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Abstract

Researchers use latent class growth (LCG) analysis to detect meaningful
subpopulations that display different growth curves. However, especially
when the number of classes required to obtain a good fit is large, interpre-
tation of the encountered class-specific curves may not be straightforward.
To overcome this problem, we propose an alternative way of performing
LCG analysis, which we call LCG tree (LCGT) modeling. For this pur-
pose, a recursive partitioning procedure similar to divisive hierarchical
cluster analysis is used: classes are split until a certain criterion indicates
that the fit does not improve. The advantage of the LCGT approach
compared to the standard LCG approach is that it gives a clear insight
into how the latent classes are formed and how solutions with different
numbers of classes relate. The practical use of the approach is illustrated
using applications on drugs use during adolescence and mood regulation

during the day.

Longitudinal data are used by social scientist to study development of behaviors
or other phenomena. The analysis will often be done with latent growth curve
models (MacCallum & Austin, 2000), with the aim to assess inter-individual
differences in intra-individual change over time (Nesselroade, 1991). The typi-
cal growth model can be described as a multilevel model (Raudenbush & Bryk,

2002), in which the intercept and slopes of the time variables are allowed to



vary across individuals. This heterogeneity is captured using random effects,
which are basically continuous latent variables (Jung & Wickrama, 2008). This
approach assumes that the growth trajectories of all individuals can be appro-
priately described by a single set of the growth parameters, and thus that all
individuals come from a single population. Growth mixture modeling relaxes
this assumption by allowing for differences in growth parameters across unob-
served subpopulations; that is, each latent class has a separate growth model.
However, fully unrestricted growth mixture models are seldom used in practice,
in part due to frequent estimation problems, as well as the preference for sim-
pler, restricted models. Probably the most widely used form of growth mixture
modeling is Latent Class Growth (LCG) analysis, whereby the (co-)variances
of the growth factors within classes are fixed to zero (Jones, Nagin, & Roeder,
2001; Nagin & Land, 1993). This assumes that all individuals within a class fol-
low the same trajectory and thus that there is no residual heterogeneity within
classes.

When a LCG model is applied, two key modeling decisions need to be made;
that is, on the number of classes and on the shape of the class-specific trajec-
tories. In general, the decision on the number of classes is of more importance
than the decision on the shape of the trajectory of each class as long as the shape
is flexible enough (Nagin, 2005). Typically, researchers estimate LCG models
with different numbers of classes and select the best model using likelihood-
based statistics, usually with information criteria like AIC or BIC, which weigh
model fit and complexity. Although there is nothing wrong with such a proce-
dure, in practice it is often perceived as being problematic, especially when the
model is applied with a large data set; that is, when the number of time points
and/or the number of subjects is large. One problem occurring in such situa-
tions is that the selected number of classes may be rather large (Francis, Elliott,
& Weldon, 2016). This causes the class trajectories to pick up very specific as-

pects of the data, which might not be interesting for the research question at



hand. Moreover, these specific trajectories are hard to interpret substantively
and compare to each other. A second problem results from the fact that usually
one would select a different number of classes depending on the model selection
criterion used. Because of this, one may wish to inspect multiple solutions,
as each of them may reveal specific relevant features in the data. However, it
is fully unclear how solutions with different numbers of classes are connected,
making it impossible to see what a model with more classes adds to a model
with less classes.

To circumvent the issues mentioned above, it is most convenient to have
models with differing numbers of classes that are substantively related; in other
words, a model with K + 1 classes is a refined version of a model with K classes,
where one of the classes is split in two parts. Such an approach would result in a
hierarchical structure, comparable to hierarchical cluster analysis (Everitt, Lan-
dau, Leese, & Stahl, 2001) or regression trees (Friedman, Hastie, & Tibshirani,
2001). Van der Palm, van der Ark, and Vermunt (2015) developed an algorithm
for hierarchical latent class analysis that can be used for this purpose. While
they focused on density estimation, with some adaptations their algorithm has
also been used to build so called latent class trees for substantive interpretation
(Van den Bergh, Schmittmann, & Vermunt, 2016). In this paper, this proce-
dure will be extended to the longitudinal framework to construct Latent Class
Growth Trees (LCGT).

With LCGT analysis a hierarchical structure is imposed on the latent classes
by estimating 1- and 2-class models on a ‘parent’ node, which initially comprised
the full data. If the 2-class model is preferred according to a certain informa-
tion criterion, the data is split into ‘child’ nodes and separate data sets are
constructed for each of the child nodes. The split is based on the posterior class
membership probabilities; hence, the data patterns in each new data set will be
the same as the original data set, but with weights equal to the posterior class

membership probabilities for the child class concerned. Subsequently, each new



child node is treated as a parent and it is checked again whether a 2-class model
provides a better fit than a 1-class model on the corresponding weighted data
set. This procedure continues until no node is split up anymore. Because of
this sequential algorithm, the classes at different levels of the tree can be sub-
stantively related, since child classes are subclasses of a parent class. Therefore,
LCGT modelling allows for direct interpretation of the relationship between so-
lutions with different numbers of classes, while still retaining the same statistical
basis.

The remainder of the paper is set up as follows. In the next section, we
discuss the basic LCG model and show how it can be used to build a LCGT.
Also split criteria and guidelines for deviating from a binary split at the root of
the tree will be discussed, together with an entropy measure for the post-hoc
evaluation of the quality of splits. Two empirical data sets are used to illustrate

LCGT analysis. The paper concludes with final remarks by the authors.

Method

Latent Class Growth models

Let y;+ denote the response of individual ¢ at time point ¢, 7; the number of
measurements of person ¢, and y; the full response vector of person i. Moreover,
let X be the discrete latent class variable, k a particular latent class, and K the
number of latent classes. A LCG model is, in fact, a regression model for the
responses Y, where time variables are used as predictors and where intercept
and slope parameters differ across latent classes. We will define the LCG model
within the framework on the generalized linear model, which allows dealing with
different scale types of the response variable (Muthén, 2004; Vermunt, 2007).
Let E(y;+|X = k) denote the expected value of the response at time point

t for latent class k. After an appropriate transformation g(-), which mainly



depends on the measurement level of the response variable, F(y;:|X = k) is
modelled as a linear function of time variables. The most common approach is
to use polynomial growth curves, which yields the following regression model

for latent class k:

9IE(yir| X = k)] = Bok + Bk -t + Bak - 17 + .. + Bp - t° (1)

The choice of the degree of the polynomial (the value of s) is usually an em-
pirical matter, though polynomials of degree larger than three are seldom used.
Recently, Francis et al. (2016) proposed an alternative approach involving the
use of baseline splines in LCG models.

To complete the model formulation for the response vector y;, we have to
define the form of the class-specific densities f(y;:|X = k), which could be
univariate normal for a continuous response, binomial for a binary response, etc..
The response density for class k is a function of the expected value E(y;:|X = k)
and for continuous variables also of the residual variance. The LCG model for

y; can now be defined as follows:

!
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where the size of class k is represented by P(X = k). A graphical representation
of a LCG model with K = 3 can be seen in Figure 1.
The model estimates (the 5 parameters and class sizes) can be obtained by

maximizing the following log-likelihood function:

N
log L(8;y) = Z log f(y4), (3)

where f(y;) takes the form defined in Equation (2) and N denotes the to-
tal sample size. Maximization is usually achieved through an EM algorithm
(Dempster, Laird, & Rubin, 1977), possibly combined with a Newton-type al-
gorithm (Vermunt & Magidson, 2013).



Figure 1: Graphical representation of a LCG model with three trajectory classes.

After selecting a particular model, individuals may be assigned to latent
classes based on their the posterior class membership probabilities. Using the

Bayes theorem, these probabilities are obtained as follows:

PX = B)[1iy Syl X = k)

PIX = ki) = F(v)

Latent Class Growth Tree models

Using an algorithm similar to the algorithm developed by Van der Palm et al.
(2015) for divisive latent class analysis, a LCG model can also be constructed
in a tree form. Such a LCGT has the advantages that increasing K classes to
K + 1 classes results in directly related classes. This is because newly formed
classes are obtained by splitting one of the K classes. Due to this direct relation,
models with different numbers of classes can be substantively related, while still

retaining the same statistical basis. Below we first describe the algorithm for



constructing a LCGT in more detail, and subsequently discuss various statistics
that can be used during this process.

A LCGT consists of parent and child nodes. Every set of child nodes is based
on one parent node and the first parent node consists of the root node containing
the complete data set. At each parent node, standard LCG models are used
and its child nodes are the classes assessed with the selected parent model. At
the next level of the tree, these child nodes, in their turn, become parent nodes,
and conditional on each new parent node a new set of LCG models is defined.
This process continues until a stopping criterion is reached, for example, when
the BIC does no longer decrease when splitting.

The basic equations of the growth curves of a LCGT model do not differ
from those of a standard LCG model (e.g., Equation 1). The fact that the
LCGT model is based on LCG models at parent nodes can be formulated as

follows:

Nk

Pf(yi‘Xpa'r‘ent) = P(Xchild = k|Xparent) H f(yit'Xchild = kyXparent)u
1 t=1
(5)

where Xjqrent Tepresents the parent class at level [ and X psq represents one

=
Il

of the K possible newly formed classes at level [ 4 1, with in general K being
2. Furthermore, P(Xchita = k|Xparent) represents the size of a class, given
the parent node, while f(yit|Xchiia = k, Xparent) represents the class-specific
response density at timepoint ¢, given the parent class. In other words, as in
a standard LCG analysis, a model for y; is defined, but now conditioned on
belonging to the parent class concerned.

Estimation of the LCG model at the parent node Xpgrent involves maximiz-

ing the following weighted log-likelihood function:

N

IOg L(ea y, Xparent) = Z wi,XparcntP(Yi|Xparent)7 (6)
i=1



where w; x is the weight for person i at the parent class, which equals this

parent
person’s posterior probability of belonging to the parent class concerned. So,
building a LCGT involves estimating a series of LCG model using weighted data
sets.

To see how the weights w; x,,,.,, are constructed, let us first look at the
posterior class membership probabilities for the child nodes, conditional on the

corresponding parent node. Assuming a split is accepted, the posteriors are

obtained as follows:

P(Xchild = k|Xparent) Hfil f(yit‘Xchild = ka Xparent)
P(yi|Xparent)

P(Xchita = k|yi; Xparent) =
(7)

As proposed by Van der Palm et al. (2015), we use a proportional split
based on these posterior class membership probabilities for the K child nodes
conditional on the parent node, denoted by k£ = 1,2,..., K. If a split in two
classes is performed, the weights for the two newly formed classes at the next

level are obtained as follows:

Wi, Xcpia=1 = wi,Xpm.emP<Xchild = 1|yi; Xparent) (8)
Wi Xepua=2 = Wi Xparens P(Xenita = 2[yi; Xparent)- (9)
In other words, a weight for individual ¢ at a particular node equals the weight
at the parent node times the posterior probability of belonging to the child
node concerned conditional on belonging to the parent node. As an example,

the weights w; x,—2 used for investigating a possible split of class X; = 2 are

constructed as follows:

Wi, X1 = wi,lep(Xl = 2‘}’1‘7}( = 1)7 (10)

where in turn w; x—1 = P(X = 1|y;). This implies:



which shows that a weight at level two is in fact a product of two posterior class
membership probabilities.

Construction of a LCGT can be performed using standard software for LC
analysis, namely by running a series of LC models with the appropriate weights.
After each accepted split a new data set is constructed and the procedure repeats
itself. We developed an R routine in which this process is fully automated. It
calls the Latent GOLD program (Vermunt & Magidson, 2013) in batch mode
to estimate 1- and 2-class models, evaluates whether a split should be made,
and keeps track of the weights when a split is accepted. In addition, it creates
various graphical displays which facilitates the interpretation of the LCGT (see
among others Figure 2). A novel graphical display is a tree depicting the class-
specific growth curves for the newly formed child classes (for an example, see
Figure 5). In the trees, the name of a child class equals the name of the parent
class plus an additional digit, a 1 or a 2. To prevent that the structure of the
tree will be affected by label switching resulting from the fact that the order of
the newly formed classes depends on the random starting values, when building
the LCGT we locate the larger class at the left branch with number 1 and the

smaller class at the right branch with number 2.

Statistics for building and evaluating the LCGT

Different types of statistics can be used to determine whether a split should
be accepted or rejected. Here, we will use the BIC (Schwarz, 1978), which is

defined as follows:

BIC = —2log L(ea Y, Xparent) + IOg(N)Pa (12)

where log L(.) represents the log-likelihood at the parent node concerned, N the



total sample size, and P the number of parameters of the model at hand. Thus,
a split is performed if at a parent node concerned the BIC for the 2-class model
is lower than the one of the 1-class model. Note that using a less strict criterion
(e.g. AIC) will yield the same splits as the BIC, but possible also additional
splits, and thus a larger tree.

Special attention needs to be dedicated to the first split at the root node
of the tree, in which one picks up the most dominant features in the data. In
many situations, a binary split at the root may be too much of a simplification,
and one would prefer allowing for more than two classes in the first split. For
this purpose, we cannot use the usual criteria like a AIC or BIC, as this would
boil down to using again a standard LCG model. Instead, for the decision to
use more than two classes at the root node, we propose looking at the relative
improvement of fit compared to the improvement between the 1- and 2-class
model. When using the log-likelihood value as the fit measure, this implies
assessing the increase in log-likelihood between, say, the 2- and 3-class model
and compare it to the increase between the 1- and 2-class model. More explicitly,
the relative improvement between models with K and K + 1 classes (RIx x+1)

can be computed as:

log Ly 1 —log Ly
log Ly —log L,

Rl ki1 = , (13)

which yields a number between 0 and 1, where a small value indicates that
the K-class model can be used as the first split, while a larger value indicates
that the tree might improve with an additional class at the root of the tree.
Note that instead of an increase in log-likelihood, in Equation 13 one may use
other measures of improvement of fit, such as the decrease of the BIC or the
AIC. Screeplots depicting the difference in log-likelihood (or BIC or AIC) for
models with one class difference can also be used to judge whether the relative

improvement is large, as will be illustrated in the empirical examples presented
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below.

The BIC and Rk i1 statistics are used to determine whether and how
splits should be performed. However, often we are also interested in evaluating
the quality of splits in terms of the amount of separation between the newly
formed classes; that is, to determine how different the classes are. In other
words, is a split substantively important yes or no. This is also relevant if one
would like to assign individuals to the classes resulting from a LCGT. Note that
the assignment of individuals to the two child classes is more certain when the
larger of the posterior probabilities P(Xcnia = k|yi; Xparent) is closer to 1. A

measure to express this is the entropy; that is,

N 2
Entropy(Xcrialy) = Z Wil X parent Z —P(Xchita = k|yi; Xparent) 108 P(Xcnita = k|Yi; Xparent)-
i=1 k=1 14)
Typically Entropy(Xcnialy) is rescaled to lie between 0 and 1 by expressing
it in terms of the reduction compared to Entropy(Xcnia), which is the entropy

computed using the unconditional class membership probabilities P (X piiq =

k| Xparent). This so-called RQEntmpy is obtained as follows:

, _ Entropy(Xenita) — Entropy(Xenialy)
Entropy Entropy(Xchia)

R (15)

The closer RQEmmpy is to one, the better the separation between the child classes

in the split concerned.

Empirical examples

The proposed LCGT methodology will be illustrated by the analyses of two
longitudinal data sets. The data set in the first example contains a yearly di-
chotomous response on drugs use collected using a panel design. The second

data set contains an ordinal mood measure, recorded using an experience sam-
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Figure 2: Graphical example of a LCGT model with a root of three classes.

pling design with eight measures per day during one week. The two data sets
illustrate LCGT analyses, differing in the number of classes at their root node.
For both examples, the quality of the splits will also be evaluated using the

entropy-based R-squared.

Example 1: Drugs use

The first data set stems from the National Youth Survey (Elliot, Huizinga &
Menard, 1989). It contains nine waves, from 1976 to 1980 yearly and from
1980 to 1992 with three year intervals. The age at the first wave of the 1725

12



respondents (53% man and 47% women) varied between 11 and 17 years. We
use age at the panel wave concerned as the time variable, which takes on values
ranging from age 11 to 23. Each respondent has been observed at most nine
times (on average 7.93 times). The dichotomous dependent variable of interest
in our example will be whether the respondent used drugs or not during the
past year.

Because the trees based on second and third degree polynomial growth curves
were almost identical, the simpler one using a second degree polynomial was

retained. The tree structure and the class sizes at the splits !

are presented in
Figure 3. As can be seen, there are four binary splits, which result in a total of
five latent classes at the end nodes.

To determine whether it would be better to increase the number of classes
at the root of the tree, we can look at the relative improvement in fit of models
with more than 2 classes according to the likelihood, BIC, and AIC as reported
in Table 1. As can be seen, the relative improvement with a third class is around
10%. As this is quite low, we retain the tree with a binary split at the root.
This conclusion is supported by the screeplots in Figure 4.

To interpret the encountered classes, the growth curves can be plotted for
the two newly formed classes at each node of the tree. This is displayed in
Figure 5. As can be seen, the first split results in a class with a low probability
to use drugs (class 1) and a class with a high probability to use drugs (class 2).
Subsequently both of these classes are split further. Class 1 is split into class 11
with a very low probability of using drugs (on average 0.01%) and class 12 with
a low probability during the first few years, but with a slight increase from age

20 to 33. Class 2 is split into class 21 and 22, which mainly differ in the moment

1Every split should sum up to the class size of its parent node. However, because the
allocation is carried out on the basis of the posterior probabilities, the class sizes are not
integers. For convenience, these numbers have been rounded, which causes slight deviations

where the sum of two child nodes does not exactly add up to the parent node.
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at which the probability of drugs use is the highest: Respondents of class 21
start using drugs a few years earlier than respondents of class 22. Finally, class
21 is split further, where class 211 has a moderate probability (around 0.6) to
use drugs at an early age, but this probability also quickly declines. Class 212
has a very high probability (around 0.95) to start using drugs at an early age

and this probability stays quite constant up to age 25.

419
037 6 57 16

206 51

(f

Figure 3: Layout of a LCGT with a root of two classes on Drugs use.

Table 1: Fit statistics of a traditional LC growth model with 1 to 6 classes.
logL P BIC AIO RI]OgL RIBIC RIAIC

1 -5089 3 10200 10183
2 -4246 7 8543 8505
3 -4156 11 8394 8334 0.106 0.090 0.102
4 -4086 15 8284 8202 0.083 0.067 0.079
5 -4046 19 8233 8129 0.048 0.031 0.043
6 -4028 23 8228 8102 0.021 0.003 0.016

Table 2 shows the entropy R-squared values for all splits. The encountered

values confirm what could also be seen from the depicted growth curves: The
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Figure 4: Screeplots of the difference in likelihood and BIC of succesive LCG

models for the data on drugs use.
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Figure 5: LCGT with a root of 2 classes on drug use over age.

first split on the complete data set shows a large difference between the two

classes. Furthermore, classes 11 and 12 are similar and thus badly separated,
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whereas the differences between classes 21 and 22 and between classes 211 and
212 are substantial. Hence, after the first split, the branch of class 2 contains

more important additional differences than the one of class 1.

Example 2: Mood regulation

The second data set stems from a momentary assessment study by Crayen, Eid,
Lischetzke, Courvoisier, and Vermunt (2012). It contains 8 mood assessments
per day during a period of one weeks among 164 respondents (88 women and
76 males, with a mean age of 23.7, SD = 3.31). Respondents answered a small
number of questions on a handheld device at pseudo-random signals during their
waking hours. The delay between adjacent signals could vary between 60 and
180 minutes (M [SD] = 100.24[20.36] minutes, min = 62 minutes, max = 173
minutes). Responses had to be made within a 30-minute time window after the
signal, and were otherwise counted as missing. On average, the 164 participants
responded to 51 (of 56) signals (M [SD] = 51.07 [6.05] signals, min = 19 signals,
max = 56 signals). In total, there were 8374 non-missing measurements.

At each measurement occasion, participants rated their momentary mood on
an adapted short version of the Multidimensional Mood Questionnaire (MMQ).
Instead of the original monopolar mood items, a shorter bipolar version was used
to fit the need for brief scales. Four items assessed pleasant-unpleasant mood
(happy-unhappy, content-discontent, good-bad, and well-unwell). Participants
rated how they momentarily feel on a 4-point bipolar intensity scales (e.g., very
unhappy, rather unhappy, rather happy, very happy). For the current analysis,

we focus on the item well-unwell. Preliminary analysis of the response category

Table 2: Relative entropy per split of the LCGT on drugs use.
Complete Data 1 2 21

R? 0.746 0.268 0.545 0.619

Entropy
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frequencies showed that the lowest category (i.e., very unwell) was only chosen

in approximately 1% of all occasions. Therefore the two lower categories were

collapsed together into one unwell category. The following analysis is based on

the recoded item with three categories (conform Crayen et al. (2012)).

Complete
53 112
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Figure 6: Layout of a LCGT with a root of two classes on mood regulation.

For the analysis, we used a LCG model based on an ordinal logit model. The

time variable was the time during the day, meaning that we model the mood

change during the day. There was a substantial difference between a tree based

Table 3: Likelihood, number of parameters, BIC and relative improvement of

the likelihood and BIC of a traditional LC growth model with 1 to 6 classes.

logl. P BIC AIC Rl RIpic Rlarc
1 -7199 4 14424 14408
2 6741 9 13538 13504
3 6578 14 13244 13191  0.355  0.333  0.347
4 6516 19 13149 13077  0.137  0.107  0.126
5 -6471 24 13091 13001  0.097  0.065  0.085
6 -6443 29 13064 12956  0.062  0.030  0.050
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Figure 7: Screeplots of the difference in likelihood and BIC of succesive LCG

models for the data on mood regulation.

on a second or a third degree polynomial, which indicates that developments are
better described by cubic growth curves (see also the trajectory plots in Figure
9). Because there was no substantial difference between a tree based on a third
or a fourth degree polynomial, a third degree polynomial was used. The LCGT
model obtained with a root of two classes is quite large, with in total seven
binary splits, resulting in a total of eight latent classes (Figure 6). A large tree
already indicates that a larger number of classes at the root of the tree might be
appropriate. Moreover, based on the relative improvement of the log-likelihood,
BIC, and AIC (Table 3), it seems sensible to increase the number of classes at
the root of the three. A screeplot of the relative change in log-likelihood, BIC,
and AIC also show that that after three classes the relative gain is quite small
for both measures.

The layout and size of the LCGT with 3 root classes can be seen in Figure 8
and its growth curve plots in Figure 9. The growth plots show that at the root
of the tree, the three different classes all improve their mood during the day.
They differ in their overall mood level, with class 3 having the lowest and class
2 the highest overall score. Moreover, class 1 seems to be more consistently
increasing than the other two classes.

These three classes can be split further. Class 1 splits into two classes with
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Figure 8: Layout of a LCGT with a root of three classes on mood regulation
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Figure 9: LCGT with a root of 3 classes on mood regulation of mood regulation
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both an average score around one, class 11 just above and class 12 just below.
Moreover, the increase in class 11 is larger than in class 12. The split of class
2 results in class 21 consisting of respondents with a very good mood in the
morning, a quick decrease until mid-day, and a subsequent increase. In general
the mean score of class 21 is high relative to the other classes. Class 22 starts
with an average mean score and subsequently only increases. The splitting of
class 3 results in two classes with a below average mood. Both classes increase,
class 31 mainly in the beginning and class 32 mainly at the end of the day.
Table 4 shows the relative entropy for each split. Besides the root split,
the relative entropy is largest for the split of class 2. This indicates that the
differences between the subclasses 21 and 22 are larger than those between

subclasses 31 and 32, while classes 11 and 12 differ the least.

Table 4: Relative entropy per split of each of the subsequent classes.

Complete Data 1 2 3
R tropy 0.889 0.734 0.932 0.897
Discussion

LCG models are used by researchers who wish to identify (unobserved) subpop-
ulations with different growth trajectories using longitudinal data. However,
often the number of latent classes encountered is rather large, making interpre-
tation of the results difficult. Moreover, because solutions with different number
of classes are unrelated, a substantive comparison of models with different num-
bers of classes is not possible, which is especially problematic when different
model selection criteria point at a different optimal number of classes. To re-
solve these issues, we proposed using LCGT models in which the identification
of the latent classes is done in a sequential manner. The constructed hierarchical

tree will show the most important distinctions in growth trajectories in the first
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splits, and more detailed distinctions in latter splits. While we primarily used
binary splits, we also showed how to decide about larger splits using relative
improvement of fit measures. The latter is mainly of interest at the root of the
tree. The proposed LCGT algorithm and graphical displays which are available
as R code were illustrated with two empirical examples. The two illustrative
examples showed that easily interpretable solutions are obtained using our new
procedure.

Various extensions and variants of the proposed procedure are possible and
worth to study in more detail. Whereas in the current paper we restricted
ourselves to LCGTs with only binary splits after the split at the root of the
tree, also at the second and next levels it may be of interest to use larger
split sizes, which may result in a tree with different split sizes within branches.
Because the size of the splits may strongly affect the structure of the constructed
LCGT, we recommend deciding this separately per split rather than using a fully
automated procedure. Note that at this stage more substantive information
about the branch is available to guide a decision.

The BIC was used to decide whether or not to split a class, as it has been
shown to perform well for standard LC and LCG analysis (Nylund, Asparouhov,
& Muthén, 2007). However, other measures could be used as well, where their
strictness will influence the likelihood to start a new branch within a tree. There-
fore, the decision criterion used can affect the bottom part of the tree signifi-
cantly. Note that the lower parts are also affected by the decision to increase
the number of classes at the root of the tree. Moreover, the exact choice of a
criterion depends on the required specificity of the encountered growth trajec-
tories, where a less strict criterion may be used if one wishes to see more specific
classes at the bottom of the tree.

While LCG models are becoming very popular among applied researchers,
the use of these models is not easy at all (Van De Schoot, Sijbrandij, Winter,
Depaoli, & Vermunt, 2016). We hope that the proposed LCGT methodology

21



will simplify the detection and interpretation of underlying growth trajectories.
This does, of course, not mean that the standard LCG model is not useful
anymore. In practice, a researcher may start with a standard LCG analysis,
and switch to our LCGT approach when encountering difficulties in deciding
about the number of classes or interpreting the differences between a possibly

large number of classes.
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