Equation (6). The ML estimates can be obtained by means of the 

forward-backward algorithm (Baum, Petrie, Soules, & Weiss, 1970), which is an efficient version 

of the Expectation Maximization (EM; Dempster, Laird, & Rubin, 1977) algorithm and is also 

utilized by LG to find the ML solution. Within the maximization step, a Fisher algorithm is used 

to update the state-specific covariance matrices defined by the factor models (Jennrich & Sampson, 

1976) and, in case of continuous-time-LMFA, also to update the log-transition intensities. For a 

summary of the algorithms (including information about the convergence criteria and the utilized 

multistart procedure) see Vogelsmeier, Vermunt, van Roekel, et al. (2019) for discrete-time-

LMFA and Vogelsmeier, Vermunt, Böing-Messing, et al. (2019) for continuous-time-LMFA.  

It is important to note that we assume the number of states (𝐾) and factors per state (𝐹𝑘) to be 
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known when estimating the models. However, in real data, the best model in terms of the number 

of states and factors has to be evaluated. The Bayesian information criterion (BIC) performs well 

in selecting the best model in FIML-LMFA although the final decision regarding the optimal 

model should also take interpretability into account (Vogelsmeier, Vermunt, van Roekel, et al., 

2019). When also including covariates, every model under comparison (i.e., with all possible 

combinations of 𝐾 and 𝐹𝑘) has to be re-estimated every time a covariate is added or removed from 

the model because, using FIML estimation, the best model may change depending on the included 

covariates. For instance, when researchers want to obtain the best subset of 𝑈 = 3 covariate 

candidates, they would have to estimate 2𝑈 = 8 times the number of models that is already under 

comparison. When all models are estimated, one may use the BIC and interpretability to choose 

the final model. Thus, the model selection quickly becomes overwhelming and even unfeasible 

when exploring relations between state memberships and many covariates. 

2.5. Three-Step Estimation of Latent Markov Factor Analysis (3S-LMFA) 

In contrast to FIML-LMFA, 3S-LMFA decomposes the maximization problem for estimating 

the MMs and the SM into smaller parts. First, the state-specific MMs are estimated (step 1). 

Second, the observations are assigned to the MMs (i.e., classified to the states) and “classification 

errors” are calculated (step 2). Finally, the SM is estimated using the state-assignments while 

correcting for the classification errors (step 3). In the following, we explain the three steps in detail.  

2.5.1. Step 1: Estimation of the State-Specific Measurement Models 

The first step as illustrated in Figure 2 involves estimating the state-specific MMs underlying 

the data  by means of  mixture factor analysis (McLachlan & Peel, 2000; McNicholas, 2016). The 

structural part (including the covariates) can be validly ignored because, in LMFA, the 

observations at a given time-point t, 𝐲𝑖𝑡, are assumed to be conditionally independent of the state 
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at time-point 𝑡 − 1, 𝑠𝑖𝑡𝑙 = 1, and the covariates at time-point 𝑡, 𝐳𝑖𝑡, given the state membership at 

time-point 𝑡, 𝑠𝑖𝑡𝑘 = 1 (see Figure 1). For the estimation, all repeated observations are treated as 

“independent” such that respectively, say, 100 observations for each of 100 subjects results in 

10000 independent observations. The model parameters of interest are the state proportions 

𝑝(𝑠𝑖𝑡𝑘 = 1) and the state-specific response probabilities (𝐲𝑖𝑡𝑘|𝑠𝑖𝑡𝑘 = 1) = 𝑀𝑉𝑁(𝐲𝑖𝑡𝑘|𝛎𝑘, 𝚲𝑘𝚲𝑘 +

𝐃𝑘). The mixture factor analysis model is therefore 

 

𝑝(𝐲𝑖𝑡) = ∑𝑝(𝑠𝑖𝑡𝑘 = 1)

𝐾

𝑘=1

𝑝(𝐲𝑖𝑡𝑘|𝑠𝑖𝑡𝑘 = 1) (8) 

and the loglikelihood function is 

 

log 𝐿𝑆𝑇𝐸𝑃1 =∑∑log𝑝(𝐲𝑖𝑡)

𝑇

𝑡=1

𝐼

𝑖=1

. (9) 

[Insert Figure 2 about here] 

In LG, the posterior state probabilities and the state-specific factor models are estimated with an 

EM algorithm with Fisher scoring (Lee & Jennrich, 1979) in the maximization step.6  

As already discussed in the introduction, in this step, one also selects the optimal number of 

states 𝐾 and factors per state 𝐹𝑘 without having to be concerned about the covariates. Although 

the BIC is also a commonly used model selection criterion for mixture factor analysis 

(McNicholas, 2016), the CHull (Ceulemans & Kiers, 2006) method—which also balances model 

complexity and fit—proved to outperform the BIC in mixture factor analysis, especially when 

considering the three best models (Bulteel, Wilderjans, Tuerlinckx, & Ceulemans, 2013). Based 

on their results, we suggest to use the CHull method, potentially combined with the BIC, to select 

the three best models and compare them in terms of interpretability.  

                                                 
6 Alternatively, one may also use another EM algorithm in the maximization step (e.g., McNicholas, 2016). 
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2.5.2. Step 2: Classification of Observations and Calculation of the Classification Error 

Once the state-specific MMs have been estimated, in the second step, we allocate each 

observation to one of the 𝐾 states (see Figure 3). Therefore, we create a new variable 𝐰𝑖𝑡 =

(𝑤𝑖𝑡1, … , 𝑤𝑖𝑡𝐾)′,  that, similar to 𝐬𝑖𝑡, represents the assignments of the observations to the estimated 

MMs from step 1. These predicted state memberships are based on the estimated posterior state 

probabilities 𝑝(𝑠𝑖𝑡𝑘 = 1|𝐘𝑖𝑡) from step 1, which can be expressed using Bayes’ theorem as 

 
𝑝(𝑠𝑖𝑡𝑘 = 1|𝐲𝑖𝑡) =

𝑝(𝑠𝑖𝑡𝑘 = 1)𝑝(𝐲𝑖𝑡|𝑠𝑖𝑡𝑘 = 1)

𝑝(𝐲𝑖𝑡)

=
𝑝(𝑠𝑖𝑡𝑘 = 1)𝑝(𝐲𝑖𝑡|𝑠𝑖𝑡𝑘 = 1)

∑ 𝑝(𝑠𝑖𝑡𝑘′ = 1)𝑝(𝐲𝑖𝑡|𝑠𝑖𝑡𝑘′ = 1)
𝐾
𝑘′=1

. 

(10) 

[Insert Figure 3 about here] 

Thus, all observations 𝐲𝑖𝑡 belong to each of the 𝐾 states with a certain probability 𝑝(𝑠𝑖𝑡𝑘 = 1|𝐲𝑖𝑡). 

There are two common rules7 on how to proceed with these posterior state probabilities with regard 

to the final state assignments. First, “proportional assignment” assigns a state according to the 

posterior probabilities such that 𝑝(𝑤𝑖𝑡𝑘 = 1|𝐲𝑖𝑡) = 𝑝(𝑠𝑖𝑡𝑘 = 1|𝐲𝑖𝑡), which leads to a “soft” 

partitioning. Second, “modal assignment” allocates the weight 𝑝(𝑤𝑖𝑡𝑘 = 1|𝐲𝑖𝑡) = 1 for the state k 

with the largest posterior state probability in 𝐬𝑖𝑡 and a zero weight for all others states. Note that 

we will focus on modal assignment because proportional assignment is unfeasible with a large 

number of time-points per subject, which would involve separate weights for all 𝐾𝑇 possible 

combinations of states in case of classification uncertainty (Di Mari et al., 2016). 

Regardless of the assignment rule, classification error is inherent to any assignment procedure 

because the largest posterior probability is usually not equal to 1. We have to account for this error 

                                                 
7 Note that also other assignment rules such as random assignment (Goodman, 2007) can be found in the literature but 

they are less commonly used for the three-step approaches and are therefore not further discussed.  
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because, if not accounted for, the error attenuates relationships between variables. On the one hand, 

this attenuation will lead to an underestimation of the relation among true states 𝐬𝑖𝑡 at two 

consecutive time-points and thus, an overestimation of the transition probabilities away from a 

state (Vermunt, Langeheine, & Böckenholt, 1999). On the other hand, estimating the relationship 

between the estimated memberships 𝐰𝑖𝑡 and covariates 𝐳𝑖𝑡 – instead of using the true states 𝐬𝑖𝑡 – 

causes underestimation of the covariate effects (Di Mari et al., 2016). Hence, a correction for 

attenuation of relationships due to classification error is necessary. 

In order to calculate the classification error so that we can account for it in step 3, we have to 

obtain the probability of a certain state assignment 𝑤𝑖𝑡𝑚 = 1 conditional on the true state 𝑠𝑖𝑡𝑘 = 1, 

𝑝(𝑤𝑖𝑡𝑚 = 1|𝑠𝑖𝑡𝑘 = 1), for all 𝑘,𝑚 = 1,… , 𝐾. These probabilities are collected in the 𝐾 × 𝐾 

“classification error probability matrix”. They are computed as follows 

 
𝑝(𝑤𝑖𝑡𝑚 = 1|𝑠𝑖𝑡𝑘 = 1) =

∫𝑝(𝑤𝑖𝑡𝑚 = 1|𝒚𝑖𝑡)𝑝(𝒚𝑖𝑡)𝑝(𝑠𝑖𝑡𝑘 = 1|𝒚𝑖𝑡) 𝑑𝒚𝑖𝑡
𝑝(𝑠𝑖𝑡𝑘 = 1)

. (11) 

For the derivation, see the Appendix A.1.1. To solve this equation, 𝑝(𝐲𝑖𝑡) can be validly substituted 

by its empirical distribution (Di Mari et al., 2016; Vermunt, 2010), resulting in:  

 

𝑝(𝑤𝑖𝑡𝑚 = 1|𝑠𝑖𝑡𝑘 = 1) =

1
𝐼 × 𝑇

∑ ∑ 𝑝(𝑤𝑖𝑡𝑚 = 1|𝐲𝑖𝑡)𝑝(𝑠𝑖𝑡𝑘 = 1|𝐲𝑖𝑡)
𝑇
𝑡=1

𝐼
𝑖=1

𝑝(𝑠𝑖𝑡𝑘 = 1)
. (12) 

Note that another option to solve the integral would be to use Monte Carlo simulation. The larger 

the probabilities for 𝑚 = 𝑘 (corresponding to the diagonal elements of the classification error 

probability matrix), the better the classification and thus, the smaller the classification error. Note 

that classification error is strongly related to separation between the states (i.e., how well the latent 

states are predicted by 𝐘 = (𝐘1
′ , 𝐘2

′ , … , 𝐘𝐼
′); Bakk, Tekle, & Vermunt, 2013; Vermunt, 2010). To 

qualify the separation in any LC analysis, an entropy-based (pseudo) R-squared measure, 𝑅𝑒𝑛𝑡𝑟𝑜𝑝𝑦
2 , 

is commonly used (Lukočienė, Varriale, & Vermunt, 2010; Vermunt & Magidson, 2016; Wedel 
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& Kamakura, 1998). The 𝑅𝑒𝑛𝑡𝑟𝑜𝑝𝑦
2  value defines the relative improvement of predicting the state 

membership when using the observations 𝐲𝑖𝑡 compared to predicting the state membership without 

𝐲𝑖𝑡. Values range from zero (prediction is no better than chance) to one (perfect prediction). State 

separation (and hence classification error) depends on various factors. For example, it increases 

with a lower number of states, higher factor overdetermination (which is higher in case of less 

factors, more variables, or lower unique variances), and lower between-state similarity 

(determined by larger differences in the state-specific MMs). The 𝑅𝑒𝑛𝑡𝑟𝑜𝑝𝑦
2  values for the different 

settings in our simulation study will be reported below in Section 3.2. 

2.5.3. Step 3: Estimation of the Structural Model 

In the final step, we estimate the SM (i.e., the Markov model with covariates), which is 

illustrated in Figure 4. The key to correct for the classification error obtained in step 2 is to show 

the relationship between the estimated state memberships conditional on the covariates, 𝑝(𝐖𝑖|𝐙𝑖), 

and the true state memberships conditional on the covariates, 𝑝(𝐒𝑖|𝐙𝑖), where 𝐖𝑖 =

(𝐰𝑖1, 𝐰𝑖2, … , 𝐰𝑖𝑇), 𝐙𝑖 = (𝐳𝑖1, 𝐳𝑖2, … , 𝐳𝑖𝑇)  and 𝐒𝑖 = (𝐬𝑖1, 𝐬𝑖2, … , 𝐬𝑖𝑇) (Di Mari et al., 2016). 

Therefore, we consider the joint probability 𝑝(𝐖𝑖, 𝐘𝑖, 𝐒𝑖 , 𝐙𝑖) and solve for (𝐖𝑖|𝐙𝑖) (see Appendix 

A.1.2), which results in  

 

𝑝(𝐖𝑖|𝐙𝑖) =∑⋯∑𝑝(𝐬𝑖1|𝐳𝑖1)∏𝑝(𝐬𝑖𝑡|𝐬𝑖𝑡−1, 𝐳𝑖𝑡)

𝑇

𝑡=2𝐬𝑖𝑇𝐬𝑖1

∏𝑝(𝐰𝑖𝑡|𝐬𝑖𝑡)

𝑇

𝑡=1

. (13) 

It can be seen that Equation (13) resembles the FIML-LMFA model from Equation (6), 

marginalized over 𝐒𝑖 and with different response probabilities. It is in fact a latent Markov model 

with the state assignments from 𝐖𝑖 as single indicators with 𝐾 categories replacing the observed 

item responses 𝐘𝑖. This demonstrates that 𝐘𝑖 is no longer needed in step 3 if we have the 

classification error probabilities 𝑝(𝐰𝑖𝑡|𝐬𝑖𝑡). The response probabilities are fixed to the 
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classification error probabilities and thus do not have to be estimated. Hence, the focus of the latent 

Markov model changes. Instead of accounting for unobserved heterogeneity of the MMs (as in 

FIML-LMFA), the latent Markov model accounts for error in the estimated state assignments 𝐖𝑖.  

[Insert Figure 4 about here] 

In order to estimate the SM, the following loglikelihood function has to be maximized:  

 

log 𝐿𝑆𝑇𝐸𝑃3 =∑log(𝑝(𝐖𝑖|𝐙𝑖))

𝐼

𝑖=1

. 
(14) 

The estimation, just as in the regular FIML-LMFA, is done by means of the forward-backward 

algorithm.8 However, the classification error probabilities are utilized as fixed response 

probabilities, such that only the (covariate-specific) transition and initial-state probabilities need 

to be estimated. Note that the state-assignments 𝐖𝑖 are treated as the manifest (i.e., observed) 

indicators (that contain error) of the “true” (error-free) latent states 𝐒𝑖, which are inferred through 

the forward-backward algorithm and used to determine the parameters of the SM. Differences 

between 𝐖𝑖 and 𝐒𝑖 become less likely for well-separated states with small classification error.  

Finally, as already discussed in the Introduction, in the third step, one evaluates which 

covariates significantly relate to the transition and/or initial state probabilities. Instead of selecting 

the best subset of covariates by means of an information criterion as in the FIML approach, one 

may start with a model including all covariate candidates or none of them and use Wald (or 

likelihood ratio) tests to decide which covariates can be removed from or added to the model one 

by one (e.g., using forward or backward elimination). Note that, as in any statistical model, there 

are advantages and disadvantages with regard to such data-driven covariate selection procedures 

(for a review, see Heinze, Wallisch, & Dunkler, 2018). When in doubt, one may conduct sensitivity 

                                                 
8 Note that the third step of 3S-LMFA can be fastened by combining the EM estimation with a Newton-Raphson 

algorithm which is extensively described in De Roover, Vermunt, Timmerman, and Ceulemans (2017). 
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analyses comparing the results from different approaches. When having strong a priori hypotheses 

about covariates, one may also consider a more theory-driven approach. 

3. Simulation Study 

3.1. Problem 

The aim of the simulation study was to evaluate the performance of the 3S-LMFA and to see 

if it approaches the performance of FIML. The specific targeted measures were recovery of the 

states (i.e., the classification), the MM parameters, and the parameters and SEs of the SM 

consisting of the Markov model with covariate effects. First, parameter and state recovery have 

previously been shown to be positively influenced by an increasing amount of information (in 

terms of sample size) and by higher state-separation (i.e., a better distinction between the states; 

Bakk et al., 2013; Di Mari et al., 2016; Vermunt, 2010). The more information is available and the 

more separable the states are, the more accurate the mixture factor analysis can estimate the MM 

parameters in step 1 and the more accurate the estimation of the SM in step 3.  

Second, SEs are possibly slightly underestimated because the error probabilities 𝑝(𝑤𝑖𝑡𝑚 =

1|𝑠𝑖𝑡𝑘 = 1) are assumed to be known in step 3 although they are actually estimated parameters of 

the mixture factor analysis in step 1. When the SEs are underestimated, the Wald statistic to test 

covariate effects would lead to wrong conclusions regarding the statistical significance of 

covariates. If this underestimation is present, it will likely vanish with large state separation and 

amount of information (Di Mari et al., 2016; Vermunt, 2010). In the simulation study, we evaluate 

whether underestimation is present and from what point on state separation and amount of 

information are sufficient to obtain trustworthy SE values. 

Third, the 𝑅𝑒𝑛𝑡𝑟𝑜𝑝𝑦
2  and thus the state separation is higher for the FIML-LMFA than for the 

initial state separation in the first step of 3S-LMFA because the former has additional information 
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from the SM (i.e., the covariates and the states occupied at adjacent time-points) while the latter 

has information only from the MMs in step 1. Therefore, the recovery of the state memberships is 

expected to be better for FIML-LMFA. We expect this difference in recovery to decrease when 

the state memberships are updated in step 3 (i.e., when the SM is also included). However, the 

degree to which the state-membership recovery in 3S-LMFA approaches the recovery in FIML 

has to be demonstrated in the simulation study. 

Note that the evaluation of the model selection procedures in step 1 (i.e., finding the best 

number of states, 𝐾, and factors per state, 𝐹𝑘 by means of the BIC and the CHull) and step 3 (i.e., 

selecting the correct covariates by means of Wald tests, e.g., with backward elimination) is beyond 

the scope of this paper and will be used only in the application. As described in Section 2.5.1, the 

BIC and the CHull have already been extensively evaluated for mixture factor analysis. 

Furthermore, when the simulation study shows that the covariate parameters and their SEs are 

estimated correctly, we believe that the Wald tests will also correctly identify the significant 

covariates. However, in Section 5, we will discuss the possibility of inaccurate model selection 

under the violation of the conditional independence assumption.  

We manipulated the two key factors: (1) state-separation9 (this includes (a) between-state 

loading differences and (b) intercept differences) and (2) amount of information (this includes (c) 

number of subjects and (d) number of participation days per subject). Note that, for selected 

conditions, we also investigated whether 3S-LMFA might be more affected by ignoring 

autocorrelation than FIML-LMFA (see Appendix A.2) and whether varying the strength of the 

covariate effects and the distribution of the covariates across observations or subjects impacted the 

                                                 
9 Note that there are many possibilities to manipulate state-separation as previously stated (e.g., number of factors and 

states and factor overdetermination). For feasibility of the simulation study, we only chose for the two types of 

between-state differences.  
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estimation procedures differently (see Appendix A.3), which was not the case.   

3.2.Design and Procedure 

State-separation 

 

a. Between-state loading differences at two levels: medium 

loading differences, low loading differences; 

b. Between-state intercept differences at two levels: no intercept 

differences, low intercept differences; 

Amount of 

information 

c. Number of Subjects 𝑁 at four levels: 30, 50, 70, 90; 

d. Number of days 𝐷 at two levels: 7, 30; 

 

This design resulted in 2 × 2 × 4 × 2 = 32 conditions. For the population model, we used an ESM 

setup—with number of subjects, 𝑁, days, 𝐷, and observations per day, 𝑇𝑑𝑎𝑦—that is often found 

in practice (e.g., van Roekel, Keijsers, & Chung, 2019; Van Roekel et al., 2017). Furthermore, we 

used unequal time-intervals that are typical for ESM studies and therefore employed continuous-

time-LMFA. Thereby, the following values were used as constants: number of items 𝐽 = 20, 

unique variances 𝑒 = .2, number of states 𝐾 = 3, number of factors 𝐹𝑘 = 𝐹 = 2, and number of 

observations per day 𝑇𝑑𝑎𝑦 = 9. The latter also determined the ESM sampling scheme (comparable 

to Vogelsmeier, Vermunt, Böing-Messing, et al., 2019): Imposing that a sampling day lasts from 

9 am to 9 pm, both day and night intervals were on average 12 hours long. The 𝑇𝑑𝑎𝑦 = 9 

measurement occasions during the day lead to intervals of 1.5 hours if the measurement-occasions 

were fixed. However, for random variations, we let observations deviate from these fixed time-

points by means of a uniform distribution with a maximum of plus and minus 30 percent of the 

fixed 1.5 hour intervals. Thus, the deviations were drawn from 𝑈𝑛𝑖𝑓(−0.3 × 1.5, 0.3 × 1.5).  

To determine the SM, the initial state parameters were chosen to lead to equal probabilities of 

starting in a state (𝛽02 = 𝛽03 = 0). The transition intercept parameters were specified to be realistic 
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for a short unit interval of 1.5 hours with high probabilities to stay in a state.10 More specifically, 

the intercept parameters were 𝛾012 = 𝛾013 = 𝛾021 = 𝛾023 = 𝛾031 = 𝛾032 = −3.65 which would 

correspond to the following transition probability matrix if no covariates were present: 

 𝐏𝒅𝒂𝒚 = (
. 950 . 025 . 025
. 025 . 950 . 025
. 025 . 05 . 950

). (15) 

To alter the transition probabilities, we used one time-varying dichotomous covariate (𝑍𝑖𝑡1), which 

changed in value after 3 days for 𝐷 = 7 or after 15 days for 𝐷 = 30, and one time-constant 

dichotomous covariate (𝑍𝑖𝑡2 = 𝑍𝑖2) that was randomly assigned to the subjects with equal 

probabilities. Both covariates had values equal to −0.5 or 0.5. A higher value for 𝑍𝑖𝑡1 lowered the 

probabilities of transitioning to and staying in state 1 and 3 while increasing the probabilities of 

transitioning to and staying in state 2. For instance, this time-varying covariate could represent an 

intervention that increased the probability to move to and stay in a “healthy state”. The 

corresponding slope parameters were 𝛾12,𝑍𝑖𝑡1 = 𝛾32,𝑍𝑖𝑡1 = 1 and 𝛾13,𝑍𝑖𝑡1 = 𝛾21,𝑍𝑖𝑡1 = 𝛾23,𝑍𝑖𝑡1 =

𝛾31,𝑍𝑖𝑡1 = −0.5. Furthermore, a higher value for 𝑍𝑖2 increased the probability to transition away 

from the origin state, leading to a less stable Markov chain. For instance, this stable variable could 

be a trait-like general stability in response behavior that influences all probabilities to transition 

away from the state at the previous time-point. The corresponding slope parameters were 𝛾12,𝑍𝑖𝑡2 =

𝛾13,𝑍𝑖𝑡2 = 𝛾21,𝑍𝑖𝑡2 = 𝛾23,𝑍𝑖𝑡2 = 𝛾31,𝑍𝑖𝑡2 = 𝛾32,𝑍𝑖𝑡2 = 0.5. The four resulting possibilities for the 

transition probability matrices were 

 

𝐏𝑍𝑖𝑡1=−.𝟓,𝑍𝑖𝑡2=−.𝟓 = (
. 963 . 012 . 025
. 025 . 950 . 025
. 025 . 012 . 963

), 𝐏𝑍𝑖𝑡1=−.𝟓,𝑍𝑖𝑡2=.𝟓 = (
. 940 . 019 . 041
. 041 . 919 . 041
. 041 . 019 . 940

), 

 𝐏𝑍𝑖𝑡1=.𝟓,𝑍𝑖𝑡2=−.𝟓 = (
. 952 . 032 . 015
. 015 . 969 . 015
. 015 . 032 . 952

), 𝐏𝑍𝑖𝑡1=.𝟓,𝑍𝑖𝑡2=.𝟓 = (
. 923 . 052 . 025
. 025 . 951 . 025
. 025 . 052 . 923

). 

(16) 

                                                 
10 1.5 hours pertains to one unit and the other intervals are scaled to this unit interval. 
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Note that the covariate effects appear to be rather small but they increase for larger intervals than 

the unit interval.  

Regarding the state separation, we used the same conditions as in previous simulation studies 

evaluating LMFA (Vogelsmeier, Vermunt, Böing-Messing, et al., 2019; Vogelsmeier, Vermunt, 

van Roekel, et al., 2019). More specifically, we generated data with state-specific MMs as defined 

in Equation (1), assuming orthogonal factors (i.e., 𝐟𝑖𝑡 ~ 𝑀𝑉𝑁(𝟎, 𝐈)). To induce the between-state 

loading differences, we started with a common base matrix in both states: 

 𝚲𝐵𝑎𝑠𝑒 = (
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

)
′

, (17) 

which shows a binary simple structure that is often found in empirical studies (e.g., consider a 

typical positive vs. negative affect structure that may also underlie the data in the motivating 

example described in Section 2.2). For the medium loading difference condition, respectively one 

loading was shifted from the first factor to the second and one from the second to the first (for 

different items across states). Through this manipulation, the overdeterminaton of the factors was 

not affected and thus equal across states. For example, the first two of three loading matrices were  

 

𝚲1 = (
λ1 1 1 1 1 1 1 1 1 1 λ2 0 0 0 0 0 0 0 0 0
λ2 0 0 0 0 0 0 0 0 0 λ1 1 1 1 1 1 1 1 1 1

)
′

 

𝚲2 = (
1 λ1 1 1 1 1 1 1 1 1 0 λ2 0 0 0 0 0 0 0 0
0 λ2 0 0 0 0 0 0 0 0 1 λ1 1 1 1 1 1 1 1 1

)
′

 

(18) 

with λ1 = 0 and λ2 = 1. Similarly, for the low between-state loading difference condition one 

cross-loading of √. 5 was added to the first and second factor (for different items across states), 

which also lowered the primary loadings to √. 5. Specifically, in the example in Equation (18), the 

entries in 𝚲1 and 𝚲2 were  λ1 = √. 5 and λ2 = √. 5. Finally, row-wise rescaling of the loading 

matrices leads to a sum of squares of 1 − 𝑒 per row.  The between-state loading matrix similarity 

was computed by means of the grand mean, 𝜑𝑚𝑒𝑎𝑛, of  Tucker’s (1951) congruence coefficient 
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(i.e., 𝜑𝑥𝑦 =
𝑥′𝑦

√𝑥′𝑥√𝑦′𝑦
, with 𝑥 and 𝑦 referring to matrix columns) that was computed for each pair 

of factors (note that 𝜑 = 1 means proportionally identical factors). The 𝜑𝑚𝑒𝑎𝑛 across all states and 

factors was respectively .80 and .94 for the medium and low loading difference condition.  

 For the intercepts, we used the following base vector with fixed values of 5: 

 𝛎𝐵𝑎𝑠𝑒 = (5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5)′, (19) 

which was used as such in all states for the no intercept difference condition. To induce low 

intercept differences across states, we altered two intercepts to 5.5 (different items across the 

states). For example, for the first two states, the vectors were  

 
𝛎1 = (𝟓. 𝟓 𝟓. 𝟓 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5)′, 

𝛎2 = (5 5 𝟓. 𝟓 𝟓. 𝟓 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5)′. 
(20) 

The combination of the between-state loading difference and intercept difference conditions 

lead to four different state-separation conditions. To quantify the general state-separation in both 

analyses based on the population values, we calculated the four 𝑅𝑒𝑛𝑡𝑟𝑜𝑝𝑦
2  values for step 1 of the 

3S-LMFA, where information is only obtained from the MM, and for FIML-LMFA, where 

information is retrieved from both the MM and the SM including the two covariates.11 For FIML-

LMFA, starting from the smallest 𝑅𝑒𝑛𝑡𝑟𝑜𝑝𝑦
2 , the resulting values amounted to .90 for the low 

loading difference/no intercept difference condition, to .94 for the medium loading difference/no 

intercept difference condition, to .96 for the low loading difference/low intercept difference 

condition, and to .97 for the medium loading difference/low intercept difference condition. For the 

same conditions in the first step of 3S-LMFA, these values were respectively equal to .52, .65, .76, 

                                                 
11 The population 𝑅𝑒𝑛𝑡𝑟𝑜𝑝𝑦

2  value for a specific choice of population parameters and number of measurement occasions 

was obtained using Monte Carlo simulation. For this purpose we used the ‘Monte Carlo simulation study’ option in 

LG with one random draw of the time-intervals and covariate patterns and with the parameters fixed to their population 

values. 



THREE-STEP ESTIMATION OF LMFA    27 

 

and .82. Thus, as expected, state-separation is initially lower in 3S-LMFA than in FIML-LMFA, 

showing the importance for 3S-LMFA to include the information from the SM in step 3.12 

For each condition, we generated 100 datasets in R (R Core Team, 2018) according to the 

described population models and analyzed them in LG. Note that only one syntax file is required 

for FIML-LMFA but two files are necessary for 3S-LMFA. First, one syntax file is required to run 

step 1 and 2. Thereby, the posterior state assignments and the classification error probability matrix 

are saved and subsequently they are loaded in the second syntax file that is required for step 3.  

3.3. Results 

In the following, we evaluate the performance of the 3S-LMFA and compare it to the results 

of the FIML-LMFA based on the replications that converged in both steps of the 3S method as 

well as in the FIML method. Results that did not converge were re-estimated once and were 

excluded if convergence still failed. After re-estimation, 3180 out of 3200 datasets converged in 

3S- and FIML-LMFA (all datasets converged in step 1 and step 3 of 3S-LMFA and 3180 in FIML-

LMFA). Non-convergence in FIML was almost exclusively present for the smallest amount of 

information condition (i.e., 𝑁 = 30 and 𝐷 = 7) and was caused by reaching the maximum number 

of EM iterations without convergence. Furthermore, we re-estimated the replications of converged 

results that showed unrealistically large SEs due to boundary values for any of the estimated initial 

state and transition parameters (i.e., with an SE > 10 such as 100, 400 or 1000) because including 

such cases would falsify the results. This was only the case for 56 datasets in the third step of 3S-

LMFA, where re-estimation did not help. As a result, 3124 data sets were included in the 

                                                 
12 Note that it is always good to check the 𝑅𝑒𝑛𝑡𝑟𝑜𝑝𝑦

2  after step 1 that is automatically provided in LG because for a very 

small state-separation, say, with a value much lower than 0.5, it might be better to conduct a FIML-LMFA with 

additional state-separation information from the SM (including covariates). This is because in that case, the actual 

differences between the states might be even lower than the estimated ones. This would lead to an underestimation of 

the classification error (Vermunt, 2010). However, such low values are unlikely to be found in practice. 
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performance analyses reported below.13 

3.3.1. Goodness of state recovery 

The recovery of the states was assessed by means of the Rand Index (RI) as well as the 

Adjusted Rand Index (ARI; Hubert & Arabie, 1985). Both indices evaluate the overlap between 

two sets of elements while being insensitive to permutations of element labels (in our case state 

labels). The indices in the RI range from 0 (no overlap between any of the pairs) to 1 (perfect 

overlap) and, for the ARI, from 0 (overlap is not better than chance) to 1 (perfect overlap). As 

expected, the state-recovery was rather poor after the first step of 3S-LMFA because of the low 

𝑅𝑒𝑛𝑡𝑟𝑜𝑝𝑦
2  values here (𝑅𝐼 = .83, 𝑆𝐷𝑅𝐼 = .06, 𝐴𝑅𝐼 = .61, 𝑆𝐷𝐴𝑅𝐼 = .14). However, the overall 

recovery in the 3S-LMFA was excellent (Steinley, 2004; 𝑅𝐼 = .94, 𝑆𝐷𝑅𝐼 = .03, 𝐴𝑅𝐼 =

.87, 𝑆𝐷𝐴𝑅𝐼 = .06) and almost as high as in FIML-LMFA (𝑅𝐼 = .97, 𝑆𝐷𝑅𝐼 = .01, 𝐴𝑅𝐼 =

.94, 𝑆𝐷𝐴𝑅𝐼 = .03). Moreover, only the state-separation influenced the state recovery in that larger 

separation increased recovery (Table 1), indicating that already the minimum sample size of 

30 (𝑁) × 7 (𝐷) × 9 (𝑇𝑑𝑎𝑦) = 1890 was sufficient to estimate 𝐾 = 3 states (and thus about 630 

observations per state), which is largely in line with previous results showing that about 500 

observations per state are sufficient for similar settings and that a higher amount of information in 

terms of sample size and observations per subject does not aid recovery once this threshold is 

reached (Vogelsmeier, Vermunt, van Roekel, et al., 2019).  

[Insert Table 1 about here] 

3.3.2. Goodness of MM parameter recovery 

                                                 
13 Note that we also investigated whether the solutions converged to local maxima (i.e., that they had smaller log𝐿 

values than the global maximum likelihood (ML) solution. Although the latter is unknown, we can obtain an 

approximation (‘proxi’) in simulation studies by estimating the models with the population parameters as starting 

values. When log𝐿multistart < log𝐿proxi, the solution is considered a local maximum. This was no issue in FIML-LMFA 

and the first step of 3S-LMFA and only occurred for 3 data sets in the third step of 3S-LMFA. 
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Goodness of loading recovery. We computed a goodness of state-loading recovery (GOSL) as 

the average Tucker congruence coefficient between the true and the estimated loading matrices: 

 
𝐺𝑂𝑆𝐿 =  

∑ ∑ 𝜑(𝚲𝑘
𝑓
, �̂�𝑘
𝑓
)𝐹

𝑓=1
𝐾
𝑘=1

𝐾 × 𝐹
, (21) 

where 𝚲𝑘
𝑓

 corresponds to the state- and factor-specific loadings. By using Procrustes rotation14 

(Kiers, 1997) in order to rotate the estimated state-specific loading matrices �̂�𝑘 to the true ones 

𝚲𝑘, we solved the label switching of the factor labels within the states. Furthermore, to handle the 

label switching of the states, we retained the state permutation that maximized the 𝐺𝑂𝑆𝐿 value. 

Overall, the loading recovery was very good in 3S-LMFA (𝐺𝑂𝑆𝐿 = 1; 𝑆𝐷 = 0) and was the same 

for FIML-LMFA. Note that loading recovery can be good despite a bad state recovery because the 

loading matrices are very similar across states.  

Goodness of intercept recovery and unique variance recovery. To examine the recovery of the 

intercepts and the unique variances, we calculated the mean absolute difference (𝑀𝐴𝐷) between 

the true and the estimated parameters. The overall intercept recovery in the 3S-LMFA was very 

good (𝑀𝐴𝐷𝑖𝑛𝑡 =0.02; 𝑆𝐷 = 0.01) and did not differ from the recovery in the FIML-LMFA. The 

same applied to the unique variance recovery (𝑀𝐴𝐷𝑢𝑛𝑖𝑞𝑢𝑒 =0.01; 𝑆𝐷 = 0.00). Moreover, only 

the amount of information had a marginal effect on the two types of recovery in that the largest 

number of subjects (𝑁 = 90) and a higher number of participation days (𝐷 = 30) slightly 

improved the recovery in both analyses (Table 1).15 

3.3.3. Goodness of SM parameter recovery 

                                                 
14 Note that the rotation was done in R. Although rotation in LG was already possible for known groups, the issue 

with switching state labels has to be resolved to provide LG with the correct state-specific target matrices before 

rotation can be applied to unknown groups such as the states. 
15 The unique variance recovery may be affected by Heywood cases (i.e., improper factor solutions with at least one 

unique variance being negative or equal to zero, possibly caused by insufficient amount of information or 

underdetermined factors; Van Driel, 1978). However, this was not the case in any of the analyses.  
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Goodness of transition and initial state parameter recovery. To evaluate the recovery of the 

transition and initial state parameters, we calculated the average bias and the average Root-Mean-

Square-Error (RMSE) for the individual parameters of the four parameter types (i.e., initial state 

and transition intercept parameters and the two slope parameters for the covariates; Table 2). As 

can be seen, the bias in 3S-LMFA is generally very small (i.e., between -0.02 and 0.01) and in line 

with FIML-LMFA. However, the RMSE is generally higher in the 3S-LMFA (e.g., 𝑅𝑀𝑆𝐸 = 0.39 

for the first initial state intercept parameter in 3S-LMFA versus 𝑅𝑀𝑆𝐸 = 0.36 for the same 

parameter in FIML-LMFA). This is because using the step-wise procedure implies some loss of 

information. Moreover, Table 3 illustrates the effects of the manipulated factors for the four 

different parameter types, yet, averaged across the individual parameters for the sake of brevity 

and illustrative purposes. The manipulated factors had an influence on bias and RMSE in 3S-

LMFA that were similar to the effects on the measures in FIML-LMFA. More specifically, a higher 

amount of information generally decreased bias while a larger state-separation only marginally 

decreased bias for some of the individual parameters. Furthermore, a higher state-separation as 

well as a higher amount of information decreased the RMSE. 

[Insert Table 2 and Table 3 about here] 

Goodness of covariates’ SE recovery. To examine the SE recovery, we compared the average 

estimated SE for all 100 replications within a condition with the SD of the parameter estimates 

across these replications and calculated the SE/SD ratios for the individual parameters for the four 

parameter types (Table 2). The ratios are generally slightly lower than 1 in 3S-LMFA with values 

ranging from 0.95 to 1.02, indicating that the SEs are slightly underestimated. However, this is 

similar in FIML-LMFA, yet with values ranging from 0.97 to 1.02. Moreover, the manipulated 

factors had no clear impact on the recovery in neither of the analyses as the four parameter types 
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were influenced differently by a higher state-separation and higher amount of information. 

3.3.4. Computation time 

Exploring the computation time of all replications in the two analyses, we found that, with 

178.01 seconds, FIML-LMFA took on average more than twice as much time than 3S-LMFA, 

where the total computation time was 82.42 seconds (45.37 seconds for step 1 and 37.05 seconds 

for step 3). It should be noted that we used 25 random start-sets with an EM tolerance of 1e-005 

in FIML-LMFA and step 1 and 3 of 3S-LMFA. However, one set and a criterion of 0.01 is probably 

enough in the third step of 3S-LMFA because local maxima are very unlikely when the 

measurement part is fixed. Adjusting the values accordingly makes the computation even faster. 

3.3.5. Conclusion 

Summarized, the parameter and SE recovery in 3S-LMFA approached the recovery in FIML-

LMFA, making the 3S procedure a promising fast alternative when inclusion of covariates is of 

interest and hence the FIML estimation is likely unfeasible. Although a small information loss in 

terms of higher RMSE values for the parameters of the SM and a slightly worse state-recovery in 

3S-LMFA could be observed, the general parameter recovery in 3S-LMFA was on average as 

good as in FIML-LMFA and furthermore much faster. 

4. Application 

 To illustrate the empirical value of the 3S-LMFA approach we applied it to the ESM data 

introduced in Section 2.2. Note that this application is only meant to illustrate the possibilities of 

the new methodology, and since the hypotheses were not preregistered, we consider these analyses 

exploratory.16 As previously described, we investigated which MMs underlie which part of the 

                                                 
16 Note that the NA items were generally right-skewed. Since the consequences of violating the normality assumption 

have yet to be investigated, one should be particularly cautions with drawing substantial conclusions (Vogelsmeier, 

Vermunt, van Roekel, et al., 2019). This is, however, not a problem for illustrating the purpose of 3S-LMFA.    
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data and how the MMs differ (step 1), and whether MMs are related to covariates (step 3). From 

all covariates offered in the dataset, we considered only five covariates that we deemed plausible 

to affect the measurement model changes and of interest for this application. Because emotional 

experiences may vary depending on situational influences (Dejonckheere, Mestdagh, et al., 2019), 

and adolescents spend most of their time with parents and friends (Larson, 1983; van Roekel, 

Scholte, Engels, Goossens, & Verhagen, 2014), we chose the three time-varying covariates for the 

social context: (1) being alone (nominal), (2) being with a friend (nominal), and (3) being with a 

parent (nominal). From the baseline measurement, we chose the following two time-constant 

covariates: (1) emotion clarity deficit measured with the Emotion Clarity Questionnaire (ECQ; 

Flynn & Rudolph, 2010) on a Likert scale from 1 (totally disagree) to 5 (totally agree) (e.g., “I 

often have a hard time understanding how I feel.”) and (2) differentiation of emotional experience 

assessed via a subscale of the Range and Differentiation of Emotional Experience Scale (RDEES; 

Kang & Shaver, 2004) on a Likert scale from 1 (totally disagree) to 7 (totally agree)  (e.g., “I am 

aware that each emotion has a completely different meaning.”). These baseline questionnaires can 

be found in the Online Supplement S.1 and S.2.17   

In step 1, we investigate which MMs underlie the data by performing mixture factor analysis 

including the model selection procedure. Given the relatively small number of observations (𝑇𝑖  ×

 𝐼 = 1168) and items (J = 10), we only considered models with 1 − 3 states and 1 − 3 factors per 

state. The best fitting model according to the CHull method was a two-state model with two factors 

in the first state and one factor in the second state (“[2 1]”). We provide more information about 

the selection procedure in Appendix A.6. The state separation was very high (𝑅𝑒𝑛𝑡𝑟𝑜𝑝𝑦
2 = 0.98). 

About 60 percent of the observations were classified into state 1 and 40 percent into state 2. We 

                                                 
17 Note that three subjects in the ESM study did not have any baseline measures for an unspecified reason. For such 

cases, LG automatically imputes the average scale score. 
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will inspect the differences between the MMs step by step, starting with (1) the loadings, followed 

by (2) the intercepts and (3) proportions of unique variances, which are all given in Table 4. First, 

looking at the standardized (and in state 1 obliquely rotated) loadings, we can see that state 1 is 

characterized by two independent positive affect (PA) and negative affect (NA) factors that are 

hardly correlated (𝑟 = 0.07), indicating that adolescents in this state differentiate positive and 

negative emotional experiences. In contrast, the dimensions seem to collapse in state 2, which is 

characterized by a single (“bipolar”) dimension “PA versus NA”. Moreover, it is noticeable that 

the item “miserable” has a high loading in state 2 but not in state 1. Finally, the rather low loadings 

of the negative emotions indicate that their relation to the general score on the latent factor is 

weaker than is the case for the positive emotions. 

[Insert Table 4 about here] 

Second, the intercepts in state 1 are rather high for the positive emotions and very low for the 

negative emotions. In state 2, the intercepts for the positive emotions are somewhat lower and the 

intercepts for the negative emotions somewhat higher. 

Third, investigating the proportions of unique variances, it appears that two of the positive 

emotions “proud” and “lively” have something unique that cannot be explained by the PA 

dimension/end of the scale in neither of the two states. Comparing them with the other positive 

emotions, one can imagine that their scores at least partly depend on specific encountered events 

(e.g., “proud” may be elicited by achievements and “lively” is more likely to occur during high-

energy activities). Moreover, “miserable” has a large unique variance in state 1 and therefore, also 

considering the low loading, is hardly related to the other emotions. It could be that the item is not 

always suited to assess affect in adolescents as it is an emotion that is likely triggered by rather 

extreme situations that might not have been encountered for adolescents in the ESM study. Finally, 
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the negative emotions in state 2 have higher unique variances than in state 1, indicating that there 

is less covariance between them and that there is no large covariance with the positive emotions.  

There is a theoretical debate about whether positive and negative affect are two independent 

factors (Watson & Tellegen, 1985) or two bipolar ends of the same factor (Russell, 1980). 

However, our results suggest that both theoretical perspectives can be true at different points in 

time within one individual. In the first state, adolescents are capable of differentiating positive and 

negative emotional experiences (“independent state”). In contrast, the factor structure in the second 

state may be a result of adolescents’ simplistic representation of either having “positive” or 

“negative” emotions (“bipolar state”). These findings are in line with recent research, which 

suggests that both theoretical perspectives can be true, dependent on person specific factors (e.g., 

Dejonckheere, Kalokerinos, Bastian, & Kuppens, 2019) or situation specific factors (e.g., 

Dejonckheere, Mestdagh, et al., 2019). Regarding the intercept differences, we conclude that being 

in a rather good mood is related to the independent state and being in a rather unpleasant mood is 

related to the bipolar state. This is in line with research indicating that the bipolar state is more 

common in individuals with depression (Dejonckheere et al., 2018) and who are stressed 

(Dejonckheere, Mestdagh, et al., 2019; Zautra, Berkhof, & Nicolson, 2002).  

In order to better understand what triggers the different states, we investigated the influence of 

the five covariates. First, based on the posterior probabilities of the observations to belong to the 

state-specific MMs, we obtained the modal state membership and the classification errors (Step 

2). Given the high state separation, the classification errors were very small: 

 𝑝(𝐰𝑖𝑡|𝐬𝑖𝑡) = (
. 9968 . 0032

. 0080 . 9920
). (22) 

Therefore, correction for classification error is hardly necessary, which generally cannot be 

foreseen before conducting the step 1 analysis. The modal state assignments were subsequently 
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used as indicators in order to estimate the Markov model with covariates on the transition 

probabilities (Step 3).18 By means of stepwise backward selection with the five covariates, we 

eliminated the least significant covariate at each step until only covariates were left that met the 

criterion of 𝛼 < 0.05. The final model contained the two time-constant covariates from the 

baseline measure and the time-varying covariate being with a parent. Note that, due to the low 

classification errors, the final state memberships (i.e., 60% in state 1 and 40% in state 2) did not 

change after step 1. In Table 5, we present the parameters of the SM (including the Wald test 

statistics). To see the covariate effect more easily, we also present the transition probabilities for a 

two-hour-interval, which was the most frequently encountered interval length in the data. We 

calculated them respectively for the highest and lowest score on one covariate while setting the 

value of the other covariates to their average value in the sample (averages are given in the notes 

of Table 5). Note that the effect of being with a parent was so small that we do not further discuss 

it. Regarding the time-constant covariates (emotion clarity deficit and differentiation of emotional 

experience), we can see that adolescents with high emotion clarity deficit have a slightly higher 

probability to stay in or transition to the bipolar state (i.e., are more likely to be in that state) 

compared to adolescents with a low emotion clarity deficit, who are equally likely to be in either 

of the states. Moreover, adolescents with a high differentiation of emotional experiences have a 

slightly higher probability to stay in or transition to the differentiated state than adolescents with a 

low differentiation of emotional experiences, who are equally likely to be in either of the states.  

[Insert Table 5 and Figure 5 about here] 

From the individual transition plots of the adolescents (see Figure 5 for 6 representative 

examples), we can clearly see between-person differences (that are apparently partly related to 

                                                 
18 Note that we did not add covariates to the initial state probabilities as the number of subjects was rather small. 
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clarity and differentiation of emotions). For instance, some adolescents are mainly in the 

independent state (row 1) and others mainly in the bipolar state (row 2). However, we can also see 

some adolescents with frequent transitions between the states (right picture in row 3) and some 

adolescents with transitions after a certain amount of completed questionnaires (left picture row 

3). These transitions indicate that there are likely time-varying within-person factors that influence 

the transitions but that we are not aware of. Therefore, in the future, it would be interesting if 

applied researchers would include time-varying covariates in their ESM studies (e.g., stress 

Dejonckheere, Mestdagh, et al., 2019; Zautra et al., 2002) that could potentially influence within-

person changes between a bipolar and an independent representation of one’s emotional state. 

5. Discussion 

In this article, we tailored Vermunt (2010)’s maximum likelihood (ML) three-step (3S) 

procedure to latent Markov factor analysis (LMFA)—a method to explore measurement model 

(MM) changes over time—and showed that the resulting 3S estimation of LMFA (3S-LMFA) is a 

promising alternative to the original full information maximum likelihood (FIML) estimation of 

LMFA (FIML-LMFA): 3S-LMFA performs almost as good as FIML-LMFA, is more accessible 

and intuitive for applied researchers, and facilitates estimation when researchers want to explore 

the influence of different (sets of) covariates on transitions between MMs.  

It is important to note that this article is one of the first to apply a 3S approach with a 

continuous-time Markov model to time-intensive longitudinal data, which is data that becomes 

increasingly popular in different fields with diverse data characteristics. On top of that, the flexible 

step-wise nature of 3S-LMFA can be used to easily extend the method. Specifically, it is easy to 

adjust the method to the data and research questions at hand by exchanging the first step (i.e., the 

mixture factor analysis), which makes it applicable to a wide range of data. For example, one may 
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consider extended item response theory models for longitudinal categorical data. If it is not possible 

to estimate the first step in LG, one can also estimate the first step in a different program and only 

communicate the results to LG to continue with the second and third step. The same will soon be 

possible in the open-source program R as we are working on a package that takes estimated state 

probabilities from any step 1 model (estimated in R or another program) as input, calculates modal 

state assignments and the classification errors, and links it to an existing package that can estimate 

single indicator (continuous-time) Markov models with fixed response probabilities. Although 

adaptations of the MMs are also possible in FIML-LMFA, it is increasingly more difficult in 

practice since a specific part of the estimation procedure would have to be adapted (i.e., inside the 

LG software), which is not possible for applied researchers but only for the software programmer.  

A limitation of the current paper is that we did not examine the performance of 3S- and FIML-

LMFA under violation of the conditional independence assumption and assumed the covariates to 

influence only the parameters in the structural model (SM), that is, the transitions in the Markov 

model, and not the factors or the observed variables directly. This assumption might be violated 

(e.g., being with friends might be related to higher positive affect) and might lead to extracting a 

wrong number of states and inaccurate parameter estimates (E. S. Kim & Wang, 2017; M. Kim, 

Vermunt, Bakk, Jaki, & Van Horn, 2016; Masyn, 2017; Nylund-Gibson & Masyn, 2016). As in 

any other mixture model approach with covariates, the problem of model misspecifications is 

inherent to both the FIML and the 3S estimation and should be extensively studied in the specific 

context of LMFA. With regard to extracting the correct number of states, it can be expected that 

3S-LMFA performs better than FIML-LMFA when the effects of the covariates on the latent state 

memberships are included and direct effects of these covariates—for example, on the response 

variables—are falsely omitted. In the first analysis step of 3S-LMFA, the MMs are formed while 
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disregarding the covariates. Therefore, the covariates do not affect the state enumeration. This is 

different in FIML-LMFA, where covariates may affect the state enumeration. Specifically, if the 

local independence assumption is violated, FIML-LMFA would require too many states to counter 

the local independence violation and achieve a good model fit (E. S. Kim & Wang, 2017; Nylund-

Gibson & Masyn, 2016). However, inaccurate covariate estimates could occur with both 

estimation approaches (Asparouhov & Muthén, 2014; M. Kim et al., 2016; Masyn, 2017). 

Therefore, it is important to develop diagnostic tools to detect misspecification (e.g., by means of 

residual statistics) and to account for it, possibly by including the respective covariates with direct 

effects on the response variables in step 1 of the analysis and by using covariate-specific 

classification-error adjustments in step 3 (Vermunt & Magidson, 2020). However, tailoring these 

methods to LMFA is beyond the scope of this paper. 
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8. Figures and Tables 

 

Figure 1. Artificial example of the relations between the structural model parameters (top panel) 

and a zoomed in state-specific measurement model (bottom panel) in the full maximum likelihood 

LMFA. Note that state-specific measurement models may differ in all parameters, including the 

number of factors and the values of the loadings (𝜆𝑘𝑗𝑓), intercepts (𝜈𝑘𝑗), and unique errors (𝑒𝑘𝑗).  

 

Figure 2. Step 1: Estimating the measurement model by performing mixture factor analysis. 
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Figure 3. Step 2: Assigning states and calculating the classification error.  

 

 

Figure 4. Step 3: Estimating the structural model by means of a latent Markov model with a 

single indicators 𝐰𝑖𝑡. 
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Figure 5. Six examples of adolescents’ transition plots that are representative for the whole sample. Note that the scale does not consider 

the time-interval between the observations to enable the illustration. 
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Table 1 

Goodness of recovery for the states, loadings, intercepts and unique variances averaged across and conditional on the manipulated 

factors 

  Goodness of Recovery 

  States  

(𝐴𝑅𝐼) 
 States RI  

(𝑅𝐼) 
 Loadings 

(𝐺𝑂𝑆𝐿) 
 Intercepts 

(𝑀𝐴𝐷𝑖𝑛𝑡) 
 Unique Variances  

(𝑀𝐴𝐷𝑢𝑛𝑖𝑞𝑢𝑒) 

  Type of LMFA 

Condition Factors 3S-1 3S-3 FIML  3S-1 3S-3 FIML  3S FIML  3S FIML  3S FIML 

Between-State Loading Difference 
low .56 .85 .93  .80 .93 .97  1 1  .02 .02  .01 .01 

medium .66 .89 .95  .85 .95 .98  1 1  .02 .02  .01 .01 

Between-State Intercept Difference 
no .47 .81 .91  .77 .92 .96  1 1  .02 .02  .01 .01 

low .74 .92 .97  .89 .97 .98  1 1  .02 .02  .01 .01 

Number of Subjects 𝑁 

30 .61 .87 .94  .83 .94 .97  1 1  .02 .02  .01 .01 

50 .61 .87 .94  .82 .94 .97  1 1  .02 .02  .01 .01 

70 .61 .87 .94  .83 .94 .97  1 1  .02 .02  .01 0 

90 .61 .87 .94  .83 .94 .97  1 1  .01 .01  0 0 

Number of  

Participation Days 𝐷 

7 .61 .86 .94  .83 .94 .97  1 1  .03 .02  .01 .01 

30 .61 .87 .94  .83 .94 .97  1 1  .01 .01  0 0 

All Conditions                  

Average  .61 .87 .94  .83 .94  .97   1 1  .02 .02  .01 .01 

SD  .14 .06 .03   .06 .03   .01  0 0  .01 .01  0 0 

Note. LMFA = latent Markov factor analysis; 3S-1 = three-step step 1; 3S-3 = three-step step 3; FIML = full information maximum likelihood. The perfect 

loading recoveries result from the loading matrices that are highly similar across the states. 
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Table 2 

Parameter bias, RMSE, and SE/SD ratio for all individual parameters averaged across all simulation conditions 

Initial state intercept parameters 𝛽0k 

 Bias (RMSE)  SE/SD 

𝛽0k 0 0 \  \  \  \   0 0 \ \ \ \ 

FIML .01 (.36)  .01 (.36)  \  \  \  \   1.02 1 \ \ \ \ 

3S 0 (.39)  .01 (.39)  \  \  \  \   1.02 1 \ \ \ \ 

Transition intercept parameters 𝛾0𝑙𝑘 

 Bias (RMSE)  SE/SD 

𝛾0𝑙𝑘 -3.65  -3.65  -3.65  -3.65  -3.65  -3.65   -3.65 -3.65 -3.65 -3.65 -3.65 -3.65 

FIML -.02 (.18)  -.01 (.18)  -.01 (.17)  -.02 (.16)  -.02 (.18)  -.02 (.18)   1.01 0.98 1 1 0.98 0.99 

3S -.01 (.23)  0 (.22)  -.01 (.21)  -.01 (.21)  -.01 (.22)  -.01 (.24)   1.02 0.98 0.99 0.99 0.99 1 

Slope parameters covariate 1 𝛾𝑙𝑘,𝑍𝑖𝑡1  

 Bias (RMSE)  SE/SD 

𝛾𝑙𝑘,𝑍𝑖𝑡1 1  -0.5  -0.5  -0.5  -0.5  1   1 -0.5 -0.5 -0.5 -0.5 1 

FIML -.02 (.18)  0 (.17)  0 (.16)  0 (.16)  0 (.17)  -.02 (.18)   1.01 0.99 0.98 1 0.98 1 

3S -.02 (.23)  .01 (.22)  -.01 (.22)  -.01 (.20)  0 (.21)  -.02 (.25)   1 0.98 0.95 0.98 0.96 1 

Slope parameters covariate 2 𝛾𝑙𝑘,𝑍𝑖𝑡2  

  Bias (RMSE)  SE/SD 

𝛾𝑙𝑘,𝑍𝑖𝑡2 0.5  0.5  0.5  0.5  0.5  0.5   0.5 0.5 0.5 0.5 0.5 0.5 

FIML 0 (.15)  0 (.16)  0 (.16)  -0.01 (.16)  0 (.16)  0 (.15)   0.97 0.99 0.98 0.99 1.01 0.99 

3S 0 (.18)  0 (.19)  0 (.20)  -0.02 (.20)  -.01 (.20)  0 (.17)   0.97 0.97 0.96 0.97 0.97 1 

Note. FIML = full information maximum likelihood; 3S = three-step. 
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Table 3 

Parameter bias, RMSE, and SE/SD for the four types of parameters averaged across and conditional on the manipulated factors 

  Initial state intercept parameters 
 

Transition intercept  

parameters 
 

Slope parameters  

covariate 1 
 

Slope parameters  

covariate 2 

  Bias RMSE SE/SD  Bias RMSE SE/SD  Bias RMSE SE/SD  Bias RMSE SE/SD 

Condition Factor FIML-LMFA 

 Average .01 .36 1.01  -.02 .17 0.99  0 .17 0.99  0 .16 0.99 

Between-State Loading 

Difference 

low .01 .37 1.01  -.02 .18 1  0 .18 0.99  0 .16 0.98 

medium .01 .36 1.01  -.01 .17 0.99  -.01 .16 0.99  0 .15 1 

Between-State Intercept 

Difference 

no .01 .37 1.01  -.02 .18 0.99  -.01 .18 0.99  0 .16 0.99 

low .01 .35 1.02  -.02 .17 1  0 .16 1  0 .15 0.99 

Number of Subjects 𝑁 

30 .02 .47 1.03  -.03 .24 1  -.01 .23 0.98  -.01 .21 0.97 

50 .02 .36 1.02  -.02 .17 1.01  -.01 .17 1  0 .16 0.98 

70 0 .31 0.99  -.01 .15 0.98  0 .14 0.98  0 .13 1 

90 0 .27 1.02  -.01 .13 0.98  0 .12 1.01  0 .11 0.99 

Number of Participation  

Days 𝐷 

7 0 .35 1.03  -.03 .23 0.99  -.01 .22 0.99  0 .20 0.98 

30 .02 .37 0.99  0 .10 0.99  0 .10 1  0 .09 0.99 

Condition Factor 3S-LMFA 

 Average .01 .39 1.01  -.01 .22 0.99  -.01 .22 0.98  -.01 .19 0.97 

Between-State Loading 

Difference 

low 0 .40 1  -.01 .23 1.01  -.01 .23 0.98  -.01 .20 0.96 

medium .01 .38 1.01  -.01 .21 0.98  -.01 .21 0.98  0 .18 0.98 

Between-State Intercept 

Difference 

no .01 .41 0.99  0 .24 1  -.01 .24 0.97  -.01 .21 0.96 

low 0 .37 1.03  -.01 0.20 0.98  -.01 .20 0.99  0 .17 0.98 

Number of Subjects 𝑁 

30 .03 .52 1.01  -.02 .31 1.02  -.02 .31 0.97  -.01 .27 0.95 

50 -.02 .38 1.02  -.01 .22 1  -.01 .22 0.98  -.01 .19 0.97 

70 .02 .34 0.99  0 .18 0.97  -.01 .18 0.97  -.01 .15 0.99 

90 0 .29 1.01  0 .15 0.98  0 .15 1  0 .13 0.98 

Number of Participation  

Days 𝐷 

7 .02 .38 1.02  -.02 .29 0.99  -.02 .29 0.97  -.01 .25 0.95 

30 -.01 .40 0.99  0 .12 1  0 .11 0.99  0 .10 0.99 

Note. LMFA = latent Markov factor analysis; FIML = full information maximum likelihood; 3S = three-step. 
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Table 4 

Step 1 results: Standardized (for state 1 oblimin rotated) factor loadings, intercepts, and unique variances for the ADAPT dataset 

 State 1 (independent state)  State 2 (bipolar state) 

 Factors      Factor     

 PA NA  Int  Unique V.  PA vs NA  Int  Unique V. 

joyful 0.93 -0.01  75.98  0.14  0.96  53.47  0.07 
cheerful 0.95 0.00  75.06  0.09  0.96  51.90  0.08 
lively 0.55 0.06  62.08  0.69  0.61  43.86  0.62 
happy 0.87 0.08  76.50  0.23  0.89  51.75  0.20 
proud 0.53 0.13  61.43  0.69  0.66  42.10  0.57 
miserable -0.22 0.11  5.38  0.96  -0.61  26.53  0.63 
mad 0.01 0.94  1.19  0.16  -0.34  14.68  0.88 
afraid 0.02 0.94  1.14  0.17  -0.43  17.03  0.81 
scared 0.04 0.93  1.11  0.13  -0.38  11.46  0.85 
sad 0.04 0.92  1.20  0.19  -0.56  18.49  0.69 

Notes. Int. = Intercepts; V. = Variance; Factor loadings were standardized by dividing them by the state-specific item standard deviations. We considered the 

loadings to be considerable when they were larger than 0.3 in absolute value (e.g., Hair, Anderson, Tatham, & Black, 2014). These loadings are depicted in boldface.  
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Table 5 

Logit and log intensity parameters for the structural model and additional transition probabilities respectively for the lowest and 

highest possible score on the three covariates for a two-hour interval. 

parameter coef s.e. Wald df p-value    

𝛽02  0.4043 0.3951 1.0470 1 0.31    

𝛾012  -6.3343 1.2503 25.9605 2 < 0.01  Transition Probabilities 

𝛾021  -4.5298 1.2851     low covariate score high covariate score 

𝛾12,𝑃  0.5214 0.2409 6.0807 2 0.048  𝑃0 = (
. 82 . 18
. 28 . 72

) 𝑃1 = (
. 72 . 28
. 29 . 71

) 
𝛾21,𝑃  0.1533 0.2312     

𝛾12,𝐸𝐶𝐷  0.8274 0.2006 42.3336 2 < 0.01  𝐸𝐶𝐷1 = (
. 93 . 07
. 33 . 67

) 𝐸𝐶𝐷5 = (
. 19 . 81
. 12 . 88

) 
𝛾21,𝐸𝐶𝐷  -0.0534 0.1994     

𝛾12,𝐷  0.4932 0.2183 8.9022 2 0.012  𝐷1 = (
. 95 . 05
. 04 . 96

) 𝐷7 = (
. 70 . 30
. 66 . 34

) 
𝛾21,𝐷  0.6761 0.2268     

Notes. We present four decimals as this is the default in LatentGOLD. P = being with parent; EDC = emotion clarity deficit; D = differentiation of emotions; the 

probabilities were calculated by setting the covariate of interest to the lowest or highest score and the other two on their averages; the average scores were 0.33 

for P, 2.48 for EDC and 4.39 for D; the overall model was significant with Wald (6) = 68.43; 8.6e-13 and thus outperformed the intercept only model.
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Appendix 

A.1. Derivations 

A.1.1. Derivation Step 2 

We obtain the conditional probabilities, 𝑝(𝑤𝑖𝑡𝑚 = 1|𝑠𝑖𝑡𝑘 = 1), starting from the joint 

probability 𝑝(𝑤𝑖𝑡𝑚 = 1, 𝑠𝑖𝑡𝑘 = 1, 𝐲𝑖𝑡) applying the product rule: 

 𝑝(𝑤𝑖𝑡𝑚 = 1, 𝑠𝑖𝑡𝑘 = 1, 𝐲𝑖𝑡) = 𝑝(𝑤𝑖𝑡𝑚 = 1|𝑠𝑖𝑡𝑘 = 1, 𝐲𝑖𝑡) × 

𝑝(𝐲𝑖𝑡|𝑠𝑖𝑡𝑘 = 1)𝑝(𝑠𝑖𝑡𝑘 = 1). 
(A1) 

Next, conditioning on 𝑠𝑖𝑡𝑘 = 1 yields 

 𝑝(𝑤𝑖𝑡𝑚 = 1, 𝐲𝑖𝑡|𝑠𝑖𝑡𝑘 = 1) = 𝑝(𝑤𝑖𝑡𝑚 = 1|𝑠𝑖𝑡𝑘 = 1, 𝐲𝑖𝑡)𝑝(𝐲𝑖𝑡|𝑠𝑖𝑡𝑘 = 1)

= 𝑝(𝑤𝑖𝑡𝑚 = 1|𝐲𝑖𝑡)𝑝(𝐲𝑖𝑡|𝑠𝑖𝑡𝑘 = 1) 
(A2) 

because 𝑤𝑖𝑡𝑚 = 1 is conditionally independent of 𝑠𝑖𝑡𝑘 = 1 given 𝐲𝑖𝑡 (see Figure 3). Next, we 

obtain the marginal probability by integrating out 𝐲𝑖𝑡: 

 
𝑝(𝑤𝑖𝑡𝑚 = 1|𝑠𝑖𝑡𝑘 = 1) = ∫𝑝(𝑤𝑖𝑡𝑚 = 1|𝐲𝑖𝑡)𝑝(𝐲𝑖𝑡|𝑠𝑖𝑡𝑘 = 1) 𝑑𝒚𝑖𝑡, (A3) 

where the second factor on the right-hand side can be rewritten using Bayes’ theorem: 

 
𝑝(𝐲𝑖𝑡|𝑠𝑖𝑡𝑘 = 1) =

𝑝(𝐲𝑖𝑡)𝑝(𝑠𝑖𝑡𝑘 = 1|𝐲𝑖𝑡)

𝑝(𝑠𝑖𝑡𝑘 = 1)
. (A4) 

Inserting this in Equation A3 leads to  

 
𝑝(𝑤𝑖𝑡𝑚 = 1|𝑠𝑖𝑡𝑘 = 1) =

∫𝑝(𝑤𝑖𝑡𝑚 = 1|𝐲𝑖𝑡)𝑝(𝐲𝑖𝑡)𝑝(𝑠𝑖𝑡𝑘 = 1|𝒚𝑖𝑡) 𝑑𝐲𝑖𝑡
𝑝(𝑠𝑖𝑡𝑘 = 1)

, (A5) 

where 𝑝(𝑠𝑖𝑡𝑘 = 1) is factored out from the integral because it is independent of 𝐲𝑖𝑡. 
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A.1.2. Derivation Step 3 

We consider the joint probability and solve for 𝑝(𝐖𝑖|𝐙𝑖). The joint probability is 

 𝑝(𝐖𝑖, 𝐘𝑖, 𝐒𝑖, 𝐙𝑖) = 𝑝(𝐖𝑖|𝐘𝑖 , 𝐒𝑖, 𝐙𝑖)𝑝(𝐘𝑖|𝐒𝑖, 𝐙𝑖)𝑝(𝐒𝑖|𝐙𝑖)𝑝(𝐙𝑖). (A6) 

Next, we condition on 𝐙𝑖 and use the assumption that 𝐙𝑖 and 𝐘𝑖 are conditionally independent 

given 𝐒𝑖 and that 𝐖𝑖 is conditionally independent of 𝐒𝑖 and 𝐙𝑖 given 𝐘𝑖, which is also depicted in 

Figure 4: 

 𝑝(𝐖𝑖, 𝐘𝑖, 𝐒𝑖|𝐙𝑖) = 𝑝(𝐖𝑖|𝐘𝑖)𝑝(𝐘𝑖|𝐒𝑖)𝑝(𝐒𝑖|𝐙𝑖)

= 𝑝(𝐰𝑖1|𝐲𝑖1)⋯𝑝(𝐰𝑖𝑇|𝐲𝑖𝑇)𝑝(𝐲𝑖1|𝐬𝑖1)⋯𝑝(𝐲𝑖𝑇|𝐬𝑖𝑇)𝑝(𝐬𝑖1, … , 𝐬𝑖𝑇|𝐳𝑖1, … , 𝐳𝑖𝑇)

= 𝑝(𝐲𝑖1|𝐬𝑖1)𝑝(𝐰𝑖1|𝐲𝑖1)⋯  𝑝(𝐲𝑖𝑇|𝐬𝑖𝑇)𝑝(𝐰𝑖𝑇|𝐲𝑖𝑇) × 

𝑝(𝐬𝑖1|𝐳𝑖1)𝑝(𝐬𝑖2|𝐬𝑖1, 𝐳𝑖2)⋯𝑝(𝐬𝑖𝑇|𝐬𝑖𝑇−1, 𝐳𝑖𝑇)⏞                          
𝑀𝑎𝑟𝑘𝑜𝑣 𝐶ℎ𝑎𝑖𝑛 (𝑀𝐶)

, 

(A7) 

where we use 𝑝(𝐰𝑖𝑡|𝐲𝑖𝑡) with the 𝑚th element in 𝐰𝑖𝑡 equal to 1 and all others equal to 0 as a 

shorthand notation for 𝑝(𝑤𝑖𝑡𝑚 = 1|𝐲𝑖𝑡). We then marginalize over 𝐒𝑖 and 𝐘𝑖: 

 
𝑝(𝐖𝑖|𝐙𝑖) =∑⋯∑∫𝑝(𝐲𝑖1|𝐬𝑖1)𝑝(𝐰𝑖1|𝐲𝑖1)𝑑𝒚𝑖𝑡⋯∫  𝑝(𝐲𝑖𝑇|𝐬𝑖𝑇)𝑝(𝐰𝑖𝑇|𝐲𝑖𝑇)𝑑𝒚𝑖𝑡

𝐬𝑖𝑇𝐬𝑖1

×𝑀𝐶 

(A8) 

We can then rewrite 𝑝(𝐲𝑖𝑡|𝐬𝑖𝑡) using Bayes’ theorem (see A4), insert it in equation A8, and make 

use of A5, which leads to 

 𝑝(𝐖𝑖|𝐙𝑖)

=∑⋯∑
∫𝑝(𝐬𝑖1|𝐲𝑖1)𝑝(𝐲𝑖1)𝑝(𝐰𝑖1|𝐲𝑖1)𝑑𝐲𝑖1

𝑝(𝐬𝑖1)

⏞                    
𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 

⋯
∫𝑝(𝐬𝑖𝑇|𝐲𝑖𝑇)𝑝(𝐲𝑖𝑇)𝑝(𝐰𝑖𝑇|𝐲𝑖𝑇)𝑑𝐲𝑖𝑇
⏞                      

𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟

𝑝(𝐬𝑖𝑇)
𝐬𝑖𝑇𝐬𝑖1

×𝑀𝐶 

(A9) 
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=∑⋯∑𝑝(𝐰𝑖1|𝐬𝑖1)⋯𝑝(𝐰𝑖𝑇|𝐬𝑖𝑇) × 𝑀𝐶

𝐬𝑖𝑇𝐬𝑖1

 

=∑⋯∑𝑝(𝐬𝑖1|𝐳𝑖1)∏𝑝(𝐬𝑖𝑡|𝐬𝑖𝑡−1, 𝐳𝑖𝑡)

𝑇

𝑡=2𝐬𝑖𝑇𝐬𝑖1

∏𝑝(𝐰𝑖𝑡|𝐬𝑖𝑡)

𝑇

𝑡=1

. 

 

A.2. Additional Simulation Study: Autocorrelated Factor Scores 

A.2.1. Problem  

In order to investigate whether ignoring autocorrelated factor scores is more harmful for the 

performance of 3S-LMFA than it is for FIML-LMFA (Vogelsmeier, Vermunt, van Roekel, et al., 

2019), we conducted a simulation study with selected conditions from the main simulation study 

(a–d) and, furthermore, manipulated the autocorrelation (e). More specifically, we kept the state-

separation conditions (a) and (b) as they had considerable effects on the performances in the main 

simulation study (Section 3) but we kept respectively only one factor of the conditions pertaining 

to the amount of information (c and d) as these conditions had only minor effects on the 

performances. For the size of the autocorrelation, we used the coefficients suggested by Cabrieto, 

Tuerlinckx, Kuppens, Grassmann, and Ceulemans (2017), that were also used in the simulation 

study to investigate the effect of ignoring autocorrelation in FIML-LMFA (Vogelsmeier, Vermunt, 

van Roekel, et al., 2019). 

A.2.2. Design and Procedure  

State-separation 

 

a. Between-state loading differences at two levels: medium 

loading differences, low loading differences; 

b. Between-state intercept differences at two levels: no intercept 

differences, low intercept differences; 

Amount of 

information 

c. Fixed number of subjects 𝑁: 70*; 

d. Fixed number of days 𝐷: 7*; 

 e. Autocorrelation 𝜙 at three levels: 0, 0.3, 0.7 
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The conditions marked with “*” are the ones that are the ones that are now fixed to one value from 

the manipulated conditions in the main simulation study. This design resulted in 2 × 2 × 1 × 1 ×

3 = 12 conditions. The data generation was the same as in the main simulation study (again with 

100 replicates). However, instead of using an orthogonal regular factor model as shown in 

Equation (1), we used an orthogonal dynamic factor model, where the factor scores at time-point 

𝑡 are correlated with the factor scores at 𝑡 − 1 by the coefficient 𝜙 (e):  

 𝐲𝑖𝑡 = 𝛎𝑘 + 𝚲𝑘 𝐟𝑖𝑡 + 𝐞𝑖𝑡 

𝐟𝑖𝑡 = 𝜙𝐟𝑖𝑡−1 + 𝛆𝑖𝑡, 
(A10) 

where 𝛆𝑖𝑡~ 𝑀𝑉𝑁(𝟎, 𝐈) is a subject- and time-point specific 𝐹𝑘 × 1 noise vector. The correlated 

factor scores 𝐟𝑖𝑡 were generated by means of a recursive filter (Hamilton, 1994), that is, the first 

factor scores are set equal to the noise elements 𝛆𝑖1 and the remaining scores are computed as in 

Equation A10. In order to retain the expected variance of 1, we multiplied the resulting factor 

scores by √1 − 𝜙2 (De Roover, Timmerman, Van Diest, Onghena, & Ceulemans, 2014). Note 

that we computed the average autocorrelation across all datasets belonging to the same condition 

to see how the manipulation played out. The autocorrelations were -0.02, 0.26, and 0.64. 

A.2.3. Results 

Overall, the state recovery and the parameter recovery of the MMs was unaffected for both 3S- 

and FIML-LMFA (Appendix Table 1). Only the state recovery after step 3 of 3S-LMFA was 

slightly worse for increasing autocorrelations. Furthermore, with both procedures, the intercept 

recovery decreased for increasing autocorrelations. This is because the autocorrelations are partly 

captured by the intercepts and in turn have a higher variation around the population values.  

Regarding the SM (Appendix Table 2), the recovery was also largely unaffected for both 3S- 

and FIML-LMFA. Only for the strongest autocorrelation (𝜙 = .7) in the 3S-LMFA, the RMSE 
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was slightly higher and the SEs slightly more underestimated for the initial state intercepts and the 

bias was slightly higher for the transition intercepts. Thus, the autocorrelation appears to be 

partially captured by the step-3 latent state transitions. However, the effect of the autocorrelation 

on the parameter estimation is negligible. 
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Appendix Table 1 

Goodness of Recovery for the States, Loadings, Intercepts and Unique Variances Conditional on the Three Autocorrelation Factors 

  Goodness of Recovery 

  States  

(𝐴𝑅𝐼) 
 States RI  

(𝑅𝐼) 
 Loadings 

(𝐺𝑂𝑆𝐿) 
 Intercepts 

(𝑀𝐴𝐷𝑖𝑛𝑡) 
 Unique Variances  

(𝑀𝐴𝐷𝑢𝑛𝑖𝑞𝑢𝑒) 

  Type of LMFA 

Condition Factors 3S-1 3S-3 FIML  3S-1 3S-3 FIML  3S FIML  3S FIML  3S FIML 

Auto-correlation 𝜙 

0 .61 .87 .94  .82 .94 .97  1 1  .02 .02  .01 .01 

.3 .61 .86 .94  .82 .94 .97  1 1  .03 .03  .01 .01 

.7 .61 .85 .93  .82 .93 .97  1 1  .04 .04  .01 .01 

Note. LMFA = latent Markov factor analysis; 3S-1 = three-step step 1; 3S-3 = three-step step 3; FIML = full information maximum likelihood. The perfect 

loading recoveries result from the loading matrices that are highly similar across the states. 

 

Appendix Table 2 

Parameter Bias, RMSE, and SE/SD for the Four Types of Parameters Averaged Across and Conditional on the Three Autocorrelation 

Factors 

  Initial state intercept parameters  
Transition intercept 

parameters 
 

Slope parameters 

covariate 1 
 

Slope parameters 

covariate 2 

  Bias RMSE SE/SD  Bias RMSE SE/SD  Bias RMSE SE/SD  Bias RMSE SE/SD 

Condition Factor FIML-LMFA 

Average .01 .31 1.01  -.02 .18 1  -.01 .18 0.99  0 .17 0.99 

Auto-correlation 𝜙 

0 .02 .31 1.01  -.02 .18 1.01  0 .18 0.98  0 .17 0.97 

.3 .01 .31 1.02  -.02 .18 1.01  0 .18 0.98  0 .17 0.99 

.7 0 .32 1.01  -.02 .19 0.99  -.01 .18 1  0 .17 1 

Condition Factor 3S-LMFA 

Average .01 .35 0.98  .01 .23 0.98  0 .23 0.95  0 .20 0.96 

Auto-correlation 𝜙 

0 0 .33 1  0 .23 0.99  -.01 .23 0.94  -.01 .20 0.96 

.3 0 .33 1  -.01 .23 0.99  -.01 .23 0.94  0 .21 0.95 

.7 .02 .37 0.94  .04 .23 0.97  0 .22 0.97  0 .20 0.97 

Note. LMFA = latent Markov factor analysis; FIML = full information maximum likelihood; 3S = three-step. 
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A.3. Additional Simulation Study: Varying Covariate Distributions and Effects 

A.3.1. Problem  

In order to test whether non-uniform covariate distributions and the strength of the covariate 

effects influence the performance of 3S- and FIML-LMFA differently, we repeated selected 

conditions from the main simulation study and additionally manipulated the strength of the 

covariate effects (e) and the distribution of covariates (f). More specifically, we selected the 

conditions that affected the performances in the main simulation study the most (Section 3). This 

implied that we kept the state-separation conditions (a and b) while selecting only one factor from 

the conditions pertaining to the amount of information (c and d). 

A.3.2. Design and Procedure  

The new conditions were the following: 

State-separation 

 

a. Between-state loading differences at two levels: medium 

loading differences, low loading differences; 

b. Between-state intercept differences at two levels: no intercept 

differences, low intercept differences; 

Amount of 

information 

c. Number of Subjects 𝑁 at four levels: 70*; 

d. Number of days 𝐷 at two levels: 7*; 

 e. Strength of covariate effects 𝜏 at three levels: 0.25, 0.5, 1 

 
f. Distributions of covariate scores at three levels: 70/30, 50/50, 

30/70 

The conditions marked with “*” are the ones that are now fixed to one value from the main 

simulation study. This design resulted in 2 × 2 × 1 × 1 × 3 × 3 = 36 conditions. We generated 

the data as in the main simulation study (again with 100 replicates). However, the effects of the 

time-varying covariate 𝑍𝑖𝑡1 and time-constant covariate 𝑍𝑖2 as well as their distributions across 

observations and/or subjects differed depending on factors (e) and (f). First, with regard to the 

strength of the covariate effects, a higher value for 𝑍𝑖𝑡1 still lowered the probabilities of 

transitioning to and staying in state 1 and 3 and increased the probabilities of transitioning to and 
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staying in state 2 but with slope parameters being equal to  𝛾12,𝑍𝑖𝑡1 = 𝛾32,𝑍𝑖𝑡1 = 1 and 𝛾13,𝑍𝑖𝑡1 =

𝛾21,𝑍𝑖𝑡1 = 𝛾23,𝑍𝑖𝑡1 = 𝛾31,𝑍𝑖𝑡1 = −𝜏. Furthermore, a higher value for 𝑍𝑖2 still increased the 

probability to transition away from the origin state but with slope parameters being equal to 

𝛾12,𝑍𝑖𝑡2 = 𝛾13,𝑍𝑖𝑡2 = 𝛾21,𝑍𝑖𝑡2 = 𝛾23,𝑍𝑖𝑡2 = 𝛾31,𝑍𝑖𝑡2 = 𝛾32,𝑍𝑖𝑡2 = 𝜏. The parameter τ was either 0.25, 

0.5, or 1 (see factor e). 

 Next, with regard to the distributions of the covariate scores −0.5 and 0.5, we included 

conditions with a uniform distribution (i.e., “50/50”) and both a “70/30” and “30/70” condition. 

The time-varying covariate  𝑍𝑖𝑡1 was assigned such that the score changed from −0.5 to 0.5 after 

5 of the 7 days in the 70/30 condition and after 2 days in the 30/70 condition. To obtain exactly a 

50/50 condition, the scores changed after 3 days for the first half of the subjects and after 4 days 

for the other half of the subjects. For the time-constant covariate 𝑍𝑖2, the scores −0.5 and 0.5 were 

randomly selected with probabilities being equal to the three distribution levels (i.e., 70/30, 50/50, 

or 30/70). Note that we included a 70/30 and 30/70 condition to prevent a possible confounding of 

the results: The covariate scores influence the transition probabilities (i.e., the state memberships 

become more or less stable) and a higher stability of the state membership previously showed a 

positive influence on the recovery of the states in the FIML-LMFA (Vogelsmeier, Vermunt, van 

Roekel, et al., 2019). For instance, a covariate score of −0.5 on both covariates would lead to a 

slightly more stable transition probability matrix than a covariate score of 0.5 on both covariates 

(e.g., with an average of 96% versus 92% probability to stay in a state with 𝜏 = 1 and a one-unit 

interval). Note, however, that the difference is so small that it might not affect the performance. 

A.3.3. Results 

The results can be found in Appendix Table 3. The state and MM recovery of 3S- and FIML-

LMFA were largely unaffected by the strength of the effect and the distribution of the covariates 
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and, therefore, will not be further discussed. With regard to the SM, there was only a very small 

effect with regard to the RMSE but it was the same for both estimation procedures. First, the RMSE 

was slightly higher for the strongest covariate effect (i.e., 𝜏 = 1). This is likely due to somewhat 

larger SE values that are inherent to larger logit parameters. Second, the RMSE for the transition 

intercepts and transition slopes was slightly higher for non-uniform covariate distributions, which 

is likely caused by the general loss of information when covariate scores are not uniformly 

distributed. 
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Appendix Table 3 

Parameter Bias, RMSE, and SE/SD for the Four Types of Parameters Averaged Across and Conditional on the Manipulated Factors 

  
Initial state intercept parameters  

Transition intercept 

parameters 

 Slope parameters 

covariate 1 

 Slope parameters 

covariate 2 

  Bias RMSE SE/SD  Bias RMSE SE/SD  Bias RMSE SE/SD  Bias RMSE SE/SD 

Condition Factor FIML-LMFA 

 Average .01 .31 1.02  -.03 .22 0.98  0 .2 0.98  0 .18 0.98 

Strength of  

covariate effects 𝜏 
0.25 .01 .30 1.02  -.03 .21 0.98  -.01 .2 0.97  0 .18 0.98 

0.50 0 .30 1.04  -.02 .21 0.98  0 .2 0.99  0 .18 0.99 

1.00 .02 .32 1  -.03 .23 0.99  0 .21 0.99  -.01 .19 0.97 

Distributions of  

covariate scores 

30/70 0 .31 1.01  -.03 .24 0.99  -.02 .21 0.98  -.02 .2 0.98 

50/50 .02 .31 1.02  -.02 .19 0.98  0 .18 0.99  0 .17 0.98 

70/30 .02 .30 1.03  -.03 .22 0.98  .01 .21 0.99  0 .18 0.98 

 Factor 3S-LMFA 

 Average .01 .34 1  -.02 .28 0.98  0 .26 0.97  0 .22 0.96 

Strength of  

covariate effects 𝜏 
0.25 .02 .33 1.01  -.02 .27 0.98  -.01 .25 0.96  0 .22 0.97 

0.50 .01 .33 1  -.01 .27 0.98  0 .25 0.97  0 .22 0.97 

1.00 0 .34 1  -.02 .30 0.99  .01 .28 0.98  -.01 .24 0.94 

Distributions of  

covariate scores 

30/70 .01 .34 0.99  -.02 .31 0.99  -.02 .27 0.98  -.02 .25 0.96 

50/50 -.01 .34 1  -.01 .23 0.97  0 .23 0.96  0 .2 0.96 

70/30 .01 .33 1.02  -.02 .28 0.99  .02 .27 0.98  0 .22 0.95 

Note. LMFA = latent Markov factor analysis; FIML = full information maximum likelihood; 3S = three-step. 
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A.4. Step 1 and 2 syntax of 3S-LMFA 

//LG5.1// 

version = 5.1 

infile 'Dataset.csv' quote = single 

model 

title 'Step 1 and Sep 2 CT-[2 2 2]'; 

options 

   algorithm 

      tolerance=1e-008 emtolerance=1e-008 emiterations=5000 nriterations=0; 

   startvalues 

      seed=0 sets=25 tolerance=1e-005 iterations=100 PCA; 

   bayes  

      latent=1 categorical=1 poisson=1 variances=1; 

   quadrature nodes=10; 

   missing  includeall; 

    

  output 

      parameters=effect  

      betaopts=wl  

      standarderrors  

      classification 

      profile 

      probmeans=posterior 

      bivariateresiduals 

      estimatedvalues=model 

      iterationdetails  

      WriteParameters = 'results_parameters1.csv' 

      write = 'results1.csv'; 

 

  outfile  

      'classification1.csv' classification  

  keep id deltaT cov1_vary_D cov2_con_N; 

    

 variables 

  dependent  

   V1 continuous,V2 continuous,V3 continuous,V4 continuous,V5 continuous,V6 

continuous,V7 continuous,V8 continuous,V9 continuous,V10 continuous, V11 continuous, 

V12 continuous,V13 continuous, V14 continuous, V15 continuous, V16 continuous, V17 

continuous, V18 continuous, V19 continuous, V20 continuous; 

 

  latent 

   State nominal  coding=first 3, 

   F1 continuous,  

   F2 continuous; 

    

equations 

  (1) F1| State; 

  (1) F2| State; 

  State <- 1 ; 

  V1-V20 <- 1 | State + F1 | State + F2 | State; 

   

  V1  | State; 

  V2  | State; 

  V3  | State; 

  V4  | State; 

  V5  | State; 

  V6  | State; 

  V7  | State; 

  V8  | State; 

  V9  | State; 

  V10 | State; 
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  V11 | State; 

  V12 | State; 

  V13 | State; 

  V14 | State; 

  V15 | State; 

  V16 | State; 

  V17 | State; 

  V18 | State; 

  V19 | State; 

  V20 | State; 

end model 

 

A.5. Step 3 syntax of 3S-LMFA 

Note that the Step 3 syntax below is only one option to estimate the third step. Instead of 

calculating the classification error probability matrix manually and inserting it into the syntax ('w 

= …') to tell LG that the matrix should be used as fixed response probability matrix, it is also 

possible to use the “step3” option in LG ('step3 ml modal;'). When using this option, LG 

automatically calculates the classification error probability matrix from the input file (i.e., the step 

1 posterior probabilities and the modal state assignments, here 'classification1.csv') and uses 

it as fixed response probability matrix. However, when using the step3 option, LG does not yet 

provide the user with the final latent state-assignments. This is because the classification is often 

not the primary focus of interest in other three-step analyses where researchers rather focus on 

parameter estimates such as covariate effects. Since classification is certainly of interest in LMFA, 

we suggest to use the manual syntax version. 

//LG5.1// 

version = 5.1 

infile 'classification1.csv' quote = single 

model 

title 'Step 3-[2 2 2]'; 

options 

   algorithm 

      tolerance=1e-008 emtolerance=1e-006 emiterations=5000 nriterations=500 

expm=pade; 

   startvalues 

      seed=0 sets=25 tolerance=1e-005 iterations=100 PCA; 

   bayes latent=1 categorical=1 poisson=1 variances=1 ct=1; 

quadrature nodes=10; 

   missing  includeall; 

  output  

      parameters=effect  

      standarderrors  

      classification 
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      profile  

      iterationdetails  

      estimatedvalues=model 

      WriteParameters = 'results_parameters2.csv' 

      write = 'results2.csv'; 

 outfile  

      'classification2.csv' classification;   

      

variables 

  caseid id; 

  independent cov1_vary_D nominal, cov2_con_N nominal; 

  timeinterval deltaT; 

 latent  

   State3 nominal dynamic coding=first 3; 

   dependent State#; 

    

    

equations 

   State3[=0] <- 1; 

   State3 <- (~tra) 1 | State3[-1]  

                 + (~tra) cov1_vary_D | State3[-1] + (~tra) cov2_con_N | State3[-1]; 

   State# <- (w~wei) State3; 

w= values obtained from first syntax; 

end model 

 

A.6. Extra information Application 

A.6.1. Model Selection Procedure with the CHull method 

For the model selection, we ran all models five times to see whether the maximum likelihood 

solutions were indeed global solutions. We considered the solutions to be global when the absolute 

differences between the loglikelihood values of the 5 solutions was respectively smaller than 0.01. 

As a result, 11 out of 19 models were passed to the model selection procedure with the CHull 

method, which was conducted with the R-package “multichull” (note that we also did a sensitivity 

check by doing the CHull test including possible local optima and the selected model was always 

the same). The CHull can be considered an automated generalized scree-test (Bulteel et al., 2013; 

Ceulemans & Kiers, 2006; Ceulemans & Van Mechelen, 2005). The method identifies the models 

in a “loglikelihood versus number of parameters” plot that are at the higher boundary of the convex 

hull (Cattell, 1966) and identifies the optimal model by evaluating the elbow in the scree plot (i.e., 

the point where the improvement in fit with additional parameters levels off). During the CHull 

procedure, following Wilderjans et al. (2013)’s recommendation, we discarded models for which 



THREE-STEP ESTIMATION OF LMFA    67 

 

the fit was almost equal to the fit of a less complex model (i.e., when it fitted less than 1 percent 

better than the less complex model, which is also the default value in the R-package). The model 

with 2 states and respectively 2 and 1 factors (“[2 1]”) was the best (see output in A.6.2). The 

second best model was the model with two states and 1 factor in both states (“[1 1]”). From the 

grouping of points, corresponding to the different number of states, it can also be seen that the 

improvement in fit from 1 to 2 states is much larger than the one from 2 to 3 states. Model [2 1] 

was also better than model [1 1] according to the BIC values (see output A.6.3) and furthermore, 

better interpretable (model [1 1] was comparable to model [2 1] only that the second factor in the 

first state was clearly missing as was evident from tremendously high unique variance proportions 

for the items that had high loadings on the second factor in model [2 1]. Therefore, for this 

application, we chose model [2 1].  

A.6.2. Output CHull 

Output from the CHull method performed by the R-package “multichull“ shows the models 

considered, the models on the upper bound of the convex hull, the selected model [2 1], and the 

CHull-figure plotting the number of free parameters against the loglikelihood value.  

SETTINGS BY USER: 
Optimalization: upper bound 
Required improvement in fit: 1% 
Number of considered models: 11  
 
RESULTS: 
Number of selected models: 1 
 
SELECTED MODEL: 
      complexity      fit 
[2 1]         71 -41695.7 
 
ALL MODELS ON upper BOUND: 
        complexity       fit       st 
[1]             30 -48338.88       NA 
[1 1]           61 -42738.06 1.733280 
[2 1]           71 -41695.70 2.572494 
[1 1 1]         92 -40844.78       NA 
 
 
ORIGINAL MODELS 
        complexity       fit 
[1]             30 -48338.88 
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[2]             40 -47601.71 
[3]             50 -47468.42 
[1 1]           61 -42738.06 
[2 1]           71 -41695.70 
[2  2]          81 -41477.40 
[3 2]           91 -41430.23 
[1 1 1]         92 -40844.78 
[3 3]          101 -41406.83 
[2 1 1]        102 -40495.49 
[3 2 1]        122 -40367.42 

 

 

A.6.3. Output BIC 

This is an extra BIC-figure that, comparable to the CHull-figure, plots the number of free 

parameters against the BIC value, showing that model [2 1] fits considerably better than model  

[1 1] not only according to the CHull but also according to the BIC value. 
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Online Supplement 

S.1. Differentiation of Emotional Experience 

Dutch translation of the Range Subscale form the Range and Differentiation of Emotional 

Experience Scale (RDEES; Kang & Shaver, 2004); Answer format: 1= Totally disagree; 2 = 

disagree; 3= disagree a little, 4= neutral; 5= agree a little; 6 = agree; 7 = Totally agree 
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“De volgende stellingen hebben betrekking op jezelf en je emoties. Sommige formuleringen lijken 

op elkaar. Probeer je daar niet aan te storen en probeer elke stelling te beantwoorden.” 

 Ik ben me bewust van de verschillende nuances en subtiliteiten van een gegeven emotie 

 Elke emotie heeft een aparte en unieke betekenis voor mij 

 Ik heb de neiging om subtiel onderscheid te maken tussen soortgelijke emoties (bijv. 

depressief en neerslachtig; geërgerd en geïrriteerd) 

 Ik ben mij ervan bewust dat iedere emoties een compleet verschillende betekenis heeft 

 Als emoties verschillende kleuren waren, dan zou ik zelfs de kleinste verschillen binnen 

één soort kleur (emotie) kunnen opmerken 

 Ik ben me bewust van de subtiele verschillen tussen de gevoelens die ik ervaar 

 Ik ben goed in het onderscheiden van subtiele verschillen in de betekenis van nauw 

verwante emotie-woorden 

 

S.2. Emotion Clarity Deficit 

Dutch translation of the Emotion Clarity Questionnaire (ECQ; Flynn & Rudolph, 2010). 

Answer format:  1= Totally disagree; 2 = disagree; 3= neutral; 4 = agree, 5 = Totally agree 

 

“De volgende stellingen hebben betrekking op hoe jij je gevoelens ervaart. Geef antwoord in 

hoeverre je het eens bent met elke stelling.” 

 Ik weet meestal hoe ik mij voel1 

 Meestal begrijp ik mijn gevoelens1 

 Ik ben vaak in de war over mijn gevoelens 

 Mijn gevoelens zijn meestal logisch voor mij1 

 Ik vind het vaak lastig om te begrijpen hoe ik mij voel 

 Ik ben meestal zeker over hoe ik mij voel1 

 Ik weet meestal hoe ik mij voel1 

1 reversed coded 

S.3. Example of Display of Mood items in the Ethica Data App 

Display of the instructions and the first item (Now, I am feeling joyful) in the Ethica Data app 

(Ethica Data Services Inc, 2018). The participants could scroll through all the Affect items from 

the Dutch version of the Positive and Negative Affect Schedule for Children (PANAS-C; 
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Ebesutani et al., 2012; Watson et al., 1988) and give their answer by sliding on the Visual Analog 

Scale (VAS) from 0 (“not at all”) to 100 (“very much”). Initially the slider was set to zero. The 

participants had to move the slider before they could continue with the next items. Translation of 

instruction: The following questions are about how you are feeling. The answer scale from “not at 

all” to “very much”. 

 


