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Abstract 

Drawing valid inferences about daily or long-term dynamics of psychological constructs (e.g., 

depression) requires the measurement model (indicating which constructs are measured by 

which items) to be invariant within persons over time. However, it might be affected by time- or 

situation-specific artefacts (e.g., response styles) or substantive changes in item interpretation. 

To efficiently evaluate longitudinal measurement invariance, and violations thereof, we proposed 

Latent Markov factor analysis (LMFA), which clusters observations based on their measurement 

model into separate states, indicating which measures are validly comparable. LMFA is, however, 

tailored to ‘discrete-time’ data, where measurement intervals are equal, which is often not the 

case in longitudinal data. In this paper, we extend LMFA to accommodate unequally-spaced 

intervals. The so-called ‘continuous-time’ (CT) approach considers the measurements as 

snapshots of continuously evolving processes. A simulation study compares CT-LMFA parameter 

estimation to its discrete-time counterpart and a depression data application shows the 

advantages of CT-LMFA. 

   

Keywords: experience sampling, measurement invariance, factor analysis, latent Markov modeling, 

continuous-time  
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1. Introduction 

Longitudinal studies are important to investigate dynamics of latent (i.e., unobservable) 

psychological constructs (e.g., how depression evolves during or after a therapy). The study design 

may be, for instance, a traditional daily or weekly diary study or modern Experience Sampling 

Methodology (ESM; e.g., Scollon, Kim-Prieto, & Diener, 2003), in which subjects may rate 

questionnaire items say three times a day at randomized time-points over a course of several weeks. 

Regardless of the design, a measurement model (MM), obtained by factor analysis (FA), indicates to 

what extent the latent constructs (or ‘factors’) are measured by which items, as indicated by the values 

of ‘factor loadings’. In order to draw valid inferences about the measured constructs, it is crucial that 

the MM is invariant (i.e., equal) across time because only then constructs are conceptually similar. 

However, this longitudinal measurement invariance (MI) is often not tenable because artefacts such 

as response styles (e.g., an agreeing response style leads to higher loadings; Cheung & Rensvold, 

2000), substantive changes in either item interpretation or the number and nature of the measured 

constructs (e.g., high and low arousal factors replace positive and negative affect factors; Feldman, 

1995) may affect the MM differently over time. A confirmatory testing approach is often too restrictive 

because researchers often have no or incomplete a priori hypotheses about such discrete MM 

changes. Therefore, Vogelsmeier, Vermunt, van Roekel, and De Roover (2019) proposed latent 

Markov factor analysis (LMFA), which is an exploratory method that clusters observations of multiple 

subjects into a few latent states depending on the underlying MM, where each state gathers validly 

comparable observations as will be described in detail in Section 2.2.1.  

However, an important aspect of longitudinal data neglected in LMFA so far is that the time 

lags between two adjacent measurement occasions may vary between and within subjects. For 

traditional diary studies, the intervals may differ, for instance, because intervals during therapy are 

shorter (e.g., a day or a week) than follow up intervals after therapy (e.g., six months). Intervals in 

ESM studies may be unequal because of the ‘signal-contingent’ sampling scheme, which is the most 

widely used scheme to determine when and how often the participants are questioned (de Haan-

Rietdijk, Voelkle, Keijsers, & Hamaker, 2017). That is, random beeps request the participants to fill in 
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questionnaires with the aim to reduce memory bias and predictability of the measurements. 

Additionally, night intervals are usually longer than the intervals during the day and, in any study 

design, participants may skip measurement occasions so that the interval becomes longer. 

To accommodate unequally spaced measurement intervals, we extend LMFA in this paper, 

following the trend of various modeling approaches to move away from the so called ‘discrete-time’ 

(DT) modeling approach that assumes equal intervals and instead adopt a ‘continuous-time’ (CT) 

approach that allows for unequal time intervals (TIs). The CT approach fits the idea that we only 

capture snapshots of the studied process (e.g., because the limitation of observing the entire process) 

but that processes evolve continually and not only at discrete measurement occasions (Böckenholt, 

2005; Crayen, Eid, Lischetzke, & Vermunt, 2017; de Haan-Rietdijk et al., 2017; Voelkle & Oud, 2013). 

Furthermore, in contrast to results from DT studies, where parameters are estimated for a specific 

interval, results obtained from CT studies are comparable across studies because they are 

transferable to any interval of interest (de Haan-Rietdijk et al., 2017; Voelkle & Oud, 2013). Moreover, 

analyzing data containing unequal intervals with DT methods possibly leads to wrong conclusions 

when not accounting for the exact elapsed time (Driver, Oud, & Voelkle, 2017; Voelkle & Oud, 2013).   

The paper is organized as follows: Section 2 describes the data structure, the differences 

between CT- and DT-LMFA, how the DT approach may approximate CT, and the general model 

estimation. Section 3 presents a simulation study comparing the performance of CT- and DT-LMFA. 

Section 4 illustrated CT-LMFA with an application. Section 5 discusses how CT-LMFA safeguards 

further analyses of factor mean changes when MI cannot be established (e.g., by means of 

continuous-time structural equation modelling; ctsem; Driver et al., 2017) and finally ends with future 

research plans. 

 

2. Method 

2.1.  Data Structure  

The repeated measures observations (with multiple continuous variables), nested within 

subjects are denoted by 𝑦𝑖𝑗𝑡 (with 𝑖 = 1,… , 𝐼 referring to subjects, 𝑗 = 1,… , 𝐽 referring to items, and 𝑡 =
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1,… , 𝑇 to time-points) and are collected in the 𝐽 × 1 vectors 𝐲𝑖𝑡 = (𝑦𝑖1𝑡, 𝑦𝑖2𝑡 , … , 𝑦𝑖𝐽𝑡)′, which themselves 

are collected in the 𝑇 × 𝐽 data matrix 𝐘𝑖 = (𝐲𝑖1
′ , 𝐲𝑖2′,… , 𝐲𝑖𝑇

′ )′ for subject i. Note that 𝑇 may differ across 

subjects but for simplicity, we omit the index 𝑖 in 𝑇𝑖. 

2.2.  LMFA 

We first give the building blocks of the regular DT-LMFA (2.2.1) and then present CT-LMFA 

(2.2.2). 

2.2.1. DT-LMFA 

The first building block of LMFA is a latent Markov model (LMM; Bartolucci, Farcomeni, & 

Pennoni, 2014; Collins & Lanza, 2010), which is a latent class model that allows subjects to transition 

between latent classes (referred to as ‘states’). These transitions are captured by a latent ‘Markov 

chain’, which follows (a) the ‘first-order Markov assumption’, saying that the probability of being in state 

𝑘 (𝑘 = 1,… , 𝐾) at time-point 𝑡 depends only on the previous state at 𝑡 − 1 and (b) the ‘independence 

assumption’, saying that the responses at time-point 𝑡 only depend on the state at this time-point. The 

probability of starting in a state 𝑘 is given by the initial state 𝐾 × 1 probability vector 𝛑 with elements 

𝜋𝑘 = 𝑝(𝑠1𝑘 = 1), where 𝑠𝑡𝑘 = 1 refers to state-membership 𝑘 at time-point 𝑡 and ∑ 𝜋𝑘
𝐾
𝑘=1 = 1. The 

probability of being in a state 𝑘 at time-point 𝑡 conditional on the state-membership 𝑙 (𝑙 =  1,… ,𝐾) at 

𝑡 − 1  is given by the 𝐾 × 𝐾 transition probability matrix 𝐏 with elements 𝑝𝑙𝑘 = 𝑝(𝑠𝑡𝑘 = 1|𝑠𝑡−1,𝑙 = 1), 

where the row sums ∑ 𝑝𝑙𝑘
𝐾
𝑘=1 = 1. In practice, the transition probabilities depend on the interval length 

between measurements (e.g., the probabilities to stay in a state are larger if the interval amounts to 

an hour than when it amounts to a day). Note that typically these probabilities, 𝐏, are assumed to be 

constant over time. 

The second building block is a factor analysis (FA; Lawley & Maxwell, 1962) model, which 

defines the state-specific MMs. The state-specific factor model is 

 𝐲𝑖𝑡 = 𝛎𝑘 + 𝚲𝑘  𝐟𝑖𝑡 + 𝐞𝑖𝑡, (1) 

with the state-specific 𝐽 × 𝐹𝑘 loading matrix 𝚲𝑘; the subject-specific 𝐹𝑘 × 1 vector of factor scores 

𝐟𝑖𝑡~𝑀𝑉𝑁(0;𝚿𝑘) at time-point t (where 𝐹𝑘 is the state-specific number of factors and 𝚿𝑘 the state-
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specific factor (co-)variances); the state-specific 𝐽 ×  1 intercept vector 𝛎k; and the subject-specific 𝐽 ×

 1 vector of residuals 𝐞𝑖𝑡~𝑀𝑉𝑁(0;𝐃𝑘) at time-point 𝑡 ,where 𝐃𝑘 contains the unique variances 𝑑𝑘𝑗 on 

the diagonal and zeros on the off-diagonal. Note that for maximum flexibility regarding possible MM 

differences occurring across persons and time-points, LMFA generally employs an exploratory FA 

(EFA) approach, thus without a priori constraints on the factor loadings. If desired, however, 

confirmatory FA (CFA) could also be used by imposing zero loadings. 

 From Equation (1) it becomes apparent that the state-specific MMs can differ regarding their 

loadings 𝚲𝑘, intercepts 𝛎𝑘, unique variances 𝐃𝑘, and factor covariances 𝚿𝑘, implying that LMFA 

explores all levels of measurement non-invariance (described in detail in, e.g., Meredith, 1993): 

Configural invariance (equal number of factors and zero loading pattern), weak factorial invariance 

(equal loading values), strong factorial invariance (equal intercepts) and strict invariance (equal unique 

variances).  

To identify the model, factor variances in 𝚿𝑘 are restricted to one and rotational freedom is 

dealt with by means of criteria to optimize simple structure of the factor loadings (e.g., oblimin; 

Clarkson & Jennrich, 1988), between-state agreement (e.g., generalized Procrustes; Kiers, 1997) or 

the combination of the two (De Roover & Vermunt, 2019). The multivariate normal distribution with the 

state-specific covariance matrices 𝚺𝑘 = 𝚲𝑘𝚲𝑘
′ +𝐃𝑘 defines the state-specific response densities 

𝑝(𝐲𝑖𝑡|𝐬𝑡), indicating the likelihood of the 𝐽 observed item responses at time-point 𝑡 given the state-

membership at 𝑡.  

Summarized, there are three types of probabilities that together make up the joint probability 

density of subject 𝑖’s observations and state-memberships: 

 𝑝(𝐘𝑖 , 𝐒) = 𝑝(𝐬1)⏞  

initial state 
probabilities

∏𝑝(𝐬𝑡|𝐬𝑡−1)
⏞      

transition
probabilities𝑇

𝑡=2

∏𝑝 (𝐲𝑖𝑡|𝐬𝑡)
⏞      ,

response 

probabilities𝑇

𝑡=1

 (2) 

where 𝐒 = (𝐬1, 𝐬2, … , 𝐬𝑇) is the 𝐾 × 𝑇 state-membership indicator matrix. Here, the columns 𝐬𝑡 =

(𝑠𝑡1, … , 𝑠𝑡𝐾)′, for 𝑡 = 1,… , 𝑇, are binary vectors indicating the state-memberships at time-point 𝑡 (e.g., 

if 𝐾 = 3 and a subject is in state 3 at time point 𝑡, then 𝐬𝑡 = (0, 0, 1)′. When applying this model in 
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situations in which measurement intervals are not equal, the encountered transition probabilities will 

refer to more or less the average interval length in the dataset concerned. For intervals shorter than 

the average, the transition probabilities yield an overestimation of transitions while for intervals longer 

than the average, the transition probabilities yield an underestimation.   

One solution to account for unequal intervals in the DT approach to a certain extent is to 

rescale intervals to a finer unit (e.g., 1 hour) and to round the time-points to the nearest unit. So-called 

‘phantom variables’ (Driver et al., 2017; Rindskopf, 1984) containing missing values are inserted for 

all time-points without observations. Although this is good approximation if the grid is fine enough, for 

substantive researchers, transforming the dataset is burdensome and choices regarding the interval 

lengths difficult. Moreover, a high number of iterations of the algorithm described in Section 2.3 is 

required to achieve convergence, causing long computation times (for more information on this see 

Supplement A). Therefore, we only consider the CT-approach, which is a much more natural 

alternative to account for the unequal TI.  

2.2.2. CT-LMFA 

The CT approach has been extensively discussed in the literature on Markov models (Cox & 

Miller, 1965; Kalbfleisch & Lawless, 1985) and latent Markov models (Böckenholt, 2005; Jackson & 

Sharples, 2002) and overcomes inaccurate estimation by considering the length of time, 𝛿, spent in 

each of the states. Specifically, transitions from current state 𝑙 to another state 𝑘 are here defined by 

probabilities of transitioning from one state to another per very small time unit and are called transition 

intensities or rates 𝑞𝑙𝑘. These intensities can be written as: 

 𝑞𝑙𝑘 = lim
𝛿→0

𝑝(𝑠𝑡𝑘 = 1|𝑠𝑡−𝛿,𝑙 = 1)

𝛿
. (3) 

The 𝐾 × 𝐾 intensity matrix 𝐐 contains the transition intensities 𝑞𝑙𝑘 for 𝑘 ≠ 𝑙 as off-diagonal elements 

and their negative row sums, i.e., −∑ 𝑞𝑙𝑘𝑘≠𝑙 , on the diagonals. For example, for 𝐾 = 3,  

 𝐐 = (

−(𝑞12 + 𝑞13) 𝑞12 𝑞13
𝑞21 −(𝑞21 + 𝑞23) 𝑞23
𝑞31 𝑞32 −(𝑞31 + 𝑞32)

). (4) 
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There are three assumptions underlying the CT latent Markov model: (1) the time spent in a 

state is independent of the time spent in a previous state, (2) the transition intensities 𝑞𝑙𝑘 are 

independent of and thus constant across time1, and (3) the time spent in a state is exponentially 

distributed (Böckenholt, 2005). The matrix of transition probabilities 𝐏 can be computed as the matrix 

exponential2 of the intensity matrix 𝐐 times the TI 𝛿 (Cox & Miller, 1965): 

 𝐏(𝛿) = 𝑒𝐐𝛿. (5) 

Note that the specific structure of 𝐐 (with negative row sums on the diagonal) is a consequence of 

taking the matrix logarithm of 𝐏 with its restriction ∑ 𝑝𝑙𝑘
𝐾
𝑘=1 = 1 (Cox & Miller, 1965). With Equation (5), 

we can compute the transition probabilities for arbitrary TIs, which is, as mentioned in the introduction, 

a distinctive advantage of the CT approach. Thus, the probabilities change depending on the interval 

length between two consecutive observations. How the transition probability matrix 𝐏 changes 

depending on TI 𝛿 is shown in Figure 1 based on an arbitrary intensity matrix 𝐐.   

 

[Insert Figure 1 about here] 

 

As a final remark, note that the joint probability density of subject i’s observations and state-

memberships for DT-LMFA in Equation (2) also applies to CT-LMFA. The only difference is that the 

transition probabilities 𝑝(𝐬𝑡|𝐬𝑡−1) depend on the 𝑞𝑙𝑘 and the TI 𝛿 for subject 𝑖 at time-point 𝑡 (with 

regard to 𝑡 − 1) such that 𝑝𝛿𝑡𝑖(𝐬𝑡|𝐬𝑡−1) is a more appropriate notation.  

2.3. Estimation 

Using syntax, Latent GOLD (LG; Vermunt & Magidson, 2016) can be used to find the 

parameters previously described—collectively referred to as 𝛉—that maximize the loglikelihood 

                                                   
1 Note that this assumption might be relaxed. For example, one might assume different transition intensities for night 

and day intervals or that transition intensities change over time. In these cases, one may use covariates or specific 
model approaches (e.g., a model with a Weibull distribution that models the intensities as a function of time). However, 
this is beyond the scope of the current paper.   
2 The matrix exponential 𝑒𝐀, where 𝐀 can be any square matrix, is equal to ∑

𝐀𝑎

𝑎!
= 𝐈 + 𝐀 +

𝐀𝐀

2!
+
𝐀𝐀𝐀

3!
+⋯ ,∞

𝑎=0  where 𝐈 is 

the identity matrix. 
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function log 𝐿. Apart from the transition probability formulation in DT, where 𝑝𝛿𝑡𝑖(𝐬𝑡|𝐬𝑡−1) = 𝑝(𝐬𝑡|𝐬𝑡−1), 

the log 𝐿 formulation is the same for DT-LMFA and CT-LMFA. The log 𝐿 for both models is given by: 

 log 𝐿(𝛉|𝐘) =∑log(∑…

𝐬𝑖1

∑𝑝(𝐬𝑖1)∏𝑝𝛿𝑡𝑖(𝐬𝑡|𝐬𝑡−1)

𝑇

𝑡=2

∏𝑝 (𝐲𝑖𝑡|𝐬𝑖𝑡)

𝑇

𝑡=1𝐬𝑖𝑇

) ,

𝐼

𝑖=1

 (6) 

which is complicated by the latent states. Therefore, to find the maximum likelihood (ML) solution, LG 

utilizes the Expectation Maximization (EM; Dempster, Laird, & Rubin, 1977) algorithm, more 

specifically the forward-backward algorithm (Baum, Petrie, Soules, & Weiss, 1970), which is described 

in detail for DT-LMFA in Vogelsmeier et al. (2019). Estimation of the CT-LMFA differs in that the 

Maximization step (M-step) requires using a Fisher algorithm not only for updating the state-specific 

covariance matrices (Lee & Jennrich, 1979) but also for updating the log transition intensities 

(Kalbfleisch & Lawless, 1985). A summary is provided in the appendix (Section A). Note that the 

estimation procedure assumes that we know the number of states 𝐾 and factors within the states 𝐹𝑘. 

Since these numbers are only known in simulation studies, a model selection procedure is required 

when working with real data. For LMFA, the Bayesian information criterion (BIC) proved to perform 

well in terms of selecting the best model complexity (Vogelsmeier et al., 2019). 

 

3. Simulation study 

3.1. Problem 

We employed an ESM design with unequal TIs— currently the go-to research design to study 

daily-life dynamics—to evaluate how CT-LMFA and standard DT-LMFA differ in recovering the model 

parameters. Generally, we expected CT-LMFA to outperform DT-LMFA, although the performance 

difference might be small (Crayen et al., 2017). We manipulated three types of conditions that 

previously were shown to influence MM parameter recovery and state recovery (Vogelsmeier et al., 

2019): (1) factor overdetermination, (2) state similarity and (3) amount of information available for 

estimation. We expect the differences in MM parameter recovery and state recovery across the two 

methods to be especially pronounced for (1) a lower factor overdetermination, (2) a lower state 

similarity, and (3) a lower amount of information because the posterior state probabilities are functions 
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of the observed data and the state-memberships at the adjacent time-points (see Section A.1). Hence, 

the estimation benefits from precisely estimated transition probabilities. These precise estimates are 

likely more important for more ‘difficult’ conditions, where the state-membership is more difficult to 

predict based on the observed data. 

Based on the simluation study of Vogelsmeier et al. (2019), the conditions for (1) factor 

overdetermination were (a) number of factors (where a higher number causes lower factor 

overdetermination for a fixed number of items; e.g., Preacher & MacCallum, 2002) and (b) unique 

variances (where lower unique variances increase common variance and therefore also factor 

overdetermination; e.g., Briggs & MacCallum, 2003).  The conditions for (2) state similarity were (c) 

between-state loading similarity and (d) between-state intercept difference. The conditions for (3) 

amount of information—with (e) sample size, N, (f) number of days of participation, D, and (g) number 

of observations per day, 𝑇𝑑𝑎𝑦—were based on a typical ESM design.  

Note that 𝑇𝑑𝑎𝑦 determines the amount of DT violation (i.e., to what degree the intervals differ 

from the average day interval) as well as the transition probabilities. A higher 𝑇𝑑𝑎𝑦 implies smaller DT 

violations and fewer transitions to other states at two consecutive observations as will be described in 

Section 3.2. Performance differences regarding the transition parameter recovery are expected to be 

especially pronounced for a lower 𝑇𝑑𝑎𝑦 and thus for higher DT violations and higher transition 

probabilities to other states, where the latter leads to lower dependence of states at two consecutive 

time-points, making estimation more difficult (Vogelsmeier et al., 2019). 

3.2. Design and Procedure 

We crossed seven factors with the following conditions in a complete factorial design: 

a. number of factors per state 𝐹𝑘 = 𝐹 at two levels: 2, 4; 

b. unique variance 𝑒 at two levels: .2, .4; 

c. between-state loading difference at two levels: medium loading difference and low loading 

difference; 

d. between-state intercept difference at two levels: no intercept difference, low intercept 

difference; 

e. sample size 𝑁 at two levels: 35, 75; 

f. the number of days 𝐷 at two levels: 7, 30; 

g. the measurements per subject and day 𝑇𝑑𝑎𝑦 at three levels: 3, 6, 9; 
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resulting in 2 (a) × 2 (b) × 2 (c) × 2 (d) × 2 (e) × 2 (f) × 3 (g) = 192 conditions. The number of items 

𝐽 was fixed to 20 and the number of states 𝐾 was fixed to 3.  

The loading differences between the states (c) was either medium or low. For both conditions, 

we started with a common base loading matrix, 𝚲𝐵𝑎𝑠𝑒, which was a binary simple structure, where all 

items loaded on only one factor and all factors were measured by the same amount of items (i.e., 10 

for 𝐹 = 2 and 5 for 𝐹 = 4). To clarify this, consider 𝚲𝐵𝑎𝑠𝑒 for the example of 𝐹 = 2: 

 𝚲𝐵𝑎𝑠𝑒 = (
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

)
′
 (7) 

To induce loading differences between the states, we altered the base matrices  differently for each 

state. Specifically, for the medium between-state loading difference condition, we shifted respectively 

one loading from the first factor to the second and one from the second to the first for both for 𝐹 =

2 and 𝐹 = 4, so that, for 𝐹 = 4, only the first two factors differed across states. Items for which the 

loadings were shifted differed across states. This manipulation did not affect the overdeterminaton of 

the factors, which was therefore the same across states. Thus, for the example of 𝐹 = 2, the loading 

matrices for the first two (of the three) states were 

 

𝚲1 = (
λ1 1 1 1 1 1 1 1 1 1 λ2 0 0 0 0 0 0 0 0 0
λ2 0 0 0 0 0 0 0 0 0 λ1 1 1 1 1 1 1 1 1 1

)
′

 

𝚲2 = (
1 λ1 1 1 1 1 1 1 1 1 0 λ2 0 0 0 0 0 0 0 0
0 λ2 0 0 0 0 0 0 0 0 1 λ1 1 1 1 1 1 1 1 1

)
′

 

(8) 

with λ1 = 0 and λ2 = 1. The low between-state loading difference condition differed from the just 

described one only in that, instead of shifting loadings, we added one cross-loading of √. 5 to the first 

and one to the second factor for different items across states, thereby also lowering the primary 

loadings to √. 5. Thus, the entries in 𝚲1 and 𝚲2 in Equation (8) were  λ1 = √. 5 and λ2 = √. 5 for this 

condition. Finally, we rescaled the loading matrices rowwise so that the sum of squares per row was 

1 − 𝑒, where 𝑒 was either .40 or .20..  

 To have a measure of between-state loading matrix similarity, we computed the grand mean, 

𝜑𝑚𝑒𝑎𝑛, of  Tucker’s (1951) congruence coefficient (defined by 𝜑𝑥𝑦 =
𝑥′𝑦

√𝑥′𝑥√𝑦′𝑦
, where 𝑥 and 𝑦 refer to 
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columns of a matrix) across each pair of factors, with 𝜑 = 1 indicating proportionally identical factors. 

For the medium loading difference condition, 𝜑𝑚𝑒𝑎𝑛 across all states and factors was .8 and for the 

low loading difference condition .94, regardless of the number of factors.  

 For creating between state intercept differences (d), we first created a base intercept vector 

consisting of fixed values of 5: 

 𝛎𝐵𝑎𝑠𝑒 = (5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5)′ (9) 

For the no intercept difference condition, we used 𝛎𝐵𝑎𝑠𝑒 for each state. For the low intercept difference 

condition, we increased two intercepts to 5.5 for different items across the states. This resulted in the 

following two intercept vectors for the first and the second state. 

 

𝛎1 = (𝟓. 𝟓 𝟓. 𝟓 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5)′ 

𝛎2 = (5 5 𝟓. 𝟓 𝟓. 𝟓 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5)′ 
(10) 

Datasets were generated for either 35 or 75 subjects, 𝑁, (e). The number of days, 𝐷, for 

simulated participation was either 7 or 30 (f) and the number of measures per day (h), 𝑇𝑑𝑎𝑦, was 3, 6, 

or 9. The total number of observations 𝑇 for one data matrix was therefore, 𝑁 × 𝑇𝑑𝑎𝑦 ×𝐷. Factors (f) 

and (g) also determined the sampling schedule. The day lasted from 9 am and to 9 pm so that days 

and nights were on average twelve hours long. Depending on whether 𝑇𝑑𝑎𝑦 was 3, 6 or 9, the general 

intervals between measurement occasions during the day were 𝛿𝑡𝑔𝑒𝑛𝑒𝑟𝑎𝑙 = 12/(𝑇𝑑𝑎𝑦 − 1) and thus 6, 

2.4 or 1.5 hours, while the night intervals were not directly affected by 𝑇𝑑𝑎𝑦. To obtain a CT sampling 

scheme with randomness typical for ESM studies, we allowed for a uniform random deviation around 

the fixed time-points with a maximum of plus and minus 30 percent of the DT TIs (e.g., for 𝑇𝑑𝑎𝑦 = 3, 

we calculated the product of the general TI and the percentage of violation, 6 × 0.3, which is 1.8, and 

therefore, we sample the deviation from the uniform distribution 𝑈𝑛𝑖𝑓(−1.8,1.8)). This explains why 

the DT violation is bigger for a smaller 𝑇𝑑𝑎𝑦. 

Finally, the transition intensities in 𝐐 were fixed across all conditions, subjects, and time. To 

determine 𝐐, we considered transition probabilities 𝐏 realistic for short TIs and determined them for 

the intermediate 𝑇𝑑𝑎𝑦 = 6 condition and thus for an interval of 2.4 hours. That means, 2.4 hours 
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pertains to one unit and therefore, all other intervals will be scaled to this unit interval. From the chosen 

probabilities 

 𝐏 = (
. 950 . 025 . 025
. 025 . 950 . 025
. 025 . 025 . 950

), (11) 

𝐐 was derived by taking the matrix logarithm3: 

 𝐐 = (
−.05 . 03 . 03
. 03 −.05 . 03
. 03 . 03 −.05

). (12) 

Because of the design, the transition probabilities across measurement occasions will be larger for 

𝑇𝑑𝑎𝑦 = 3, where intervals 𝛿𝑡𝑖 are longer, and smaller for 𝑇𝑑𝑎𝑦 = 9, where intervals are shorter. 

In the open-source program R (R Core Team, 2018) for each subject, we sampled 𝑇𝑑𝑎𝑦 × 𝐷 

time-points as previously described (see Section 3.2). Subsequently, we sampled a random initial 

state from a multinomial distribution with equal probabilities and, based on the subject-specific TIs, 

generated a random CT latent Markov chain (LMC) containing state memberships for each subject.  

According to the LMCs, we generated 𝑁 data matrices 𝐘𝑖 with the state-specific factor model of 

Equation (1), assuming orthogonal factors, and concatenated the 𝐘𝑖’s into one dataset 𝐘 =

(𝐘1′, 𝐘2′,… , 𝐘𝑁′)′. In total, 20 replicates of the 192 conditions and thus 3840 datasets were generated. 

3.3. Results 

Performances were evaluated based on 3831 out of 3840 datasets that converged at the first 

try in both analyses (99.7 % analyses converged in CT-LMFA and all converged in DT-LMFA)4. 

3.3.1. Performance measures 

First, the state recovery was examined with the Adjusted Rand Index (ARI) between the true 

and the estimated state MC’s. The ARI is insensitive to state label permutations and ranges from 0 

                                                   
3 Note that the rows do not sum to zero only because of rounding in this representation. 
4 Note that it may also happen that the estimation results in a locally maximum likelihood (ML) solution, implying that 
the local ML solution has a smaller log 𝐿 value than the global ML solution. Note that the latter is unknown but an 
approximation (‘proxy’) can be obtained by using the population parameters as starting values and comparing the 
multistart solution to the proxy solution: When log 𝐿𝑚𝑢𝑙𝑡𝑖𝑠𝑡𝑎𝑟𝑡 < log 𝐿𝑝𝑟𝑜𝑥𝑖 (i.e., by .001 to exclude minor calculation 

differences), we considered the solution as local maximum. In the converging ML solutions, a local maximum was found 
for only 0.55 % of the datasets analyzed with CT-LMFA and for 0.47 % of the datasets analyzed with DT-LMFA. 
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(i.e., overlap is at chance) to 1 (i.e., perfect overlap). Second, to obtain the differences in the goodness 

of loading recovery (𝐺𝑂𝑆𝐿), we averaged the Tucker congruence coefficient between the true and the 

estimated loading matrices across factors and states: 

 
𝐺𝑂𝑆𝐿 = 

∑ ∑ 𝜑(𝚲𝑘
𝑓
, 𝚲̂𝑘
𝑓
)𝐹

𝑓=1
𝐾
𝑘=1

∑ 𝐹𝑘
𝐾
𝑘=1

. (13) 

We used Procrustes rotation (Kiers, 1997)5 to rotate state-specific loadings 𝚲̂𝑘
𝑓
 to 𝚲𝑘

𝑓
. This solves the 

label switching of the factors within that state. To account for differences in state labels, we retained 

the permutation that maximized 𝜑(𝚲𝑘
𝑓
, 𝚲̂𝑘
𝑓
). Third, for all other parameters (i.e., transition parameters, 

intercepts, unique variances, and initial state probabilities), we computed the mean absolute difference 

(𝑀𝐴𝐷) between the true and the estimated parameters6. Note that, for the transition and initial state 

parameters, we considered the state permutation that was found to maximize the loading recovery. 

Furthermore, the transition parameters are probabilities for DT but intensities for CT. In order to make 

deviations from the population parameters as comparable as possible, we transformed the intensities 

from the CT analyses to probabilities for the 1-unit TI of 2.4. Moreover, the ‘true’ parameter in DT-

LMFA to evaluate the 𝑀𝐴𝐷𝑡𝑟𝑎𝑛𝑠 is based on the average population TI. 

3.3.2. Goodness of parameter recovery   

As can be seen from the ‘average’ results in Table 1, CT-LMFA was slightly superior to DT-

LMFA regarding the general state and transition probability recovery but still very comparable 

regarding MM parameter recovery. Moreover, contrary to our expectations, the difference in MM and 

state recovery across the two analyses were not affected by most of the manipulated conditions, 

probably because the transition probabilities were overall very well estimated. Only lower levels of 

𝑇𝑑𝑎𝑦 considerably increased the performance difference between CT- and DT-LMFA, which was in 

line with our expectations.  

 

                                                   
5 We conducted the rotation in R, since factor rotation was just added to LG after the study was conducted. 
6 Note that the 𝑀𝐴𝐷𝑢𝑛𝑖𝑞 may be affected by Heywood cases pertaining to improper factor solutions where at least one 

unique variance is zero or negative (e.g., Van Driel, 1978). Heywood cases did not occur in any of the analyses and 
are therefore not further discussed. 
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[Insert Table 1 about here] 

 

3.4. Conclusion and Recommendations 

To sum up, there was a striking similarity in recovering parameters under a wide range of 

conditions across the CT- and DT-LMFA. Nevertheless, it was shown that CT-LMFA leads to the best 

state recovery and, furthermore, provides researchers with valid transition probabilities for any TI of 

interest and should therefore be the preferred method. Furthermore, although we demonstrated the 

robustness of DT-LMFA in recovering the correct MMs for a typical ESM design, where the degree of 

DT violation is rather small, we cannot generalize the findings purporting that DT-LMFA is an adequate 

substitute for datasets with large DT violations.  

 

4. Application 

In the following, we apply CT-LMFA to longitudinal data of the National Institute of Mental 

Health (NIMH) Treatment of Depression Collaborative Research Program (TDCRP; Elkin et al., 1989) 

to evaluate MM changes over time. In brief, the data consisted of repeated depression measures of 

122 subjects with a major depression disorder. By means of the 20-item Beck Depression Inventory 

(BDI; Beck, Rush, Shaw, & Emery, 1979; items listed in Table 2), depression was assessed on a 4-

point scale before treatment, during treatment (i.e., weekly and additionally after 4, 8 and 12 weeks), 

at termination, and at follow ups after 6, 12, and 18 months. The total number of observations was 

1700 with an average of 14.24 per subject (ranging from 1 to 30). Intervals between the observations 

varied tremendously from very small (e.g., a day when the weekly and the 4-week questionnaire were 

completed on two consecutive days) to very large (e.g., a year when certain follow ups were skipped)7.  

To begin with the data-analysis, model selection with the BIC (comparing converged solutions 

of one to three states and one-to three factors per state) indicated that the best fitting model was a 

two state model with three factors in the first state and two factors in the second state8. Hence, 

                                                   
7 Note that some additional information about choices made regarding the data is provided in Supplement C. 
8 The syntax for the final model can be found in Supplement B. 
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configural invariance is clearly violated. In order to shed light on the state-specific MMs, we 

investigated the standardized oblimin rotated loadings (Table 2). Considering the standardized 

loadings of higher than .3 in absolute value (e.g., Hair, Anderson, Tatham, & Black, 2014), state-1 is 

characterized by three factors pertaining to (1) ‘despair’—with strong loadings of, for example, ‘mood’, 

‘pessimism’,  and ‘lack of satisfaction’—, (2) ‘self-image’—with strong loadings of, for example, ‘guilty 

feeling’, ‘self-hate’, and ‘self accusation’—, and (3) ‘cognition/body’—with strong loadings of, for 

example, ‘irritability’, ‘sleep disturbance’, and ‘fatigability’. In state-2, all items beside ‘sense of 

punishment, ‘self-punitive wishes’ and loss of appetite’, which all have no variation and thus no 

loadings at all, mainly load on one factor, therefore pertaining to (1) ‘depression’. Only ‘indecisiveness’ 

and ‘work inhibition’ have considerable loadings on the other factor as well, which may pertain to (2) 

‘cognition’. Moreover, intercepts and unique variances are higher in the first than in the second state.  

 

[Insert Table 2 and Figure 2 about here] 

 

Next, we look at the estimated transition intensity matrix 𝐐 = (
−.02 . 02
. 01 −.01

), from which we 

can calculate 𝐏 for any interval of interest, for example, for one week 𝐏𝑤𝑒𝑒𝑘 =

(
. 89 . 11
. 08 . 92

) , six month  𝐏0.5𝑦𝑒𝑎𝑟 = (
. 43 . 57
. 42 . 58

) and a year  𝐏𝑦𝑒𝑎𝑟 = (
. 43 . 57
. 43 . 57

), showing how transitions 

become more likely up to a certain point in time. Looking at the estimated initial state probabilities  𝛑 =

(. 9 . 1) and Figure 2, which shows the transitions between states over time for six exemplary persons 

in the sample, it becomes apparent that patients have a high probability of starting in state-1 with the 

trend of moving towards state-2. Combined with knowing what the MMs look like, we conclude that, 

over time, patients obtained a more unified concept of depression (high loadings on only one factor), 

improved assessing their degree of symptoms by means of the BDI (lower unique variances), and 

perceived less symptoms (lower intercepts) than at the beginning of their therapy. This broadly 

confirms previous research of Fokkema, Smits, Kelderman, and Cuijpers (2013) who compared the 

screening and termination MMs of this dataset with CFA and found that the participants obtained a 
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more concrete idea of their depression, perhaps because therapists explain the concept of depression 

during sessions so that patients learn about their illness, which may influence patients’ concepts of 

depression and how they evaluate their symptoms. However, due to the pure exploratory nature of 

this study, drawing substantive conclusions would require more research such as a replication study. 

 

5. Discussion 

In this paper, we introduced continuous-time (CT) latent Markov factor analysis (LMFA)—which 

models measurement model (MM) changes in time-intensive longitudinal data with unequal 

measurement intervals—and compared the method to the regular discrete-time (DT)-LMFA. Although 

the recovery of states was only slightly superior in CT-LMFA, we demonstrated why the method should 

be favored: CT-LMFA has a natural match with the assumption that processes evolve at irregular time 

intervals (TIs) and transition intensities can be transformed to DT transition probabilities for arbitrary 

TIs. This allows researchers to compare transition probabilities within and across studies, leading to 

more freedom in interpreting time-intensive longitudinal data. 

CT-LMFA is a valuable first data-analysis step because, by pinpointing changes in the MM, it 

safeguards valid results when further investigating factor mean changes (e.g., by means of ctsem; 

Driver et al., 2017). For example, the structure of the MM in one state might indicate the presence of 

a response style. Researchers may then continue with the ‘reliable’ part of the data only (i.e., the 

measures in the state without the response style) or choose to correct for the response style in the 

corresponding part of the data. If only, say, two item loadings are invariant across states, researchers 

may decide to remove these items and to continue with the entire dataset. CT-LMFA may also indicate 

that there are unobserved groups of subjects that mostly stay in one state. In that case, a mixture CT-

SEM analysis with latent subpopulations could be a suitable next step.  

In the future, one would ideally use hypothesis tests to trace significant differences across the 

states. This will be possible by means of Wald tests once rotational freedom is dealt with in the 

estimation procedure so that proper standard errors are obtained. To solve the rotation problem for 

multiple groups simultaneously, De Roover and Vermunt (2019) recently developed a ‘multigroup 
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factor rotation’, which rotates group-specific loadings both to simple structure and between-group 

agreement. The next step is to tailor this promising method to the states in CT-LMFA and, thereby, to 

enable hypothesis testing. 
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Figures and Tables 

Table 1 

Goodness of recovery per type of parameter and convergence conditional on the manipulated factors  

Note. LMFA = latent Markov factor analysis; CT = continuous-time; DT = discrete-time. The perfect loading recoveries are a consequence of the highly similar 
loading matrices across the states that have been mixed up. 

 

  Goodness of Recovery for 

  
States 
(𝐴𝑅𝐼) 

 
Loadings 
(𝐺𝑂𝑆𝐿) 

 

Transition 

Parameters  

(𝑀𝐴𝐷𝑡𝑟𝑎𝑛s) 

 
Intercepts 
(𝑀𝐴𝐷𝑖𝑛𝑡) 

 
Unique Variances 

(𝑀𝐴𝐷𝑢𝑛𝑖𝑞) 
 

Initial States 
(𝑀𝐴𝐷𝑖𝑛𝑖𝑡𝑖𝑎𝑙) 

  Type LMFA 

Condition Factors CT DT  CT DT  CT DT  CT DT  CT DT  CT DT 

Factors per State Fk 
2 .87 .85  1 1  .00 .06  .03 .03  .01 .01  .06 .06 

4 .84 .83  1 1  .00 .06  .03 .03  .01 .01  .06 .06 

Between-State Loading 
Difference 

medium .89 .88  1 1  .00 .06  .02 .03  .01 .01  .06 .06 

low .82 .81  1 1  .01 .06  .03 .03  .01 .01  .06 .06 

Between-State Intercept 
difference 

no .80 .79  1 1  .01 .06  .03 .03  .01 .01  .06 .06 

low .90 .90  1 1  .00 .06  .02 .03  .01 .01  .06 .06 

Unique Variance 𝑒 
.2 .91 .90  1 1  .00 .06  .02 .02  .01 .01  .06 .06 

.4 .79 .78  1 1  .01 .06  .03 .03  .02 .02  .06 .06 

Sample Size 𝑁 
35 .85 .84  1 1  .01 .06  .03 .03  .02 .02  .07 .07 

75 .86 .85  1 1  .00 .06  .02 .02  .01 .01  .05 .05 

Number of Participation 
Days 𝐷 

7 .84 .83  1 1  .01 .06  .03 .03  .02 .02  .06 .06 

30 .86 .85  1 1  .00 .06  .02 .02  .01 .01  .06 .06 

Measurements per day 
𝑇𝑑𝑎𝑦 

3 .75 .74  1 1  .01 .10  .03 .03  .02 .02  .06 .06 

6 .88 .87  1 1  .00 .05  .02 .02  .01 .01  .06 .06 

9 .93 .91  1 1  .00 .03  .02 .02  .01 .01  .06 .06 

All Conditions                  

Average .85 .84  1 1  .00 .06  .03 .03  .01 .01  .06 .06 

SD .13 .13  0 0  .01 .03  .01 .01  .01 .01  .03 .03 
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Table 2 

Standardized oblimin rotated factor loadings, intercepts, and unique variances of the CT-LMFA model with two states and respectively 

three and two factors for the Beck Depression Inventory repeated-measures application data 

 State 1   State 2 

 Factors  Int.  Unique V.  Factors  Int.  Unique V. 

Items Despair Self-image Cognition/Body      Depression Cognition     

Mood .44 .22 .32  1.20  .30  .73 -.03  0.40  .16 

Pessimism .56 .29 .08  1.32  .31  .77 -.17  0.38  .15 

Sense of Failure .45 .52 -.03  1.29  .27  .79 -.25  0.34  .13 

Lack of Satisfaction .55 -.09 .42  1.38  .28  .70 .29  0.55  .14 

Guilty Feeling .13 .62 -.02  1.20  .49  .49 -.10  0.23  .18 

Sense of Punishment -.06 .43 -.01  0.98  .93  .00 .00  0.00  .00 

Self-Hate .20 .60 .17  1.39  .25  .77 -.15  0.52  .16 

Self Accusations .20 .70 -.08  1.30  .25  .80 -.28  0.50  .14 

Self Punitive Wishes .41 .22 .05  0.65  .40  .00 .00  0.00  .00 

Crying Spells .01 .23 .45  0.97  .68  .43 .10  0.19  .13 

Irritability .02 .14 .57  0.97  .31  .55 .24  0.53  .21 

Social Withdrawal .23 .04 .62  1.14  .30  .66 .25  0.46  .20 

Indecisiveness .18 .18 .48  1.25  .43  .64 .34  0.50  .18 

Body Image -.10 .57 .18  1.23  .59  .62 -.18  0.53  .42 

Work Inhibition .37 .14 .28  1.29  .31  .64 .33  0.49  .15 

Sleep Disturbance .05 -.07 .58  1.26  .63  .42 .24  0.51  .33 

Fatigability .26 -.01 .59  1.32  .32  .63 .29  0.61  .18 

Loss of Appetite -.01 -.10 .45  0.75  .54  .00 .00  0.00  .00 

Somatic Preoccupation -.15 .10 .40  0.56  .38  .42 -.04  0.29  .22 

Loss of Libido  .04 .00 .55  1.08  .75  .44 .20  0.49  .43 

Note. Int. = Intercepts; V. = Variance; To aid interpretation, we standardized factor loadings by dividing them by the state-specific item standard deviations. Loadings 

with an absolute value larger than 0.3 are depicted in boldface. In state 1, Cor(Despair, Self-image) = .57, Cor(Despair, Cognition/Body) = -.28, and Cor(Self-image, 

Cognition/Body) = -.25; In state 2, Cor(Depression, Cognition/Body) = -.77. 
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Figure 1.  Probabilities of transitioning to another state as a function of the time interval 𝛿 between two 

measurement occasions. The transition probabilities increase with 𝛿 until they reach a stationary distribution. Three 

example probability matrices are calculated based on 𝐐 (left matrix) and 𝛿 = 1, 10, 80. Note that ‘[𝑙,𝑘]’ indicates the 

elements in the matrices with 𝑙 referring to the rows and 𝑘 to the columns and that the exact 𝐐 matrix can be 
obtained by taking the matrix logarithm of 𝐏 for 𝛿 = 1. 

 

 
Figure 2. Six representative examples of individual transition plots. Note that the scale of the spacing of the x-axis 

is not in line with the amount of days elapsed but, to enable the illustration, equal spaces are chosen.  
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Appendix A 

In (CT-)LMFA, the log 𝐿 is complicated by the unknown latent states and therefore requires 

non-linear optimization algorithms. LG uses the Expectation Maximization algorithm (EM algorithm; 

Dempster et al., 1977) that employs the so-called complete-data loglikelihood (log 𝐿𝑐), which means 

that the latent state assignments of all time-points are assumed to be known. This is convenient 

because the latent variables and the model parameters can be estimated separately in an iterative 

manner as follows: In the Expectation step (E-step; Section A.1), the parameters of interest, 𝛉̂, (i.e., 

the initial state probabilities, the transition intensities, and the state-specific measurement models 

(MMs)) are assumed to be given. In the first iteration, initial values for the parameters are used and, 

for every other iteration, the estimates from the previous iteration 𝛉̂𝑜𝑙𝑑 are applied. The time-specific 

univariate posterior probabilities of belonging to the states and the bivariate posteriors for adjacent 

measurement occasions, conditional on the data, are calculated by means of the forward-backward 

algorithm (Baum et al., 1970). These posterior probabilities are in turn used as expected values for 

the state memberships in order to obtain the expected log 𝐿𝑐 (𝐸(log 𝐿𝑐)). Then, in the Maximization 

step (M-step; Section A.2), the parameters 𝛉̂ get updated so that they maximize 𝐸(log 𝐿𝑐). This 

procedure is repeated until convergence (Section A.3). 

As mentioned in Section 2.3, the E-step and the M-step (for all parameter updates but the 

transition intensities) are largely identical with the steps for DT-LMFA. Therefore, in the following, we 

only briefly summarize these steps. For more details and derivation of the equations see Vogelsmeier 

et al. (2019). However, we describe the M-step to update the transition intensities in more detail 

(Section A.2.3) because this is the part where CT-LMFA differs from DT-LMFA. 

A.1. E-step 

The 𝐸(log 𝐿𝑐) is given by 
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𝐸(log 𝐿𝑐) =∑∑𝛾(𝑠𝑖1𝑘) log(𝜋𝑘)

𝐾

𝑘=1

𝐼

𝑖=1

+∑∑∑∑𝜀(𝑠𝑖𝑡−1,𝑙 , 𝑠𝑖𝑡𝑘) log(𝑒
𝑞𝑖𝑙𝑘𝛿𝑡𝑖)

𝐾

𝑘=1

𝐾

𝑙=1

𝑇

𝑡2

𝐼

𝑖=1

−
1

2
∑∑∑𝛾(𝑠𝑖𝑡𝑘)[𝐽 log(2𝜋 ) + log (|𝚺𝑘|) + (𝐲𝑖𝑡 − 𝛎𝑘)𝚺𝑘

−1(𝐲𝑖𝑡 − 𝛎𝑘)′]

𝐾

𝑘=1

𝑇

𝑡=1

𝐼

𝑖=1

. 

(A1) 

Here, 𝛿𝑡𝑖 refers to the time interval between time-point 𝑡 and 𝑡 − 1 for subject 𝑖. Furthermore, 𝛾(𝑠𝑖𝑡𝑘) are 

the expected values to belong to each of the states and 𝜀(𝑠𝑖𝑡−1,𝑙 , 𝑠𝑖𝑡𝑘) are the expected values to make 

transitions between the states. Both are computed based on the so called forward probabilities 

𝛼(𝑠𝑖𝑡𝑘)—which are the probabilities of observing the observations for time-point 1 to 𝑡, 𝐲𝑖1:𝑡, and ending 

in state 𝑠𝑖𝑡𝑘—and the backward probabilities 𝛽(𝑠𝑖𝑡𝑘)—which are the probabilities to be in state 𝑠𝑖𝑡𝑘 and 

to generate the remaining observations for time-point 𝑡 + 1 to 𝑇, 𝐲𝑖𝑡+1:𝑇. For time-point 𝑡 = 1, the 

forward probabilities are computed with 

 𝛼(𝑠𝑖1𝑘) = 𝜋𝑘𝑝(𝐲𝑖1|𝑠𝑖1𝑘) (A2) 

and for all for all the remaining time-points with 

 
𝛼(𝑠𝑖𝑡𝑘) = 𝑝(𝐲𝑖𝑡|𝑠𝑖𝑡𝑘)∑𝛼(𝑠𝑖𝑡−1,𝑙)𝑒

𝑞𝑖𝑙𝑘𝛿𝑡𝑖

𝐾

𝑙=1

.  (A3) 

The backward probabilities for time-point 𝑡 = 𝑇 are computed with  

 𝛽(𝑠𝑖𝑇𝑘) = 𝑝(∅|𝑠𝑖𝑇𝑘) = 1, (A4) 

where ∅ refers to ‘producing no outcome’. For all the remaining time-points the backward probabilities 

are computed with  

 
𝛽(𝑠𝑖𝑡𝑘) =∑𝛽(𝑠𝑖𝑡+1,𝑙)𝑝(𝐲𝑖𝑡+1|𝑠𝑖𝑡+1,𝑙)

𝐾

𝑙=1

𝑒𝑞𝑖𝑙𝑘𝛿𝑡𝑖 . 
(A5) 

Finally, the expected univariate values to belong to each of the states are calculated with 

 
𝛾(𝑠𝑖𝑡𝑘) = 𝑝(𝑠𝑖𝑡𝑘| 𝐘𝑖) =

𝛼(𝑠𝑖𝑡𝑘) 𝛽(𝑠𝑖𝑡𝑘)

∑ 𝛼(𝑠𝑖𝑇𝑘)
𝐾
𝑘=1

 
(A6) 

and the expected bivariate values to make transitions between the states with 

 
𝜀(𝑠𝑖𝑡−1,𝑙 , 𝑠𝑖𝑡𝑘) = 𝑝(𝑠𝑖𝑡−1,𝑙 , 𝑠𝑖𝑡𝑘|𝐘𝑖) =

𝛼(𝑠𝑖𝑡−1,𝑙) 𝑝(𝐲𝑖𝑡|𝑠𝑖𝑡𝑘) 𝑒
𝑞𝑖𝑙𝑘𝛿𝑡𝑖  𝛽(𝑠𝑖𝑡𝑘)

∑ 𝛼(𝑠𝑖𝑇𝑘)
𝐾
𝑘=1

. 
(A7) 
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Note that, upon convergence (see Section A.3), observations are assigned to the state they most 

likely belong to (i.e., to the state with the largest probability 𝛾(𝑠𝑖𝑡𝑘)).  

A.2. M-step 

In the M-step, the parameters get updated so that they maximize (log 𝐿𝑐). 

A.2.1. Update initial state probabilities and intercepts 

The initial state probabilities and state-specific intercepts are updated as follows: 

 
𝜋𝑘
𝑛𝑒𝑤 =

∑ 𝛾(𝑠𝑖1𝑘)
𝐼
𝑖=1

∑ ∑ 𝛾(𝑠𝑖1𝑘)
𝐼
𝑖=1

𝐾
𝑘=1

, 
(A8) 

 
𝛎𝑘
𝑛𝑒𝑤 =

∑ ∑ 𝛾(𝑠𝑖𝑡𝑘)𝐲𝑖𝑡
𝑇
𝑡=1

𝐼
𝑖=1

∑ ∑ 𝛾(𝑠𝑖𝑡𝑘)
𝑇
𝑡=1

𝐼
𝑖=1

. 
(A9) 

A.2.2. Update state-specific covariance matrices 

In order to find the maximum likelihood estimates for updating the state-specific covariance 

matrices ∑ = 𝚲𝑘
𝑛𝑒𝑤𝚲𝑘

𝑛𝑒𝑤′ + 𝐃𝑘
𝑛𝑒𝑤𝑛𝑒𝑤

𝑘 , the observations are weighted by the corresponding 𝛾(𝑠𝑖𝑡𝑘)-

values and these 𝐾 weighted datasets 𝐘𝑘 are in turn factor analyzed by means of Fisher scoring (Lee 

& Jennrich, 1979). 

A.2.3. Update transition intensities 

In order to calculate the updates for the intensities, we also have to a apply a Fisher algorithm 

(Kalbfleisch & Lawless, 1985). This algorithm consists of two steps. First, the partial derivatives of the 

transition probability matrix 𝐏(𝛿𝑡𝑖) have to be computed and second, a scoring procedure is used to 

find the maximum likelihood estimate of the parameters in the transition intensity matrix 𝐐, 

subsequently referred to as 𝛉𝐐. For the example of 𝐾 = 3 states, the parameters would be  𝛉𝐐 =

(𝑞12, 𝑞13, 𝑞21, 𝑞23, 𝑞31, 𝑞32). Note that Kalbfleisch and Lawless (1985) suggest to re-parameterize the 

parameters to 𝛉𝐐 = (log (𝑞12), log(𝑞13) , log(𝑞21), log(𝑞23), log(𝑞31), log(𝑞32)) in order to prevent 

restrictions of the parameter space, which is also what Latent GOLD (LG) does. In LG, the partial 

derivatives of 𝐏(𝛿𝑡𝑖) with respect to the parameters 𝜃1
𝐐
 to 𝜃𝑏

𝐐
 in 𝛉𝐐 are calculated by means of the Padé 

approximation (Moler & Van Loan, 2003). Once the partial derivatives are obtained, we start the 
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scoring procedure to get the maximum likelihood estimate of 𝛉𝐐. This implies that we first calculate 

the 𝑏 × 1 vector 𝐒(𝛉𝐐) with entries 

 
𝑆(𝜃𝑢

𝐐
) =

𝜕𝑙𝑜𝑔𝐿

𝜕𝜃𝑢
𝐐 =∑∑ ∑

𝜀(𝑠𝑖𝑡−1,𝑙 , 𝑠𝑖𝑡𝑘)

𝑝𝑙𝑘(𝛿𝑡𝑖)

𝐾

𝑘,𝑙=1

𝑇

𝑡=2

𝜕𝑝𝑙𝑘(𝛿𝑡𝑖)

𝜕𝜃𝑢
𝐐

𝐼

𝑖=1

, (A10) 

where 𝑢 =  1,… , 𝑏. Here, 𝜀(𝑠𝑖𝑡−1,𝑙 , 𝑠𝑖𝑡𝑘) are the expected bivariate state-membership probabilities 

obtained from the E-step (Equation (A7)). Next, we calculate the 𝑏 × 𝑏 matrix 𝐌(𝛉𝐐) with entries  

 
 𝑀(𝜃𝑢

𝐐
, 𝜃𝑣
𝐐
) =∑∑ ∑

𝛾(𝑠𝑖𝑡−1,𝑘)

𝑝𝑙𝑘(𝛿𝑡𝑖)

𝜕𝑝𝑙𝑘(𝛿𝑡𝑖)

𝜕𝜃𝑢
𝐐

𝜕𝑝𝑙𝑘(𝛿𝑡𝑖)

𝜕𝜃𝑣
𝐐

𝐾

𝑘,𝑙=1

𝑇

𝑡=2

𝐼

𝑖=1

, (A11) 

where 𝑣 =  1,… , 𝑏, just as 𝑢. Finally, we put all the elements together to compute the update 𝛉𝑛𝑒𝑤
𝐐

: 

 𝛉𝑛𝑒𝑤
𝐐

= 𝛉𝑜𝑙𝑑
𝐐
+𝐌(𝛉𝑜𝑙𝑑

𝐐
)
−𝟏
𝐒(𝛉𝑜𝑙𝑑

𝐐
), (A12) 

where 𝛉𝑜𝑙𝑑
𝐐

 is either the initial parameter vector (for the first iteration) or the previous parameter vector 

(for all other iterations). This procedure is repeated until convergence within one M-step of the EM 

algorithm, before the EM algorithm moves on to the next E-step. The convergence criteria for the 

Fisher algorithm within the M-step are based on the loglikelihood and the change in parameter 

estimates and are the same as the ones for the ‘outer’ total EM algorithm for CT-LMFA, which is 

explained in Section A.3.  

A.3. Convergence 

Convergence is evaluated with respect to either the loglikelihood or the change in parameter 

estimates. Primarily, LG evaluates the sum of the absolute values of the relative parameter changes, 

i.e., 𝜔 = ∑ |
𝜃̂𝑟
𝑛𝑒𝑤−𝜃̂𝑟

𝑜𝑙𝑑

𝜃̂𝑟
𝑜𝑙𝑑 |𝑅

𝑟=1 , with 𝑟 = 1,… , 𝑅 referring to the parameters. By default, LG stops when 𝜔 <

1 × 10−8. However, if the change in the loglikelihood gets smaller than 1 × 10−10 prior to reaching the 

stopping criterion for 𝜔, LG stops iterating as well. 

A.4. Start Values 

In LG, a specific multistart procedure with multiple (e.g. 25, as used in our simulation study) sets 

of start values is employed, which decreases the probability of finding a local instead of a global 

maximum. The start sets generally consist of random start values but, for loadings and residual 



CONTINUOUS-TIME LATENT MARKOV FACTOR ANALYSIS                                                    27 
 

varinces, they are based on principal component analysis  (PCA; Jolliffe, 1986) performed on the entire 

dataset. More specifically, to get 𝐾 different start sets, randomness is added to the PCA solution per 

state 𝑘. For more details on the entire multistart procedure see De Roover, Vermunt, Timmerman, and 

Ceulemans (2017) and Vermunt and Magidson (2016). 
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Supplement A 

This supplement provides additional information on the convergence problems inherent to the 

phantom-variable approach of LMFA, which emerged from an additional simulation study that we 

conducted. In this extra simulation study, we used the same datasets as in discrete-time- (DT-) and 

continuous-time- (CT-) LMFA but we put the observations on a 1-hour grid and included the phantom 

variables. Note that, when missing data is part of the data matrix, the response probabilities 𝑝 (𝐲𝑖𝑡|𝐬𝑡) 

are changed to  𝑝 (𝐲𝑖𝑡|𝐬𝑡)𝜅𝑖𝑡, where 𝜅𝑖𝑡 = 1 if subject 𝑖 provides information for time-point 𝑡 and 𝜅𝑖𝑡 = 0 

otherwise. While for 𝜅𝑖𝑡 = 1 nothing changes, for 𝜅𝑖𝑡 = 0, 𝑝 (𝐲𝑖𝑡|𝐬𝑡)0 = 1, so that the missing data do 

not influence the likelihood (Vermunt, Tran, & Magidson, 2008).  

The overall simulation study results were very much comparable to CT-LMFA (which shows 

that the theoretical approximation works very well in practice) and are therefore not further discussed. 

However, while almost all analyses converged in DT-LMFA and CT-LMFA, 10.76 % of the replications 

in the phantom variable approach exhibited estimation problems, especially for the lowest level of the 

number of measurement occasions per day (i.e., 𝑇𝑑𝑎𝑦 = 3). Closer investigation of the non-

convergence problems revealed that they were caused by reaching the maximum number of EM 

iterations without convergence (despite the high number of 10,000 iterations). The problem is that 

fewer measurement occasions per day increase the amount of phantom variables in the dataset, which 

hampers convergence. Re-estimating the non-converged models with new starting values or 

increasing the number of iterations may help. However, it should be noted that also the computation 

time is influenced. To validly compare the computation times, we re-estimated the first replications for 

all conditions while allowing for up to 50,000 iterations in the phantom-variable approach to obtain the 

computation times when estimation is not interrupted by too few iterations. With an average of about 

10 minutes, estimation in the phantom variable approach—on an i5 processor with 8GB RAM—took 

about three times longer for 𝑇𝑑𝑎𝑦 = 3 than for 𝑇𝑑𝑎𝑦 = 6 (Just to give a reference, the conditions with 

𝑇𝑑𝑎𝑦 = 3  took only about 2 minutes in CT-LMFA and 1 minute in DT-LMFA). Although this computation 

time is perfectly feasible, the phantom-variable approach can become infeasible for datasets with 
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highly unequal time intervals and very fine grids (such as the application that was described in Section 

4), which lead to very large numbers of empty rows with missing values only. 

Moreover, we also observed that the percentage of local maxima amounted to 7.24 % for 

datasets analyzed with the phantom-variable approach, which is much higher than for the other two 

methods. Here, the local maxima especially occurred for the lowest level of the number of 

measurement occasions per day, 𝑇𝑑𝑎𝑦 = 3 and hence again, just as it was the case for the 

convergence problems, the level with the most phantom variables in a dataset. More random start sets 

can reduce the probability of retaining local ML solutions (as briefly outlined in Section A.4).  

Considering all the disadvantages of the phantom variable approach (i.e., cumbersome data-

organization procedure, difficult decisions on the length of the time-interval, many required iterations 

and start sets when the number of phantom variables is large, and results that cannot be easily 

compared across studies), we advise against using the phantom variable approach, which is why we 

did not consider this approach in our main simulation study. 
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Supplement B 

In the following, we provide the Latent GOLD syntax that we used to analyze our application data, more specifically, the syntax of the 

chosen model with two states and respectively two and three factors within the states. 

 

model 

title '17 [3 2]'; 

options 

   algorithm 

      tolerance=1e-008 emtolerance=1e-008 emiterations=6000 nriterations=0; 

   startvalues 

      seed=0 sets=100 tolerance=1e-005 iterations=100 PCA; 

   bayes latent=1 

categorical=1 

poisson=1 

variances=1 ; 

montecarlo 

   seed=0 replicates=500 tolerance=1e-008; 

quadrature nodes=10; 

   missing  includeall; 

  output 

      profile parameters standarderrors estimatedvalues classification probmeans iterationdetails  

      WriteParameters = 'results_parameters17.csv' 

      write = 'results17.csv' 

      writeloadings='results_loadings17.txt'; 

  outfile  

      'classification17.csv' classification; 

variables 

  caseid short_ID; 

  timeinterval deltaT; 

  dependent  

  V1 continuous, 

  V2 continuous, 

  V3 continuous, 

  V4 continuous, 

  V5 continuous, 

  V6 continuous, 

  V7 continuous, 

  V8 continuous, 

  V9 continuous, 

  V10 continuous, 

  V11 continuous, 

  V12 continuous, 

  V13 continuous, 

  V14 continuous, 

  V15 continuous, 
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  V16 continuous, 

  V17 continuous, 

  V18 continuous, 

  V19 continuous, 

  V20 continuous; 

 latent 

   State nominal dynamic coding=first 2, 

   F1 continuous dynamic, 

   F2 continuous dynamic, 

   F3 continuous dynamic; 

   

   independent condition nominal; 

equations 

// factor variances 

  (1) F1| State; 

  (1) F2| State; 

  (1) F3| State; 

  

// Markov model 

   State[=0] <- 1 ; 

   State <- (~tra) 1 | State[-1] ; 

//Dependent variables determined by state specific      

V1 <- 1 | State + (a1)F1 | State + (b1)F2 | State + (c1)F3 | State;   

V2 <- 1 | State + (a2)F1 | State + (b2)F2 | State + (c2)F3 | State;   

V3 <- 1 | State + (a3)F1 | State + (b3)F2 | State + (c3)F3 | State;   

V4 <- 1 | State + (a4)F1 | State + (b4)F2 | State + (c4)F3 | State;   

V5 <- 1 | State + (a5)F1 | State + (b5)F2 | State + (c5)F3 | State;   

V6 <- 1 | State + (a6)F1 | State + (b6)F2 | State + (c6)F3 | State;   

V7 <- 1 | State + (a7)F1 | State + (b7)F2 | State + (c7)F3 | State;   

V8 <- 1 | State + (a8)F1 | State + (b8)F2 | State + (c8)F3 | State;   

V9 <- 1 | State + (a9)F1 | State + (b9)F2 | State + (c9)F3 | State;   

V10 <- 1 | State + (a10)F1 | State + (b10)F2 | State + (c10)F3 | State;   

V11 <- 1 | State + (a11)F1 | State + (b11)F2 | State + (c11)F3 | State;   

V12 <- 1 | State + (a12)F1 | State + (b12)F2 | State + (c12)F3 | State;   

V13 <- 1 | State + (a13)F1 | State + (b13)F2 | State + (c13)F3 | State;   

V14 <- 1 | State + (a14)F1 | State + (b14)F2 | State + (c14)F3 | State;   

V15 <- 1 | State + (a15)F1 | State + (b15)F2 | State + (c15)F3 | State;   

V16 <- 1 | State + (a16)F1 | State + (b16)F2 | State + (c16)F3 | State;   

V17 <- 1 | State + (a17)F1 | State + (b17)F2 | State + (c17)F3 | State;   

V18 <- 1 | State + (a18)F1 | State + (b18)F2 | State + (c18)F3 | State;   

V19 <- 1 | State + (a19)F1 | State + (b19)F2 | State + (c19)F3 | State;   

V20 <- 1 | State + (a20)F1 | State + (b20)F2 | State + (c20)F3 | State;   

 

//Variances 

 

V1 | State; 

V2 | State; 

V3 | State; 

V4 | State; 

V5 | State; 

V6 | State; 



5 
 

V7 | State; 

V8 | State; 

V9 | State; 

V10 | State; 

V11 | State; 

V12 | State; 

V13 | State; 

V14 | State; 

V15 | State; 

V16 | State; 

V17 | State; 

V18 | State; 

V19 | State; 

V20 | State; 

 

//constraints: 

c1[2,] = 0; 

c2[2,] = 0; 

c3[2,] = 0; 

c4[2,] = 0; 

c5[2,] = 0; 

c6[2,] = 0; 

c7[2,] = 0; 

c8[2,] = 0; 

c9[2,] = 0; 

c10[2,] = 0; 

c11[2,] = 0; 

c12[2,] = 0; 

c13[2,] = 0; 

c14[2,] = 0; 

c15[2,] = 0; 

c16[2,] = 0; 

c17[2,] = 0; 

c18[2,] = 0; 

c19[2,] = 0; 

c20[2,] = 0; 

 

 

end model 
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Supplement C 

In the following, we provide some additional information about the treatment and the Becks 

Depression Inventory (BDI; Beck, Rush, Shaw, & Emery, 1979) used in the presented application 

(Section 4). Regarding the treatment, all participants were randomly assigned to attend up to 20 

sessions of either the cognitive behavior therapy (CBT; see Beck et al., 1979; 𝑛 = 60) or the 

interpersonal psychotherapy (IPT; Klerman, Weissman, Rounsaville, & Chevron, 1984; 𝑛 = 62). Note 

that there were also patients who were assigned to medication groups but that we focused on the 

therapy groups only. Furthermore, we did not distinguish between the two types of therapy to simplify 

the application, with the main purpose to simply demonstrate the use of CT-LMFA. For the 

requirements to participate, early termination reasons  (e.g., dissatisfaction with treatment), and the 

explanation of the therapies and the procedure, you are referred to Elkin et al. (1989) where this has 

been extensively described.  

With regard to the BDI measures, note that we removed the two items ‘weight loss’ and the 

dichotomous item whether this was ‘wanted’ from the original measurement because this distinction 

cannot be made in factor analysis. Since desired weight loss is not part of depression, we deemed it 

important to remove the item from our analyses.  
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