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Abstract

Latent class analysis has been recently proposed for the multiple imputation of missing

categorical data, using either a standard frequentist approach or a non-parametric Bayesian

model called Dirichlet process mixture of multinomial distributions. The main advantage of

using a latent class model for multiple imputation is that it is very flexible in the sense that

it can capture complex relationships in the data given that the number of latent classes is

large enough. However, the two existing approaches also have certain disadvantages. The

frequentist approach is computationally demanding because it requires estimating many LC

models: first models with different number of classes should be estimated to determine the

required number of classes and subsequently the selected model is re-estimated for multiple

bootstrap samples to take into account parameter uncertainty during the imputation stage.

Whereas the Bayesian Dirichlet process models performs the model selection and the han-

dling of the parameter uncertainty automatically, the disadvantage of this method is that

it tends to use a too small number of clusters during the Gibbs sampling, leading to an

underfitting model yielding invalid imputations. In this paper, we propose an alternative

approach which combined the strengths of the two existing approaches; that is, we use the

Bayesian standard latent class model as an imputation model. We show how model selection

can be performed prior to the imputation step using a single run of the Gibbs sampler and,

moreover, show how underfitting is prevented by using large values for the hyperparameters

of the mixture weights. The results of two simulation studies and one real-data study indi-

cate that with a proper setting of the prior distributions, the Bayesian latent class model

yields valid imputations and outperforms competing methods.
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1 Introduction

Multiple imputation (MI; Rubin, 1987) is a powerful technique to deal with the problem of missing data

in a dataset. Unlike other missing data procedures, it allows for separating the missing data handling

step and the substantive analysis step under the assumption that data are missing at random (MAR).

In MI, to account for the uncertainty about the imputations, the original incomplete dataset is replaced

by multiple (m > 1) complete datasets, in each of which the missing values are replaced by different

sets of random values generated from an imputation model. In the substantive analysis, each of the m

datasets is analyzed separately and m results are pooled through Rubin’s (1987) rules. This yields point

estimates of the parameters of interest, such as regression coefficients, along with their standard errors,

which also reflect the uncertainty due to the presence of missing data (Little & Rubin, 2002; Schafer &

Graham, 2002; Allison, 2009). In order for MI to work well, the imputation model should preserve the

important relationships between the variables of interest, which can be simple bivariate associations but

also higher-order interactions.

While methods for continuous missing data have been extensively researched in the past, methods to

handle nonresponse in categorical variables have not been fully established yet. During the past years,

the literature has considered log-linear models (Schafer, 1997) and MI by chained equations (MICE;

Van Buuren and Groothuis-Oudshoorn, 2000). The former has the advantage of being able to describe

complex associations in the data (through the saturated model), but it can only handle a limited number

of variables. MICE can also be used when the number of categorical variables with missing values is

large, but since this requires estimating a large number of binary and/or multinomial logistic models,

model selection and specification can become a cumbersome task, especially if complex relationships

requiring higher-order interactions should be preserved by the imputation model (Vermunt, Van Ginkel,

Van der Ark, & Sijtsma, 2008; Si & Reiter, 2013).

Vermunt et al. (2008) proposed using a frequentist latent class (FLC), or finite mixture, model for

the MI of categorical data. LC models overcome the difficulties encountered with log-linear models and

chained equations. Firstly, the model specification only requires specifying the number of latent classes

(or mixture components) K. When K is set large enough, LC models can estimate the joint distribution

of the data and automatically capture important associations among the variables at hand (Vermunt

et al., 2008). Secondly, the particular form of the model and the local independence assumption offer

easy computation even with a large number of variables. Furthermore, Vermunt et al. (2008) showed

by means of a simulation study that MI via FLC modeling yields correct parameter estimates of the

substantive model. With the FLC model, the uncertainty about the imputation model parameters is
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accounted for by bootstrapping. Using a similar model but with a Bayesian non-parametric approach,

Si and Reiter (2013) introduced imputation of categorical data with the Dirichlet Process Mixture of

Multinomial Distributions (DPMM). While the DPMM assumes a (theoretically) infinite number of

mixture components, in practice an arbitrarily large number of clusters is selected during the Gibbs

sampling iterations (Gelfand & Smith, 1990) to perform the actual imputations.

Albeit appealing, both the FLC and the DPMM models have certain disadvantages. The former

requires multiple, sequential runs of the EM algorithm, first for determining the number of classes

using a model selection criterion like the AIC, and subsequently for obtaining the m imputations, which

involves re-estimating the selected FLC imputation model using m bootstrap samples. Hence, imputing

with the frequentist model can be time consuming, especially for large datasets when various models

with large numbers of classes have to be compared and/or when a large number of imputations has

to be performed. The DPMM overcomes these problems by performing the selection of the number of

classes and the actual imputations as part of a single run of the Gibbs sampling procedure. However,

this method is prone to data underfitting; that is, relevant associations in the data may not be picked up

because not all the necessary LCs get filled during the Gibbs sampling. This can be deleterious for the

resulting imputations: Vermunt et al. (2008) observed that underfitting in MI is undesirable, because

it causes the imputation model to disregard important relationships in the data, leading to biased and

inaccurate final inferences. On the other hand, overfitting is of small concern, since picking up particular

features which are sample specific does not introduce bias in the final imputations.

In the current paper we propose performing MI using a Bayesian LC (BLC) model, which overcomes

the disadvantages of the FLC and the DPMM approaches. One of the new feature of our approach is

that the number of classes needed for the imputation model is determined using a single, preliminary run

of the Gibbs sampler in which a model is used with a large number of classes and with prior distributions

that favor the emptying of extra components. The m imputations can subsequently be obtained in a

second run, in which the number of LCs is fixed at the value determined in the first stage. A second

special feature of our approach is that the prior distribution of the mixture weights are set in such a

way that the units are allocated across all the LCs during the Gibbs sampler, helping the BLC model to

prevent underfitting, and leading to more accurate imputations than the DPMM.

The outline of the remainder of this paper is as follows. In Section 2, the BLC model for the MI of

categorical data is introduced, along with its estimation and set-up. Section 3 describes two simulation

studies which compare the BLC model with different prior specifications, as well as with the DPMM,

FLC, and MICE approaches. Section 4 reports the results of a real-data experiment. Section 5 concludes

with final remarks by the authors.
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2 Bayesian Latent Class Imputation

Bayesian imputations are derived from the posterior predictive distribution of the missing data given

the observed data, i.e. Pr(Ymis|Yobs) =
∫

Pr(Ymis|π) Pr(π|Yobs)dπ, in which π is the model parameter

vector. Thus, imputations are performed by first drawing m values from the posterior distribution of

the model parameter Pr(π|Yobs), and then by sampling from the predictive distribution Pr(Ymis|π∗(l)),

l = 1, ...,m. The posterior Pr(π|Yobs) is estimated via Gibbs sampling and derived from two quantities:

a probabilistic model for the data (the likelihood) and a prior distribution for π.

2.1 The data model

Let yi be a vector of length J , denoting the observed response pattern for unit i (i = 1, ..., n) on J

categorical variables, so that yij = s is unit i’s value on the j-th variable (j = 1, ..., J ; s = 1, ..., sj).

Furthermore, let xi = k be a realization of the latent categorical variable X for person i, taking on one

of the possible values k ∈ {1, ...,K}. The latent class (LC) model (Lazarsfeld, 1950; Goodman, 1974)

describes the joint distribution of the observed variables (Y1, ..., YJ) through the well-known form

Pr(yi) =

K∑
k=1

Pr(xi = k)

J∏
j=1

Pr(yij = s|xi = k),

in which the Pr(xi = k) are the latent class weights and the Pr(yij = s|xi = k) are the conditional

response probabilities. By assuming a Multinomial distribution for both X and Yj |X, with parameters

denoted by Pr(xi = k) = πk and Pr(yij = s|xi = k) = πkjs, respectively, the model can be rewritten in

terms of the Multinomial parameters as

Pr(yi;π) =

K∑
k=1

πk

J∏
j=1

sj∏
s=1

(πkjs)
Iijs , (1)

where Iijs is an indicator variable equal to 1 when yij = s and 0 otherwise. Below, we will use the symbols

πx and πkj to refer to the two sets of model parameters, i.e. πx = (π1, ..., πK) and πkj = (πkj1, ..., πkjsj ),

while π = (πx, π11, ..., πKJ).

With a sufficiently large number of classes, the LC model can capture the first- and higher-order

moments of the joint distribution of the J categorical variables (McLachlan & Peel, 2000). The resulting

density is a weighted average (i.e., a mixture) of class-specific Multinomial densities, where the probabil-

ities πk act as weights. Furthermore, the local independence assumption makes the conditional density

Pr(Yj |X = k) independent of the other response variables given the k-th latent class. As a result, the

estimation of a LC model involves processing J two-way K-by-sj tables, instead of the full multi-way

table involving all J variables (as done by e.g. the log-linear model). For this reason, especially when
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the number of variables is large, the LC model is computationally appealing for MI. Details about MI

through FLC models can be found in Vermunt et al. (2008).

2.2 The prior distributions

Model (1) can be turned into a Bayesian LC (BLC) model by placing prior distributions upon the latent

class proportions πx and the conditional response probabilities πkj . A common choice conjugate to the

Multinomial distribution is the Dirichlet prior. Therefore, we will assume that

πx ∼ Dir(αx)

and

πkj ∼ Dir(αkj)

∀ k, j. Here the vectors αx (from here on referred to as the latent hyperparameter) and αkj (from here

on referred to as conditional hyperparameter) are defined as

αx = (α1, ..., αk, ..., αK)

and

αkj = (αkj1, ..., αkjs, ..., αkjsj ),

with αk > 0 and αkjs > 0 ∀ k, j, s.

The most common setting is to use a single value for the hyperparameters α, yielding symmetric

Dirichlet distributions with constant α values; that is, αx = (c1, ..., c1) and αkj = (c2, ..., c2). Below, we

will use the fact that the magnitude of c1 parameters affects the shape of the posterior class distribution:

the larger c1 the more the observations will tend to be evenly distributed across all latent classes, while

with c1 close to 0 only some of the classes will have a non-negligible posterior probability mass.

2.3 BLC Model Estimation and Imputation

Model estimation is performed via a Gibbs sampling algorithm. In our implementation, we separate the

Gibbs sampling of the LC model parameters from the imputation of the missing values. That is, we first

run the Gibbs sampler for a certain number of iterations and store m sets of parameters from iterations

which are spaced enough to prevent auto-correlations among the draws. Subsequently, m imputed data

sets are created using these m sets of stored parameters. An alternative would be to impute the missing

values as a part of the Gibbs sampling iterations, and base the posterior class membership probabilities

used in the Gibbs sampler on both the observed and the imputed values rather than on the observed
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part of the data only. Our implementation is computationally more efficient, because there is no need to

update the missing data at each iteration, nor to take imputed values into account when the posterior

membership probabilities of Step 1 are calculated (e.g., Si and Reiter (2013)).

Here, we assume that both the number of classes K and the hyperparameter values have been

previously chosen. The next section discusses how to perform these choices. The parameters of both the

latent variable X and the conditional distributions of the j-th item given the k-th latent class, Yj |X = k,

can be initialized through random draws from uniform Dirichlet distributions: π0
x ∼ Dir(1, ..., 1) and

π0
kj ∼ Dir(1, ..., 1) ∀ k, j, in order to increase the likelihood of initializing the sampler from the interior

of the parameter space. The total number of iterations (T ) depends on the number of burn-in iterations

(b), the number draws used for the imputations (m), and the spacing between these m draws (d); that is,

T = b+d ·m. The value of b should be large enough to ensure convergence of the chain to its equilibrium

distribution Pr(π|Yobs). Since a BLC imputation model may consist of a large number of parameters and

since the quantity of interest in MI is the likelihood Pr(Yobs|π), convergence is assessed by inspecting the

traceplot of the log-likelihood function calculated at each iteration, as suggested by Schafer (1997).

The Gibbs sampler proceeds as follows, for t = 1, ..., T :

Algorithm 1:

1. sample x
(t)
i ∈ {1, ...,K} ∀ i = 1, ..., n from the Multinomial distribution with the posterior

membership probabilities as parameters, defined as:

Pr(x
(t)
i = k|Yobs, π(t−1)) =

π
(t−1)
k

∏J
j=1

(∏sj
s=1

(
π
(t−1)
kjs

)I∗ijs)
∑K

h=1 π
(t−1)
h

∏J
j=1

(∏sj
s=1

(
π
(t−1)
kjs

)I∗ijs) ,

in which I∗ijs equals 1 when yij = s and yij ∈ Yobs, and 0 otherwise;

2. sample

(π(t)
x |Yobs, x(t), αx) ∼ Dir

(
α1 +

n∑
i=1

I(x
(t)
i = 1), · · · , αK +

n∑
i=1

I(x
(t)
i = K)

)

where I(x
(t)
i = k) is equal to 1 if x

(t)
i = k and 0 elsewhere;

3. draw

(π
(t)
kj |Yobs, x

(t), αkj) ∼ Dir

αkj1 +
∑

i:x
(t)
i =k

I∗ij1, · · · , αkjsj +
∑

i:x
(t)
i =k

I∗ijsj

 ,
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∀ k, j.

After ruling out the first b iterations for the burn-in, the BLC model is estimated with the remaining

d ·m iterations, which are draws from the conditional distribution Pr(π|Yobs). For the imputations, at

each dth iteration we store the sampled parameters and class memberships, yielding π∗(1), ..., π∗(m) from

Pr(π|Yobs) and x
(1)
i , ..., x

(m)
i . The imputed values are subsequently drawn from the posterior predictive

distribution of the missing data, denoted by Pr(Y
∗(l)
mis |Yobs, π∗(l)), l = 1, ...,m. These simulated values

will be then entered in the blank part of the original incomplete dataset, replicated m times. Formally:

4. imputation step: with each of m parameter sets selected for the imputations, l = 1, ...,m,

given the sampled value x
(l)
i = k of each unit, and for each {i, j} ∈ Ymis, sample from

(Yij |Yobs, π(l), x
(l)
i = k) ∼Multinom(π

∗(l)
kj )

and store the imputed values.

In the experiments described in Section 3 and 4, Algorithm (1) is run with a routine we implemented

in R, which is available upon request from the first author.

2.4 Setting up the model

2.4.1 Model Selection: Number of Classes

For Bayesian finite mixture models, Gelman, Carlin, Stern, and Rubin (2013) (chapter 22) proposed

performing model selection by resorting to a computational expedient. In particular, they noticed that

by starting with an arbitrarily large K and latent hyperparameters supporting the occurrence of empty

components while the Gibbs sampler is running, it is possible to obtain a posterior distribution for the

number of clusters by counting the number of classes filled at each iteration of Algorithm 1 (without step

4). A possible value for the latent hyperparameter that encourages the realization of empty components

is given by αk = 1/K ∀ k, which as indicated by Gelman et al. (2013) is insensitive to the choice

of the starting K. Hence, their approach consists of two main steps: (1) preliminarily run the Gibbs

sampler (steps 1-3 of Algorithm 1) and obtain the posterior distribution of K|Yobs; (2) set K equal to

the posterior mode of this distribution, and re-run the Gibbs sampler with this value of K to perform

inference. Whereas setting the number of classes equal to the posterior mode is a logical choice in a

substantive LC analysis (i.e., for model interpretation), in MI a number of components larger than the one

used for substantive analysis is usually required (Vermunt et al., 2008). Therefore, we suggest using the
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posterior maximum of the distribution of K|Yobs, that is, the largest K∗ such that Pr(K = K∗|Yobs) > 0.

Afterwards, it is possible to perform the imputations (Algorithm 1 including step 4) with a second run

of the Gibbs sampler, with K selected at the previous stage and a latent hyperparameter that supports

the allocation of the units across all the mixture components (see below). In the experiments of Sections

3 and 4 this model selection method was tested for the BLC model, as well as for the FLC imputation

model to assess whether this is a good and fast alternative for the model selection step of the FLC model.

2.4.2 Hyperparameter Selection

Latent hyperparameter. Hoijtink and Notenboom (2004) noticed that when standard priors (e.g.,

the uniform prior) for the latent weights are used, the probability of obtaining empty classes increases

with K. In these situations, sampling from the true posterior becomes difficult for the Gibbs sampler,

since the (conditional distribution) parameters of the empty components are fully determined by their

prior distributions, making the Gibbs sampler unstable.

As mentioned in the previous section, the assumed prior distribution for the mixture weights strongly

affects the shape of the posterior when the Gibbs sampler is run with a large number of classes. In partic-

ular, αx can be set in such a way that all the specified LCs are filled during the Gibbs sampler iterations.

Rousseau and Mergensen (2011) showed that, when an overfitting mixture model is estimated with

max(α1, ..., αK) < p/2, where p is the number of free parameters to be estimated within each mixture

component,1 the latent proportions of the extra classes will approach 0, while with min(α1, ..., αK) > p/2,

the possibly redundant classes will be given a non-negligible weight. The larger the value of αk is, the

larger the number of filled LCs will be. Obtaining full allocation of the components is desirable, because

in this way the Gibbs sampler avoids to sample from the prior distribution of the empty components

parameters, making the composition of the clusters fully determined by the data. The MCMC output

can be used to assess whether all the LCs have been filled during the Gibbs sampling: if this is not

the case, then we suggest making αk ∀ k more informative by increasing its value (while maintaining a

symmetric Dirichlet distribution) until full allocation is achieved.

Conditional hyperparameter. In MI, the aim is to obtain imputations which resemble as much

as possible the observed data, implying that the prior distributions should be dominated by the data

likelihood (Schafer & Graham, 2002). For the conditional response probabilities, Si and Reiter (2013)

proposed setting uniform priors for all variables and mixture components, that is, αkj = (1, ..., 1) ∀ k, j.

However, as will be shown in Section 3, this may still be too informative, leading to invalid imputations.

Note that using such uniform priors for the conditional response probabilities is equivalent to adding

K · sj observations for each variable (see Step 3 of Algorithm 1). To prevent having too informative

1In LC models, the number of free parameters within each components is given by p =
∑

j sj − 1.
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Parameter β1,2 β1,3 β1,25 β1,34 β2,2 β2,3 β2,25 β2,34
Value -1.7 1.5 -0.25 0.1 -1.25 1 -0.5 0.2

Table 1: Parameter values under investigation in Study 1.

priors for this part of the model, we suggest making the conditional hyperparameters less influential by

decreasing their values and setting them as low as αkjs = 0.01 or 0.05 ∀ k, j, s.2

3 Simulation Studies

Here we report the results of two simulation studies. In both studies the performance of our method is

compared to that of FLC, DPMM, and MICE. Study 1 concerns a situation with a large sample size

and a small number of variables while Study 2 is based on data with a smaller sample size and a large

number of variables. All analyses were performed with R version 3.3.0.

3.1 Study 1

3.1.1 Study Design

Population model. The population model was specified for five predictor variables Y1, ...., Y5 and one

outcome variable Y6, all of which were trichotomous (coded with 0, 1 and 2). The relationships between

the predictors were described by the log-linear model

log Pr(Y1, Y2, Y3, Y4, Y5) ∝ −0.5

5∑
j=1

Yj −
4∑

j=1

5∑
k=j+1

YjYk − 0.2Y1Y3Y5 + 0.5Y2Y4Y5. (2)

Subsequently, the outcome was generated from a multinomial logistic model, defined for Pr(Y6 =

r|Y1, ..., Y5) (r = {1, 2}), whose probabilities were specified through

log(Pr(Y6 = 1)/Pr(Y6 = 0)) = −0.1 + Y1 + β1,2Y2 + β1,3Y3 − 0.6Y4 + 0.5Y5 + β1,25Y2Y5 + β1,34Y3Y4

log(Pr(Y6 = 2)/Pr(Y6 = 0)) = −0.6 + 1.8Y1 + β2,2Y2 + β2,3Y3 + Y4 − 0.5Y5 + β2,25Y2Y5 + β2,34Y3Y4,

(3)

where, as can be seen, the reference category is Y6 = 0. The values of the β parameters are reported in

Table 1. Based on models (2) and (3), we generated N = 500 datasets with n = 5000 observations each.

Introducing missingness. A low and a high missingness condition was created by introducing missing

2This is equivalent to entering 0.01Ksj or 0.05Ksj imaginary observations for each variable.
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Missingness Rate Y1,Y4 Pr(Y2 is missing) Y5,Y6 Pr(Y3 is missing)

Low 0,0 .100 0,0 .125
0,1 .025 0,1 .075
0,2 .125 0,2 .100
1,0 .150 1,0 .100
1,1 .075 1,1 .150
1,2 .050 1,2 .175
2,0 .125 2,0 .150
2,1 .200 2,1 .050
2,2 .150 2,2 .125

Large 0,0 .200 0,0 .250
0,1 .050 0,1 .150
0,2 .250 0,2 .200
1,0 .300 1,0 .200
1,1 .150 1,1 .300
1,2 .100 1,2 .350
2,0 .250 2,0 .300
2,1 .400 2,1 .100
2,2 .300 2,2 .250

Table 2: MAR mechanisms used in Study 1: the table reports the probability of nonresponses in Y2 for each
combination of Y1, Y4 and in Y3 for each combination of Y5, Y6.

values in Y2 and Y3 according to MAR mechanisms. The total rate of missingness for both Y2 and Y3

was around 10% and 20% for the low and high missingness condition, respectively. Table 2 shows how

the probability of a missing value depends on Y1 and Y4 for Y2, and on Y5 and Y6 for Y3.

Settings of the imputation models. For all the imputation models, we performed m = 20 imputations.

For the BLC and the FLC models we performed model selection with the Gelman et al. (2013)’s method

exposed in Section 2.4.1. In particular, for each simulated datasets we ran steps 1-3 of Algorithm 1

with 20 components for T = 3000 iterations, of which b = 1000 served as burn-in. The remaining

2000 iterations were used to determine the distribution of the number of LCs. This led to an average

(maximum) number of classes equal to K̄ = 15.94 in the low missingness condition and to K̄ = 15.41 in

the high missingness condition. The FLC imputation model was run with LatentGOLD 5.1 (Vermunt

& Magidson, 2013) with the settings given in Vermunt et al. (2008). We imputed the data with the

BLC model using different prior specifications. In particular, we manipulated αk to be equal to 1 and

to 20 (we found out that αk = 20 was sufficiently large to ensure full allocation of the units across

all the LCs), and αkjs to be equal either to 1 or to 0.01. The BLC models we used will be denoted

with BLC(αk,αkjs); for instance, BLC(1,1) indicates the BLC model with uniform priors for both the

latent proportions and the conditional response probabilities. We ran the DPMM model with K = 20

and hyperparameters of the Dirichlet Process prior set as in Si and Reiter (2013); αkjs was handled

as done for the BLC model. Therefore, we will denote the two DPMM models we implemented with
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DPMM(1) and DPMM(.01). The Gibbs sampler for both the BLC and the DPMM methods were run

with self-implemented routines,3 with T = 5000 total and b = 1000 burn-in iterations. Lastly, the MICE

method was run with its standard settings and with 20 iterations for each imputation 4 using the mice

library (Van Buuren et al., 2014).

Outcomes. After applying the imputation models, estimating model (3) on each imputed dataset,

and applying the pooling rules for MI, we compared relative bias, stability (i.e., the standard deviation

of the estimates across the 500 replications), and coverage rates of the 95% confidence intervals of the

MI estimates. In particular, we considered the estimates of the parameters reported in Table 1: these

parameters correspond to the main and interaction effects of the variables with missing values (Y2 and

Y3).

3.1.2 Results

Tables 3 and 4 show the results for the Low and High missingness condition, respectively.

Low missingness condition. In the first condition, the largest bias was observed for the two inter-

action terms β1,25 (MICE) and β1,34 (MICE, FLC, BLC(1,1), BLC(20,1), DPMM(1)). The interaction

term β2,34 recovered by BLC(1,1) and DPMM(1) was also biased. Parameter estimates produced by all

the LC methods tended to be similar in terms of stability, but the most stable parameter estimates were

provided by MICE. The coverage rate of the 95% confidence intervals was close to the nominal level for

all the parameters estimated after processing the data with any of the considered imputation methods,

except for the confidence intervals of the main effects β1,2 and β1,3 produced by MICE, which were too

short.

High missingess condition. With a larger rate of missingness more pronounced relative bias was

observed across a larger number of estimates and for more imputation methods. All methods, with

the exception of BLC(20,.01), retrieved a biased estimate of the parameter β1,34. Furthermore, the

interaction terms β2,25 and β2,34 provided by all the Bayesian LC models (excluding BLC(20,.01)) were

also biased. The remaining interaction term (β1,25) was correctly recovered by all methods, except for

MICE and DPMM(1). As with low missingness, all LC methods retrieved similarly stable estimates,

although now the BLC(1,1), BLC(20,1), and DPMM(1) models tended to produce relatively more stable

estimates for some of the parameters. As in the previous condition, the confidence intervals for all

parameters produced by most methods were close to their 95% nominal level. The only exceptions were

3We implemented the DPMM model as described in Si and Reiter (2013).
4MICE produces m imputations by starting from m different (independently drawn) values for the missing

data. Subsequently, the imputation model parameters and the missing data are iteratively updated in parallel
for a number of specified iterations. Following Van Buuren, Brand, Groothuis-Oudshoorn, and Rubin (2006), to
reach convergence the number of iterations does not need to be large, and we decided to set it equal to 20.
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Low Missingness Condition
Parameter

Method β1,2 β1,3 β1,25 β1,34 β2,2 β2,3 β2,25 β2,34
Relative MICE -0.06 -0.09 -0.22 0.22 0.02 -0.06 -0.04 0.03

Bias FLC 0.00 0.01 -0.02 0.22 0.01 0.01 0.02 0.06
BLC(1,1) 0.00 0.00 -0.08 -0.21 0.01 0.00 -0.11 -0.18
BLC(20,1) 0.00 0.00 -0.07 -0.20 0.01 -0.01 -0.09 -0.15
BLC(1,.01) 0.00 0.00 -0.04 -0.03 0.01 0.00 -0.05 -0.08
BLC(20,.01) 0.00 0.00 -0.02 0.05 0.00 0.00 -0.02 -0.02
DPMM(1) 0.00 0.00 -0.10 -0.52 0.02 0.00 -0.14 -0.40
DPMM(.01) 0.00 0.00 -0.04 -0.06 0.01 0.00 -0.06 -0.09

Stability MICE 0.09 0.08 0.11 0.16 0.08 0.10 0.19 0.15
FLC 0.10 0.10 0.13 0.19 0.08 0.11 0.20 0.17
BLC(1,1) 0.10 0.10 0.13 0.18 0.08 0.11 0.18 0.16
BLC(20,1) 0.10 0.10 0.13 0.18 0.08 0.11 0.18 0.16
BLC(1,.01) 0.10 0.10 0.13 0.19 0.08 0.11 0.19 0.17
BLC(20,.01) 0.10 0.10 0.13 0.19 0.08 0.11 0.19 0.17
DPMM(1) 0.10 0.10 0.13 0.17 0.08 0.11 0.17 0.16
DPMM(.01) 0.10 0.10 0.13 0.19 0.08 0.11 0.19 0.17

Coverage MICE 0.82 0.72 0.96 0.98 0.94 0.92 0.97 0.98
Rate FLC 0.93 0.95 0.95 0.96 0.95 0.95 0.97 0.95

BLC(1,1) 0.94 0.96 0.95 0.97 0.95 0.95 0.95 0.96
BLC(20,1) 0.93 0.96 0.94 0.97 0.96 0.95 0.96 0.95
BLC(1,.01) 0.94 0.95 0.95 0.95 0.96 0.95 0.96 0.95
BLC(20,.01) 0.94 0.96 0.94 0.97 0.94 0.95 0.97 0.95
DPMM(1) 0.94 0.95 0.95 0.96 0.95 0.95 0.95 0.94
DPMM(.01) 0.93 0.95 0.95 0.96 0.95 0.95 0.96 0.95

Table 3: Relative bias, stability and coverage rate observed for the estimates of eight multinomial logistic model
parameters in model (3) after applying three different imputation models. MICE: MICE imputation technique;
FLC: frequentist LC imputation model; BLC(1,1): Bayesian LC imputation model with αk = 1, αkjs = 1;
BLC(20,1): Bayesian LC imputation model with αk = 20, αkjs = 1; BLC(1,.01): Bayesian LC imputation model
with αk = 1, αkjs = .01; BLC(20,.01): Bayesian LC imputation model with αk = 20, αkjs = .01; DPMM(1):
DPMM imputation model with αkjs = 1; DPMM(.01): DPMM imputation model with αkjs = .01. Largest
values in relative bias and too low coverage rates are marked in boldface.
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High Missingness Condition
Parameter

Method β1,2 β1,3 β1,25 β1,34 β2,2 β2,3 β2,25 β2,34
Relative MICE -0.12 -0.18 -0.38 0.34 0.04 -0.13 -0.13 0.02

Bias FLC 0.00 0.01 -0.02 0.35 0.02 0.02 -0.02 0.09
BLC(1,1) 0.01 -0.01 -0.14 -0.56 0.03 -0.01 -0.28 -0.41
BLC(20,1) 0.00 -0.01 -0.13 -0.55 0.03 -0.02 -0.25 -0.37
BLC(1,.01) 0.00 0.00 -0.05 -0.23 0.02 0.00 -0.16 -0.23
BLC(20,.01) 0.00 0.00 -0.02 -0.04 0.01 0.00 -0.10 -0.09
DPMM(1) 0.01 -0.01 -0.17 -0.99 0.05 -0.01 -0.33 -0.75
DPMM(.01) 0.00 0.00 -0.05 -0.32 0.02 0.00 -0.17 -0.28

Stability MICE 0.08 0.08 0.09 0.16 0.09 0.10 0.18 0.14
FLC 0.11 0.11 0.13 0.21 0.09 0.12 0.20 0.20
BLC(1,1) 0.11 0.10 0.13 0.19 0.09 0.11 0.16 0.16
BLC(20,1) 0.11 0.10 0.13 0.19 0.08 0.11 0.17 0.17
BLC(1,.01) 0.11 0.11 0.13 0.21 0.09 0.12 0.18 0.19
BLC(20,.01) 0.11 0.11 0.14 0.21 0.09 0.12 0.19 0.19
DPMM(1) 0.10 0.10 0.13 0.19 0.08 0.11 0.16 0.17
DPMM(.01) 0.11 0.11 0.13 0.20 0.09 0.12 0.19 0.18

Coverage MICE 0.48 0.17 0.96 0.98 0.93 0.80 0.96 0.99
Rate FLC 0.94 0.94 0.96 0.95 0.95 0.91 0.96 0.94

BLC(1,1) 0.95 0.95 0.95 0.96 0.94 0.95 0.92 0.95
BLC(20,1) 0.95 0.96 0.96 0.96 0.96 0.96 0.92 0.95
BLC(1,.01) 0.95 0.95 0.96 0.95 0.95 0.94 0.94 0.93
BLC(20,.01) 0.93 0.95 0.96 0.95 0.94 0.94 0.95 0.95
DPMM(1) 0.95 0.95 0.96 0.92 0.93 0.96 0.89 0.87
DPMM(.01) 0.94 0.95 0.96 0.95 0.95 0.95 0.93 0.94

Table 4: Relative bias, stability and coverage rate observed for the estimates of eight multinomial logistic model
parameters in model (3) after applying three different imputation models. MICE: MICE imputation technique;
FLC: frequentist LC imputation model; BLC(1,1): Bayesian LC imputation model with αk = 1, αkjs = 1;
BLC(20,1): Bayesian LC imputation model with αk = 20, αkjs = 1; BLC(1,.01): Bayesian LC imputation model
with αk = 1, αkjs = .01; BLC(20,.01): Bayesian LC imputation model with αk = 20, αkjs = .01; DPMM(1):
DPMM imputation model with αkjs = 1; DPMM(.01): DPMM imputation model with αkjs = .01. Largest
values in relative bias and too low coverage rates are marked in boldface.
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Pr(Y16 = 1) = 0.7
Pr(Y17 = 1) = 0.6
Pr(Y18 = 1) = 0.55
Pr(Y19 = 1) = 0.6
Pr(Y20 = 1) = 0.7

Table 5: Probability of observing 1 for the independently generated items of Study 2.

the much too low coverage for the main effects β1,2, β1,3, and β2,3 produced by MICE and the slightly

too low coverage for the interaction terms β2,25 and β2,34 by various of the LC-based methods.

3.2 Study 2

3.2.1 Study Design

Population model. In Study 2 we used J = 21 binary variables Y1, ..., Y21 (coded with 0 and 1), 20

predictors and 1 outcome. The first 15 predictors were generated from the following log-linear model:

log Pr(Y1, ..., Y15) ∝ −0.15
∑15

j=1 Yj + 0.5
∑4

j=1

∑5
k=j+1 YjYk − 0.1

∑10
j=6

∑11
k=j+1 YjYk+

0.15

14∑
j=12

15∑
k=j+1

YjYk + 0.3Y1Y2Y7 + 0.6Y3Y4Y8 − 0.4Y6Y9Y10, (4)

while the remaining 5 predictors were assumed to be independent of the rest, with marginal probabilities

Pr(Yj = 1), j = 16, ..., 20, as reported in Table 5.

Given Y1, ...., Y20 the outcome Y21 was generated from the following binary logistic model:

logit(Y21) = −1.9+β1Y1 +1.8Y2−0.95Y3−0.9Y4 + .8Y5 +β6Y6−0.5Y7 +0.6Y8 +Y9 +0.55Y10−0.6Y11+

0.75Y12−1.2Y13+0Y14+0Y15+β16Y16−0.85Y17+0.55Y18+0Y19+β20Y20+β1.5Y1Y5+β1.17Y1Y17+β1.5.17Y1Y5Y17.

(5)

Besides the two- and three-way interaction terms, in model (5) we also specified some null effects (co-

efficients equal to 0) in order to assess how the imputation models deal with irrelevant variables. The

values of the β parameters are shown in Table 6. From models (4) and (5) (and the items described in

Table 5), we generated N = 200 datasets with n = 2000 observations.

Introducing missingness. Missingness was entered in Y1 (involved in all the interaction terms), Y6,

Y16, and Y20 (an irrelevant predictor). The marginal rate of missingness (generated with the MAR

mechanism reported in Table 7) was equal to 25% for each variable with missing values.

14



Parameter β1 β6 β16 β20 β1.5 β1.17 β1.5.17
Value 0.8 1.1 -0.45 0 1.3 -.85 0.45

Table 6: Parameter values under investigation in Study 2.

Item with missingness Condition Pr(Item is missing)

Y1 Y3 = 0, Y4 = 0 .15
Y3 = 0, Y4 = 1 .05
Y3 = 1, Y4 = 0 .25
Y3 = 1, Y4 = 1 .30

Y6 Y5 = 0, Y21 = 0 .30
Y5 = 0, Y21 = 1 .20
Y5 = 1, Y21 = 0 .10
Y5 = 1, Y21 = 1 .35

Y16 Y9 = 0, Y10 = 0 .30
Y9 = 0, Y10 = 1 .25
Y9 = 1, Y10 = 0 .10
Y9 = 1, Y10 = 1 .40

Y20 Y14 = 0, Y15 = 0 .35
Y14 = 0, Y15 = 1 .10
Y14 = 1, Y15 = 0 .10
Y14 = 1, Y15 = 1 .45

Table 7: MAR mechanisms used in Study 2.
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Parameter
Method β1 β6 β16 β20 β1.5 β1.17 β1.5.17

Relative MICE 0.20 -0.01 0.00 0.01 -0.22 -0.16 -0.06
Bias FLC -0.05 -0.09 -0.10 0.00 -0.11 -0.14 -0.05

BLC(1) 0.01 -0.12 -0.13 0.00 -0.21 -0.16 -0.06
BLC(80) -0.04 -0.08 -0.08 0.00 -0.09 -0.12 -0.05
DPMM 0.02 -0.12 -0.13 0.00 -0.22 -0.16 -0.06

Stability MICE 0.41 0.14 0.15 0.14 0.38 0.40 0.35
FLC 0.44 0.13 0.13 0.13 0.42 0.42 0.35
BLC(1) 0.40 0.14 0.13 0.13 0.40 0.39 0.35
BLC(80) 0.44 0.14 0.14 0.14 0.43 0.42 0.36
DPMM 0.40 0.14 0.13 0.13 0.39 0.40 0.35

Coverage MICE 0.98 0.93 0.92 0.96 0.96 0.96 0.94
Rate FLC 0.94 0.88 0.95 0.96 0.96 0.96 0.96

BLC(1) 0.97 0.84 0.94 0.98 0.96 0.97 0.95
BLC(80) 0.94 0.91 0.94 0.96 0.96 0.96 0.94
DPMM 0.96 0.87 0.94 0.98 0.96 0.97 0.94

Table 8: Relative bias, stability and coverage rate observed for the estimates of seven logistic model parameters
in Model (5) after applying three different imputation models. For the null effect β20 absolute bias is reported.
MICE: MICE imputation technique; FLC: frequentist LC imputation model; BLC(1): Bayesian LC imputation
model with αk = 1; BLC(80): Bayesian LC imputation model with αk = 80; DPMM: DPMM imputation model.
Largest values in relative bias and too low coverage rates are marked in boldface.

Settings of the imputation models. The specifications used for the imputation models were similar

to Study 1. For FLC and BLC, our model selection procedure gave an average (maximum) number of

classes of K̄ = 16.31, while we increased the number of classes for the DPMM, specifying for the latter

20 more classes than the FLC and BLC models5. Based on the results of Study 1, we decided not to

vary αkjs anymore, but instead fixed it to 0.01 for both BLC and DPMM. The latent hyperparameter

of the BLC model αk was set to be equal to either 1 or 80, where the latter was chosen to be sufficiently

large to ensure full allocation of the latent classes. This is indicated with BLC(1) and BLC(80).

Outcomes. To assess the performance of the imputation models, we looked at relative bias, stability,

and coverage rates for the coefficients of the variables with missing values (see Table 8). For the null

effect β20, we considered the absolute bias.

3.2.2 Results

The results reported in Table 8 show that the null effect β20, the three-way interaction term β1.5.17,

and the main effects β6 and β16 were well retrieved by all methods. The two-way interaction terms

resulting from MICE, BLC(1), and DPMM were remarkably biased, while FLC and BLC(80) provided

good estimates for these parameters. The β1 coefficient was also correctly recovered by all methods,

5With the DPMM model superfluous classes are given weights equal to zero during the Gibbs sampling.
Hence, with such an imputation model any selected number of classes leads to similar inferences, provided that
this number is large enough.
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Items for the analysis model
Item Label Item Description Values (range)
Y0 Respondent’s happiness 1 Not Happy - 3 Very Happy
Y1 Respondent’s opinion about his/her life 1 Dull - 3 Exciting
Y2 Respondent’s job satisfaction 1 Very dissatisfied - 4 Very satisfied
Y3 Respondent’s health status 1 Poor - 5 Excellent
Y4 Respondent’s marital status 0 Not married - 1 Married
Y5 Respondent’s employment status 1 Self employed - 2 Work for someone else
Y6 Respondent’s political view 1 Liberal - 3 Conservative
Y7 Respondent’s gender 0 Female - 1 Male
Y8 Respondent’s working status 1 Full time - 4 Not working
Y9 Respondent’s employer 1 Government - 2 Private
Y10 Respondent’s family income 1 <5000 - 4 >25000
Y11 Respondent’s time spent with friends 1 Almost every day - 7 Never

Items used to generate missingness
Item Label Item Description Values (range)
Y12 Respondent’s education 0 <Highschool - 4 Graduate
Y13 Respondent’s working contract 1 Full time - 2 Part-time
Y14 Respondent’s occupation prestige (score) 1 10/19 - 8 80/89

Table 9: Variables used in the real-data application. Top: items of the analysis model (6). Bottom: items used
to generate missingness.

except for MICE. FLC and BLC(80) produced the least stable estimates, probably due to the fact that

a larger number of LCs was exploited by these two methods. DPMM and BLC(1) returned similarly

stable estimates: their standard deviations were overall smaller than those of the other two LC impu-

tation methods. MICE provided the least varying estimates across all the imputation methods. All

methods yielded confidence intervals with acceptable coverage (close to the 95% nominal level). The

only exceptions was the interval for β6, which resulted in too low coverage after imputing with FLC,

BLC(1), or DPMM.

4 Real-data Study

The General Social Survey (GSS) (National Opinion Research Center, 1972) is a survey conducted by the

National Opinion Research Center and administered every two years to a random sample of households

resident in the Unites States. Here we use data from this study to evaluate the imputation models in a

situation where the associations between variables are as encountered in real data. Our experiment was

carried out with the GSS cross-sectional wave of 2014. Analyses were again performed with R 3.3.0.

4.1 Study Design

The data. From the original dataset (which consisted of n = 2538 units and J = 895) we removed all

records with missing data and ‘Don’t know’ and ‘Not applicable’ answers. The resulting dataset had
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Item with missingness Missingness generating model
Y2 1− 1.5Y12
Y5 −2.2 + 1.2Y13
Y6 1.3− 1.25Y9
Y8 2.1− 0.8Y14

Table 10: MAR mechanisms used to generate missing data in the real-data application.

a sample size equal to n = 477. Subsequently, we selected a subset of J = 15 variables, of which the

first 12 were the possible outcome and the predictors of a potential analysis model, and the remaining 3

were used to generate the missingness (and therefore included in the imputation models). The variables

names and the description of their categories are listed in Table 9.6

The substantive model. The analysis was performed with an ordered logistic model estimated on the

complete dataset (with n = 477), in which the variable Happiness (Y0 in table 9) was the outcome and

the Y1, ..., Y11 of Table 9 were the predictors. More specifically, the model we estimated was

log

(
Pr(Y0 ≤ s)
Pr(Y0 > s)

)
∝

11∑
j=1

βjYj + β57Y6Y7 + β48Y4Y8. (6)

The first columns of Table 11 (below) reports the estimates and the standard errors of the β’s

parameters obtained with the complete data, where significant predictors at 5% are highlighted.

Introducing missingness. We artificially created missing values for the variables Y2, Y5, Y6, and

Y8. MAR missingness was generated with the four different logistic models described in Table 10. The

parameters of these logistic models were set such that the rate of missingness was between 25% and 33%

per variable.

Imputation model settings. For each MI method m = 50 imputations were performed. For the model

selection, we ran the BLC model with 50 components and b = 5000 iterations for the burn-in, and 5000

to estimate the distribution of K. The resulting posterior maximum for the number of classes was equal

to 16. Therefore, we performed the imputations with the FLC and BLC models with K = 16. The

latent hyperparameter for the BLC model was set equal to αk = 40, which was large enough to ensure

full allocation of the LCs, while the conditional hyperparameter for the BLC and the DPMM models

was set equal to αkjs = 0.05. The DPMM model was implemented with K = 20. The Gibbs sampler for

both BLC and DPMM was run with T = 55000 and b = 5000. For MICE, 20 iterations were used for

each imputation.

Outcomes. After imputing the data, model (6) was estimated for each completed dataset. We focused

on the point estimates and the standard errors obtained after applying the MI pooling rules. We also

6For some variables the categories were reversed, while for others some categories were combined.

18



Imputation method
Parameter Complete Data MICE FLC BLC DPMM

Est. S.E. Est. S.E. Est. S.E. Est. S.E. Est. S.E.
β1 1.12∗ 0.21 1.06∗ 0.46 1.12∗ 0.22 1.14∗ 0.21 1.19∗ 0.21
β2 0.82∗ 0.15 0.56 0.35 0.95∗ 0.17 0.87∗ 0.18 0.68∗ 0.17
β3 0.80∗ 0.16 1.27∗ 0.37 0.79∗ 0.16 0.77∗ 0.16 0.79∗ 0.16
β4 -0.24 0.42 -0.05 0.92 -0.51 0.48 -0.35 0.51 -0.27 0.50
β5 0.62 0.46 0.72 2.21 0.69 0.62 0.56 0.61 0.62 0.63
β6 0.25 0.13 0.40 0.29 0.36∗ 0.16 0.28 0.16 0.25 0.16
β7 3.02∗ 1.24 5.50 5.03 3.72∗ 1.58 3.18∗ 1.59 3.20∗ 1.59
β8 -0.47∗ 0.19 -0.05 0.41 -0.52∗ 0.21 -0.46∗ 0.22 -0.40 0.22
β9 -0.22 0.27 -0.50 0.65 -0.15 0.28 -0.21 0.27 -0.22 0.27
β10 0.13 0.21 0.05 0.48 0.14 0.23 0.14 0.22 0.14 0.22
β11 -0.17∗ 0.07 -0.09 0.17 -0.20∗ 0.08 -0.18∗ 0.08 -0.17∗ 0.07
β57 -1.70∗ 0.65 -3.11 2.55 -2.08∗ 0.82 -1.81∗ 0.83 -1.81∗ 0.83
β48 0.69∗ 0.28 0.29 0.62 0.84∗ 0.32 0.74∗ 0.35 0.72∗ 0.35

Table 11: Results of the real-data application. The table shows the point estimates and the standard errors for
the ordered logistic regression model 6 estimated on the complete data (n = 477) and on the incomplete datasets,
imputed with the MICE, FLC, BLC and DPMM methods. The ∗ indicates the 5% significant parameter estimates.

assessed which estimates were significant at 5% after calculating their MI p-values7.

4.2 Results

The results reported in Table 11 show that MICE performed badly: its point estimates for both main

and interaction effects were rather far from those obtained with the Complete Data. Furthermore, MICE

produced very large standard errors, causing most of the estimates to be no longer significant (except

for β1 and β3). In contrast, the LC imputation models (FLC, BLC and DPMM) yielded parameter

estimates close to those of the Complete Data, and the extra uncertainty due to the presence of missing

data (reflected in the standard errors) was much smaller than with the MICE. Because of this, most

of the parameters that were significant with the Complete Data were also significant (at the 5% level)

after imputing the data using the LC-based imputation techniques. The only exceptions were β6, which

became significant with FLC, and β8, which was no longer significant with DPMM. The significant

parameters according to the BLC imputation were the same as those by the Complete Data.

5 Discussion

In this paper, we proposed using a BLC model for the MI of categorical data. As any LC model, this model

is automatically able to capture the dependencies present in the data -including complex interactions-

with the simple specification of the needed number of classes. We also highlighted the advantages of

performing the imputations with the BLC model, rather than with the FLC or the DPMM method.

7The degrees of freedom were calculated as in Van Buuren (2012).
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Compared to the FLC model, the BLC model offers a very fast and intuitive model selection step, which

makes use of the posterior distribution of the number of LCs required by the data and which can be

obtained with an extra (preliminary) run of the Gibbs sampler. Another computational advantage is that

parameter uncertainty is automatically accounted for, whereas the FLC requires using a non-parametric

bootstrap procedure. Compared to the DPMM approach, the BLC model offers important additional

flexibility through the specification of the hyperparameter for the latent class proportions. By setting

its value large enough, one guarantees the allocation of units across all LCs, which is a way to avoid the

risk of underfitting associated with the DPMM model.

Two simulation studies and a real-data experiment were carried out in which the BLC model was

contrasted with the FLC, DPMM, and MICE methods. In the first study, we used a large sample size

(n = 5000) and a small number of variables (J = 6), and we manipulated the total rate of missingness

in the variables with nonresponses. In the second study, a smaller sample size (n = 2000) and a

larger J (=21) were considered. In both studies, the latent hyperparameter of the BLC model was also

manipulated, in order to emphasize the influence of this value on the final imputations. In the real-data

study, the sample size was n = 477 and the number of variables (used for the imputations) was equal

to J = 15. In all studies the BLC imputation model (with large values for the latent hyperparameter

and small values for the conditional hyperparameter) provided the best results in terms of bias, stability,

and coverage rates for the main and interaction effects of the substantive model. In the real-data study,

the BLC model also detected the same set of significant parameters as with the Complete Data analysis

The FLC method (implemented with the same number of classes of the BLC model) also yielded good

results, although worse than the BLC method (e.g., the bias of one of the interaction terms in Study

1 was remarkable). This was probably due to the fact the FLC model, unlike the BLC model with a

large value of the latent hyperparameter, gave too small weights to LCs that were important for the

imputations. The DPMM model and the BLC model with uniform prior for the latent proportions both

failed to correctly retrieve the estimates of some interaction terms. Lastly, the MICE method was not

flexible enough to be able to capture all important features of the data in most situations.

Based on our results, our recommendation for researchers that need to deal with (MAR) missing

categorical data is to use our BLC MI approach combined with the model selection and prior specifications

described in this paper. A limitation of this new MI approach is that it can be used only with cross-

sectional categorical data. However, in future research, we will extend it to deal with combinations

of categorical and continuous variables, as well as with data from multilevel and longitudinal designs

in which more complex dependencies may arise. Another challenge for future research is to develop a

version of the BLC imputation model for situations in which the missing data are missing not at random.
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