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Abstract

Recently, Latent Class Tree (LCT) modelling has been proposed as a con-

venient alternative to standard latent class (LC) analysis. Instead of using

an estimation method in which all classes are formed simultaneously given

the specified number of classes, in LCT analysis a hierarchical structure of

mutually linked classes is obtained by sequentially splitting classes into two

subclasses. The resulting tree structure gives a clear insight into how the

classes are formed and how solutions with different numbers of classes are

substantively linked to one another. A limitation of the current LCT mod-

elling approach is that it allows only for binary splits, which in certain situ-

ations may be too restrictive. Especially at the root node of the tree, where

an initial set of classes is created based on the most dominant associations

present in the data, it may make sense to use a model with more than two

classes. In this paper, we propose a modification of the LCT approach which

allows for a non-binary split at the root node, and provide methods to deter-

mine the appropriate number of classes in this first split, either based on

1



theoretical grounds or based on a relative improvement of fit measure. This

novel approach can also be seen as a hybrid of a standard LC model and a bi-

nary LCT model, in which an initial, oversimplified but interpretable, model

is refined using a LCT approach. Furthermore, we show how to apply a LCT

model when a non-standard LC model is required. These new approaches

are illustrated using two empirical applications: one on social capital and

another on (post-)materialism.

Introduction

Latent Class (LC) modelling has become a popular tool for clustering respon-

dents into homogeneous subgroups based on their responses on a set of categorical

variables (Clogg, 1995; Goodman, 1974; Hagenaars, 1990; Lazarsfeld & Henry,

1968; Magidson & Vermunt, 2004; McCutcheon, 1987; Vermunt & Magidson,

2002). LC models have been applied for the investigation of a variety of sub-

jects, e.g., risk behavior like gambling (Studer et al., 2015) and suicide attempts

(Thullen, Taliaferro, & Muehlenkamp, 2015), social constructs like social class

(Savage et al., 2013) and social support (Santos, Amorim, Santos, & Barreto,

2015), and cognitive constructs like rule assessment (Jansen & van der Maas,

1997) and cognitive control (Van Hulst, De Zeeuw, & Durston, 2015).

A crucial part of doing a LC analysis is the decision on the required number

of classes. In a confirmatory setting, the number of classes may be based on a

priori knowledge, though the specified LC model may not fit due to, for instance,

the presence of subclasses or other kinds of mechanisms causing violations of the
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local independence assumption. In such situations, it may make sense to relax the

local independence assumption, as suggested among other by Oberski (2016).

In an exploratory setting, we will typically not aim at finding the “true” num-

ber of clusters, but instead look for a clustering that describes the data reasonably

well and is moreover easy to interpret. To achieve this goal, researchers estimate

models with different numbers of classes and select the model that performs best

according to some fit measure, for example, according to the information crite-

rion AIC or BIC. While AIC and BIC penalize model complexity and thus prefer

models with less classes, when applying LC models to data sets which are (very)

large in terms of number of cases and/or number of variables, one will often end

up with a model with a large number of classes. Some of these classes may dif-

fer from one another in very specific and possibly less interesting ways, making

their distinction hard to interpret substantively. Moreover, different model selec-

tion measures will typically point at different best models in terms of the number

of classes. In such situations, researchers can no longer rely on purely statistical

criteria, but will instead need to inspect solutions with different number of classes

and probably opt for the model that fits best to their substantive goals (e.g., Sul-

livan, Kessler, & Kendler, 1998; Spycher, Silverman, Brooke, Minder, & Kuehni,

2008; Oser, Hooghe, & Marien, 2013; Hadiwijaya, Klimstra, Vermunt, Branje,

& Meeus, 2015). It will be clear that such an approach may be somewhat prob-

lematic since different researchers may come up with rather different final models

when analyzing exactly the same data, without being able to substantively relate

the different results.

To overcome the abovementioned problems associated with LC analysis appli-
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cations with large data set sets, van den Bergh, Schmittmann, and Vermunt (2017)

proposed an alternative way of performing a LC analysis, which they called LC

Tree (LCT) analysis. Their approach involves performing a divisive hierarchical

cluster analysis using an algorithm develop by Van der Palm, Van der Ark, and

Vermunt (2016) for density estimation with a large number of categorical vari-

ables. The main advantage of the LCT modelling approach is that it shows how

models with different numbers of classes are linked to one another; for instance,

a model with 6 classes is a model with 5 classes in which one of the classes split

into two parts. When applying a LCT, the model selection problem reduces to

deciding whether a particular split should be accepted yes or no. As in a standard

LC analysis, this can be decided based on fit measures, but also based on whether

a split is meaningful content wise.

As the name suggests, the method yields tree structure (see Figure 1 for an

example), which at the top contains a root node that serve as ’parent’ node of two

’child’ nodes. At the next level of the tree, these child nodes become parent nodes

and produce possibly their own child nodes, and so on. More specifically, the

algorithm used to construct a LCT works as follows: first a 1- and 2-class model

is estimated for the root node, that is, using the original data set. If the 2-class

model is preferred according model the selection criterion used, then two child

nodes are created. For each of the two child nodes a new data set is constructed,

which contains the posterior membership probabilities for the class concerned as

case weight. Subsequently, each new child node is treated as a parent and it is

checked whether a 2-class model provides a better fit than a 1-class model on the

corresponding weighted data set. This stepwise procedure continues until no node

4



is split up anymore.

– Include Figure 1 around here –

The sequential LCT algorithm yields child classes which are subclasses of

a parent class, which implies that interpretation can take place at any level of

the tree. That is, after labeling the classes formed at the root of the tree, the

classes formed at the next level of the tree will be labelled conditionally on the

labeling of their parent classes. This makes it much easier to interpret LC solution

with more than a few classes. Moreover, the fact the classes are hierarchically

linked makes it possible to decide on the number of classes based on substantive

interpretation of the splits; if certain splits are not interesting or relevant for the

research question at hand, the child classes of a split can be substituted for their

parent class. Hierarchical tree structures similar to those obtained with a LCT

analysis are very practical as clustering procedures because clustering solutions

at different levels of a tree allow different granularity to be extracted during the

data analysis, making them ideal for exploration (Zhao, Karypis, & Fayyad, 2005;

Ghattas, Michel, & Boyer, 2017).

– Include Figure 2 around here –

Limiting the number of classes with binary splits in a LCT is a practical, but

dangerous restriction. As an illustration of this problem, Figure 2 presents three

examples of possible latent class configurations: two with three classes and one

with four classes. The first configuration of three classes (Panel A) shows two

fairly similar classes (classes 2 and 3), while class 1 is quite distinct from these

two. This is a situation in which a tree with binary splits is expected to perform

well. In the first binary split, class 1 will be separated from classes 2 and 3, where
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the class combining the latter two will have response probabilities close to 0.2

(the average of these two classes). The binary split at the next level will detect the

differences between class 2 and 3. Hence, binary splits do not cause any problems

with this setup and an example of the resulting tree structure is shown by Figure

1, where classes 2 and 3 are defined as 21 and 22 in the tree structure.

The second configuration of three classes in Figure 2 (Panel B) shows three

rather distinct classes. The first binary split will mainly be based on most dis-

similar classes 1 and 2, while class three will be spread out over the two classes.

By splitting both classes again, a third and fourth class are retrieved and a tree

structure as shown in Figure 3 is obtained. Neither the number of classes nor the

encountered class-specific response probabilities will correspond to what could

be expected. Hence, using only binary splits is not appropriate in this case and

a ternary split, or 3-class LC model, as shown in Figure 4, should be preferred.

Note that this is not a LCT yet, but further splitting one of the three classes results

in a tree structure.

The third configuration in Figure 2 (Panel C) contains four classes. Applying

a binary split in this situation results in a child node combining classes 1 and 2

with response probabilities of 0.8 and another node combining classes 3 and 4

with response probabilities of 0.2 on the other side. Each of these combinations

is split further, resulting in the tree structure of Figure 3 with both the expected

number of classes and the appropriate conditional response probabilities.

– Include Figure 3 around here –

– Include Figure 4 around here –

Though these illustrative examples are somewhat artificial, they show clearly
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that in some situations binary splits are more appropriate than in others. Of course,

in real life applications requiring a large number of classes, it will be much more

difficult to determine whether the binary split restriction is problematic or not. In

such more complex situations, it cannot be expected that the (extended) LCT pro-

cedure will always retrieve the true classes, but the same applies to a traditional

LC analysis. In general, whenever a smaller number of classes is used than indi-

cated by the information criterion at hand, the model will be oversimplified. This

is not only an inherent consequence of any tree procedure, as has been well es-

tablished within the area of data mining (e.g., Kohavi & Quinlan, 2002), but also

occurs when a standard LC analysis gives too many classes to be useful and the

researcher prefers substantive criteria and ignores the fit measures. A nice feature

of the stepwise splitting approach is that it can be applied to a LC model with any

number of starting classes, where additional interesting hidden information may

be picked up by the tree. Therefore, we propose a hybrid of the standard LC model

and the binary LCT method, in which an initial, oversimplified but interpretable,

model is refined using a LCT approach. This gives a better statistical fit than the

purely substantive approach but also allows for interpretable classes.

Various approaches can be used to decide on the number of classes of an initial

LC model. If a researcher has theoretical reasons for a certain number of classes,

this number can be used for the initial LC analysis. When a priori knowledge

or beliefs about the number of classes is absent, one may select the number of

starting classes such that they have a clear interpretation. Note that while choosing

the number of starting classes based on what is substantively meaningful ignores

the statistical fit of the model, model fit is still warranted since the LCT picks
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up remaining associations (i.e., misfit) when classes are split up further down the

tree. We also present a method for choosing the number of starting classes based

on the statistical fit index. More specifically, we propose choosing the number of

classes in the first split based on a relative improvement in fit measure.

In principle also any subsequent splits do not have to be binary, but the focus

in this paper will be on an initial LC model (in other words, the root of the tree on

the complete data). The initial model will pick up the most dominant associations

in the data and for any subsequent splits a deviation of the binary procedure can

be supported by substantive information.

The remainder of the paper is set up as follows. In the next section we discuss

the basic LC model and how it can be used to build a LCT. After that we describe

the measure of relative improvement in fit that we propose to determine the split

size at the root, and moreover present a small simulation study on its performance

in the situations depicted in Figure 2. Then, two empirical examples are presented

illustrating how the improvement of fit measure and substantive reasoning can be

used to determine the appropriate number of classes at the first split of a tree. The

paper is concluded with final remarks by the authors.

Method

LC models

Let yi j denote the response of individual i on the jth categorical variable. The

responses of individual i on the full set J variables is denoted by yi. A standard
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LC analysis defines a model for the probabilities of observing the various possible

response patterns. Let X denote the discrete latent class variable, k denote a par-

ticular latent class, and K the number of latent classes. A LC model is specified

for P(yi) as follows:

P(yi) =
K

∑
k=1

P(X = k)
J

∏
j=1

P(yi j|X = k). (1)

Here, the probability of belonging to class k is represented by P(X = k) and the

probability of giving the response concerned conditional on belonging to class k

is represented by P(yi j|X = k). The product of the class-specific response proba-

bilities of the J variables follows from local independence assumption.

The model parameters are usually estimated by maximizing the likelihood

through the EM algorithm (Dempster, Laird, & Rubin, 1977). The log-likelihood

function is as follows:

logL(θ ;y) =
N

∑
i=1

logP(yi), (2)

where P(yi) takes the form defined in Equation (1), θ contains the model param-

eters P(X = k) and P(yi j|X = k), and N denotes the total sample size.

Building a LCT

Building a LCT starts with the estimation of a standard one- and two-class model

at the root node. If the two-class model is preferred, individuals are assigned to

the two child classes having the root node as their parent. While the current LCT

model is restricted to binary splits, below we show how to decide about a possibly
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larger number of starting classes. Subsequently, at the next level of the tree, the

child nodes become parent nodes themselves. For each parent class, one- and

two-class models are estimated, and it is decided whether a two-class model is

preferred. If so, the cases belonging to the parent class concerned are assigned

to the newly formed child classes, and the same procedure is repeated at the next

level of the tree.

The model defined at a particular parent node is very similar to a standard LC

model; i.e, it can be formulated as follows:

P(yi|Xparent) =
K

∑
k=1

P(Xchild = k|Xparent)
J

∏
j=1

P(yi j|Xchild = k,Xparent), (3)

where Xparent represents one of the parent classes at a particular level of the tree,

and Xchild represents one of the K possible newly formed child classes at the next

level for the parent class concerned, with in general K equals 2. It should be noted

that each child has only one parent. Hence, Xchild actually represents Xchild|parent ,

but for the purpose of readability, we use the shorthand Xchild throughout this

paper. Furthermore, P(Xchild = k|Xparent) and P(yi j|Xchild = k,Xparent) represent

the class proportion and the class-specific response probabilities for child class k

within the parent node concerned. In other words, as in a standard LC model we

define a model for yi, but now conditioning on belonging to a particular parent

node.

As indicated above, if a split is accepted and new child classes are formed,

observations are assigned to the newly formed classes based on their posterior

class membership probabilities. More specifically, the posterior class membership
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probabilities for the K child nodes conditional on the parent node are obtained as

follows:

P(Xchild = k|yi;Xparent) =
P(Xchild = k|Xparent)∏

J
j=1 P(yi j|Xchild = k,Xparent)

P(yi|Xparent)
.

(4)

However, the actual class assignment can be done in several ways, among

others using modal, random, or proportional assignment rules (Dias & Vermunt,

2008). As proposed by Van der Palm et al. (2016), we use proportional class

assignment in which every respondent is present at each node with a weight equal

to the posterior membership probability for the node concerned.

Estimation of the LC model at the parent node Xparent involves maximizing

the following weighted log-likelihood function:

logL(θ ;y,Xparent) =
N

∑
i=1

wi,Xparent P(yi|Xparent), (5)

where wi,Xparent is the weight for person i at the parent class, which equals the

posterior probability of belonging to the parent class for the individual concerned.

If a split is performed, the weights for the two newly formed classes at the next

level are obtained as follows:

wi,Xchild=1 = wi,Xparent P(Xchild = 1|yi;Xparent) (6)

wi,Xchild=2 = wi,Xparent P(Xchild = 2|yi;Xparent). (7)

In other words, a weight at a particular node equals the weight at the parent node
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times the posterior probability of belonging to the child node concerned condi-

tional on belonging to the parent node. As an example, the weights wi,X1=2 used

for investigating a possible split of class X1 = 2 are constructed as follows:

wi,X12 = wi,X=1P(X1 = 2|yi,X = 1), (8)

where in turn wi,X=1 = P(X = 1|yi). This implies:

wi,X12 = P(X = 1|yi)P(X1 = 2|yi,X = 1), (9)

which shows that a weight at level two is in fact a product of two posterior prob-

abilities. More details on the estimation procedure can be found in Van der Palm

et al. (2016).

Construction of a LCT can be performed using standard software for LC anal-

ysis, namely by running multiple LC models with data sets containing the ap-

propriate case weights. After each accepted split a new data set is constructed

and the procedure repeats itself, which is displayed in pseudo-code in Algorithm

1. We developed an R package that automatizes these steps and which calls a

LC routine – in our case version 5.1 of the Latent GOLD program (Vermunt &

Magidson, 2015, 2016) – to perform the actual estimation of the LC models using

the weighted data sets1. This routine also provides graphical displays of the class

profiles as well as of the tree structure. Thus once the tree is formed, one can

investigate the discrepancies between classes at every split using profile plots. An

1Such a fully automated estimation procedure for LCTs will also be implemented in version

6.0 of Latent GOLD.
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example of a graphical representation of a LCT can be seen in Figure 5. To pre-

vent the structure of the tree to be affected by the fact that classes can be permuted

without changing the model fit, our R routine orders the child classes within a split

based on their size in descending order.

– Include Algorithm 1 around here –

– Include Figure 5 around here –

Statistics used to define the splits.

Different types of statistics can be used to determine whether a split should be

accepted or rejected. Here, we use the BIC (Schwarz, 1978), which is defined as

follows:

BIC =−2logL(θ ;y,Xparent)+ log(N)P, (10)

where logL(.) represents the log-likelihood at the parent node concerned, N the

total sample size, and P the number of parameters of the model at hand. Thus, a

split is performed if at the parent node concerned the BIC for the 2-class model

is lower than the one of the 1-class model. Note that using a less strict criterion

(e.g. AIC) yields the same splits as the BIC, but also possible additional splits,

and thus a larger tree. In other words, depending on whether one wishes a smaller

or a larger tree, a more conservative or a more liberal criterion can be used.

As explained in the introduction, in some situations, a binary split may be too

much of a simplification, and one would prefer allowing for more than two classes.

This is especially true for the first split of the tree, in which one picks up the most
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dominant features in the data. However, for this purpose, we cannot use the usual

criteria like a AIC or BIC, as this would boil down to using again a standard LCT

model. Instead, for the decision to use more than two classes at the first split, we

propose looking at the relative improvement of fit compared to the improvement

between the 1- and 2-class model. When using the log-likelihood value as the fit

measure, this implies assessing the increase in log-likelihood between, say, the

2- and 3-class model and compare it to the increase between the 1- and 2-class

model. More explicitly, the relative improvement between models with K and

K +1 classes (RIK,K+1) can be computed as:

RIK,K+1 =
logLK+1− logLK

logL2− logL1
, (11)

which yields a number between 0 and 1, where a small value indicates that the

K-class model can be used as the first split, while a larger value indicates that

the tree might improve with an additional class at the first split of the tree. Note

that instead of an increase in log-likelihood, in Equation 11 one may use other

measures of improvement of fit, such as the decrease of the BIC or the AIC.

To get an indication of the performance of the RIK,K+1, we run a small simula-

tion study using the three scenarios discussed in the introduction and depicted in

Figure 2. For each scenario we generated 100 data sets containing 10 dichotomous

response variables for 1000 respondents and assuming equal class sizes. Results

on the relative improvements from 2 to 3 classes and from 3 to 4 classes are shown

via boxplots in Figure 6.

– Include Figure 6 around here –
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For configuration A, binary splits suffice as is shown by the always very low

relative improvement when adding a third class. For configuration B, a ternary

split is more suitable, which is confirmed by the high relative improvement in fit

when increasing the classes from 2 to 3 obtained for every simulation replication.

For configuration C, our measure indicates that a binary option suffices since the

relative improvement was smaller than .10 for most of the simulation replications.

Compare to the first configuration, the sampling fluctuation is somewhat larger in

this configuration, which explains why a somewhat larger values were found in a

small portion of the simulation replications.

Empirical examples

The proposed LCT methodology is illustrated by the analyses of two data sets

which were previously studied using a standard LC model. The data set in the

first example comes from a study by Owen and Videras (2009) and contains both a

large number of respondents and a large number of variables, yielding a situation

for which LCTs are well suited. For this data set, we compare the original LC

solution by Owen and Videras (2009), the first splits of a binary LCT, and a LCT

with a more appropriate number of child classes at the root using our relative

improvement of fit measure. The second example concerns a very large data set

in term of the number of observations from Moors and Vermunt (2007) and uses a

LC model for ranking data. A LCT is very suited for this data set, as a traditional

LC analysis indicates that the fit improves up to a large number of classes.
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Social Capital

Owen and Videras (2009) used the information from 14.527 respondents of sev-

eral samples of the General Social Survey to construct “a typology of social capital

that accounts for the different incentives that networks provide.” Social capital is a

construct that is plagued by “conceptual vagueness” (Durlauf & Fafchamps, 2004)

and therefore Owen and Videras (2009) perform a Latent Class analysis to grasp

this concept. The data set used by Owen and Videras (2009) contains sixteen di-

chotomous variables indicating whether respondents participate in specific types

of voluntary organizations (the organizations are listed in the legend of Figure 7)

and two variables indicating whether respondents agree with the statements “other

people are fair” and “other people can be trusted”. Owen and Videras explain the

inclusion of the latter two variables by stating that social capital is a multidimen-

sional concept which embeds multiple manifestations of civic engagement as well

as trust and fairness. Using the BIC, Owen and Videras selected a model with

eight classes, while allowing for one local dependency, namely between the vari-

ables fraternity and school fraternity. The 8-class original solution by Owen and

Videras (2009) is displayed in Figure 72, with the size of the classes displayed on

the x-axis.

The classes retrieved by Owen and Videras (2009) are quite difficult to inter-

pret. Classes 1 and 2 seem to mainly differ on the variables fair and trust, while

classes 2 and 3 differ on almost all variables but fair and trust. The differences
2The exact conditional probabilities of the LC model and the LCTs on social capital can be

found in the appendix.
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between classes 1 and 3 are subsequently a lot harder to pinpoint and this be-

comes increasingly difficult when including the other classes in the comparisons.

Note furthermore that various of the classes contain have small class proportion

(classes 4 to 8 each contain less than 10% of the observations). To facilitate the

interpretation of a classification of social capital, a LCT is built with this data.

– Include Figure 7 around here –

The layout and class sizes3 of a binary LCT based on the data of Owen and

Videras (2009) is shown in Figure 8. The fifth and final level of the tree consists

of nine classes (every class which is not split further from a certain level, is taken

passed as it is to a next level).

The first two levels of the binary LCT can be closer examined in their profile

plots in Figure 9. The top panel shows the first split, which indicates that the prob-

abilities on all variables4 are higher for class 2 than for class 1. So basically the

first split divides the sample based on general social capital, where class 1 contains

respondents with low social capital and class 2 respondents with high social cap-

ital. Within each of these groups a pessimistic (classes 11 and 22) and optimistic

(classes 12 and 21) social capital group seems to be present, as these groups are

split mainly on the variables fair and trust. The fact that both splits at this level are

mainly due to these two variables indicates that there is a large amount of resid-

ual association between these variables within the two classes formed at the root.
3Every split should sum up to a the class size of its parent node. However, because the alloca-

tion is carried out on the basis of the posterior probabilities, the class sizes are not integers. For

convenience, these numbers have been rounded, which causes slight deviations where the sum of

two child nodes does not exactly add up to the parent node.
4The exact probabilities can also be found in the appendix
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Hence, a tree starting with more classes at the first split may perhaps be better

suited.

– Include Figure 8 around here –

To decide on the number of classes at the root of the tree, multiple standard

LC models with increasing number of classes are estimated. The fit statistics and

the relative improvement of the fit statistics are shown in Table 1. The relative fit

improvement is about 20% when expanding a model from 2 to 3 classes, compared

to the improvement in fit when expanding from 1 to 2 classes. Adding more

classes improves the fit marginally, indicating that a root size of three classes may

be used. The complete LCT obtained by starting with three classes is shown in

Figure 10, with the class sizes displayed for every node of the tree. For every final

node it holds that, according to the BIC, a 1-class model is preferred to a 2-class

model.

– Include Table 1 around here –

The profile plots for the splits of the LCT with three initial classes are shown

in Figure 11. At first split, the first class has a low probability on all variables, the

second class displays a low probability on participation in all voluntary organiza-

tions and very high probabilities on the variables fair and trust, and the third class

displays relative high probabilities on participation in the voluntary organizations

and rather high probabilities for fair and trust. Subsequently, the first and third

class are split further, while the second is not. The first class is split in a class

with low and very low probabilities on all variables, while the third class is split

in two classes with preferences for different voluntary organizations (e.g., a high

probability for being part of a professional organization in class 31 versus a high
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probability for being part of a youth group in class 32). Subsequently, class 31

is split further into classes 311 and 312, which seem to differ mainly in partic-

ipation in all voluntary organizations. The final split yielding classes 3111 and

3112 results in classes which differ again in preferences for different voluntary

organizations (e.g, a high probability for being part of a literary or art group in

class 3111 versus a high probability for being part of a fraternity in class 3112).

– Include Figure 9 around here –

– Include Figure 10 around here –

– Include Figure 11 around here –

The original solution of eight classes by Owen and Videras (2009) can be

compared with the LCT with three initial classes. Note the resemblance between

the first classes of the LCT and the standard LC model. The relation between the

fully binary LCT and standard LC analysis solutions is less clear, though there

are also similarities. For instance, LCT-class 21 is rather similar to standard LC

analysis class 2. Similarities in the results of the LCT and standard LC analysis

are expected, though the goal of a LCT is not to resemble the standard LC anal-

ysis result. A great advantage of the LCT is that the classes can be interpreted

stepwise, as first the classes at the first level of the tree can be interpreted and sub-

sequently the classes at lower levels. Moreover, it offers the possibility to make

a decision on the number of classes based on substantive reasons. Hence, splits

at lower levels which are of no substantive interest can be ignored. For instance,

the distinction between classes 11 and 12, which differ mainly in the degree of

low participation in voluntary groups may be of less interest, as it reflects subtle

quantitative differences rather than qualitative differences. In such a case, class 1
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can be used in the final classification instead of classes 11 and 12.

(Post-)Materialism

The study by Moors and Vermunt (2007) used the answers of 21468 respondents

participating in the 1990 European Values Survey on three questions of meant to

validate the measurement of (post-)materialism as proposed by Inglehart (1971).

Each item contained four aims of a country and respondents were to determine

which aim should have the highest priority and which one should have the second

highest priority in their opinion. The response options of the three item can be

seen in Table 2.

– Include Table 2 around here –

Moors and Vermunt (2007) used a latent class discrete choice model for their

study, as every respondent gave two ranked responses per item. A latent class

discrete choice model is quite similar to a traditional latent class model as depicted

in Equation (1). For response pattern s, with the first and second response on an

item denoted as by a1s and a2s respectively, a discrete choice model has the form

of:

P(ys) =
K

∑
k=1

P(X = k)
J

∏
j=1

P(y1 j = a1s,y2 j = a2s|X = k). (12)

With a LCT approach this model becomes:

P(ys|Xparent)=
K

∑
k=1

P(Xchild = k|Xparent)
J

∏
j=1

P(y1 j = a1s,y2 j = a2s|Xchild = k,Xparent).

(13)

20



Within a discrete choice framework the choice probabilities are parameterized,

in terms of the utilities of the alternatives. In our case, for the first item, this

implies that

P(y11 = a1s,y21 = a2s|Xchild = k,Xparent) =
τa1k

∑
4
a=1 τak

τa2k

∑
4
a6=a1

τak
. (14)

A higher value of τak indicates a higher probability that someone belonging to

class k selects alternative a. Two important differences with a standard LC model

are that the utilities are assumed to be equal between the first and second choices

and that it should be taken into account that the first and second choice a ranking

task cannot be the same, which is why the summation for the second choice is over

the non-selected alternatives (a 6= a1). As is usually done, we use log transformed

utilities, which are logit coefficients; that is:

logτak = βak (15)

For identification, effects coding is used implying that the βak sums to 0 within

latent class k. The larger positive βak, the more attractive alternative a for someone

belonging to the class k, while the reverse applies to negative values.

The fit statistics obtained when estimating LC discrete choice models with 1

to 10 classes, as well as the corresponding relative fit improvement are reported in

Table 3. As can be seen, the BIC and AIC values keep decreasing till 10 classes,

indicating that a large number of classes should be selected based on the measures.

However, the relative improvement of fit decreases rather quickly and seems to

become rather small after four classes. Thus based on this measure, a LCT model
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with 4 starting classes seems to be suited for this data set.

– Include Table 3 around here –

Besides the relative improvement of fit, other (substantive) considerations can

be appropriate to decide on the number of classes at the first split of the tree. This

is also what Moors and Vermunt (2007) did in the original study. They compared

the two- to five-class models and concluded that four classes could be identified

in which at least one item from each set is related to a particular latent class. Such

substantive reasoning can also guide a decision on the number of classes, but with

the LCT approach these classes can further be explored. Out of the four initial

classes, two are split based on the BIC, and at the final level there is one more

split. This yield a total number of seven classes at the final level of the tree, as is

shown in Figure 12.

– Include Table 4 around here –

The estimated utilities are reported in Table 4. For the first class at the first

level of the tree it can be seen that the high utilities for the first response option

of every item, (to wit, the issues ’Maintaining a high level of economic growth’,

’Maintaining order in the nation’ and ’A stable economy’), shape the first class.

These economic and ’maintaining order’ issues made Moors and Vermunt (2007)

interpret this class as a ’conservative’ elite class, which stresses issues of macro-

socio-economic order. For the second class the response options ’strong defense

forces’, ’fighting rising prices’ and ’fight against crime’ cluster together. These is-

sues have been interpreted as ’typical’ concerns of the lower class. The third class

favors the more post-materialistic response options ’More say at work’, ’More

say in government decisions’ and ’More human society’. This class is therefore
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also interpreted as a post-materialist class. The fourth and final class combines

post-materialistic and economic issues, to wit, ’Economic growth’, ’More say in

government issues’ and ’A stable economy’. This is interpreted as a more demo-

cratic but also macro-economic class.

These four classes at the first level are the same as those identified by Moors

and Vermunt (2007) using a traditional latent class analysis. However, the tree

extension allows obtaining a more detailed picture regarding the more subtle vari-

ation within these four classes. The first thing that stands out is that only classes 1

and 3 are split into subclasses. The first, so-called ’conservative’ elite, class splits

in two classes which differ mainly in how much they (dis)like ’more say at work’

on the first item and how much they dislike ’strong defense forces’ on the first item

and ’fighting rising prices’ on the second item. The third class at the first level,

labelled the post-materialist class, is split into two classes which mainly differ in

the importance attributed to ’protecting freedom of speech’ and ’giving people

more say in important government decisions’. Hence, here one can distinguish

two groups that differ in their preference for the post-materialistic aspects. At the

final level of the tree the so-called ’conservative’ elite class that focused mainly

on economic growth is split further. This split is based mainly on difference on

the first and second item, where class 111 has a stronger preference for the op-

tions ’Strong defense forces’ and ’More say at work’ on item one and the option

’fighting rising prices’ on item two, and class 112 has a stronger preference for

the option ’beautiful cities and countryside’ on item one and ’protecting freedom

of speech’.

To summarize, the tree starts with four branches which correspond with the
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four classes of the original solution by Moors and Vermunt (2007), and subse-

quently yields five subclasses spread over two branches. The final result at the

lowest level of the tree consists of 7 classes, but it is possible to decide on the

most interesting number of classes of LCT with substantive reasoning. For in-

stance, if for a particular study specific clusters of an elite class are of interest, but

not a division of the post-materialistic class, classes 31 and 32 can be replaced by

class 3.

Discussion

The LCT models approach discussed in this paper provide an alternative approach

to LC analysis, in which a stepwise procedure is used to build a meaningful cluster

model for the data set at hand. LCT models are especially useful when standard

LC models would yield a large number of classes with mutual differences which

are difficult to interpret. Because the restriction of the current LCT to binary splits

can be problematic, we proposed a modification allowing for a larger number of

child classes at the root of the LCT. We introduced a relative improvement of fit

measure to decide about the number of classes, which turned out to work well in

our small simulation study. We illustrated the new approach using two empirical

examples, in which the relative improvement of fit measure indicated that one

should use three and four starting classes, respectively. For the first example,

we also compared trees starting with 2 and 3 classes, and showed that the latter

yielded a much more easily interpretable clustering.

While in the current paper, the option of using non-binary splits has been
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applied only to the first split of the LCT, in principle it could also be used at the

next levels of a tree. For instance, in the first example on social capital, both class

1 and 3 could be split into more than two classes. Based on the BIC this would be

three and six classes, respectively. Rather than using the BIC, it may be possible

to adapt our measure of relative improvement for this purpose, for instance, by

comparing the improvement of fit with the one at the first split or with the one

within the branch at hand. Because the number of classes at the splits can strongly

affect the outcome of a LCT analysis, we recommend deciding this separately for

every split, starting with the first split. Note that at lower levels of the tree more

substantive information about the branch is already available which can be used

to guide the decision regarding the number of subclasses.

The LCT models described in this paper are somewhat similar to the LC factor

models proposed by Magidson and Vermunt (2001). For example, a tree with

binary splits at the first and second level resembles a LC factor model with 2

dichotomous latent factors. However, in LC factor models not only the number of

factors can be increased, but also the number of categories of the factors. While

this is similar to increasing the number of subclasses in a split as discussed in this

paper, an important difference is that the multiple classes corresponding to the

same factor are restricted to be ordered. It may be worth investigating whether

such an approach – in which the number of classes is increased but at the same

time the classes are restricted to be ordered – is useful in the context of a LCT

models as well. For instance, in our example on social capital, one may wish to

force the splits at the first and second level to represent different dimensions, using

possibly more than two classes. In such a case, it would make sense to apply a LC
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factor like approach at these splits of the LCT.

In this paper, we used the BIC to decide whether or not to stop the splitting pro-

cess of the classes. While the BIC has been shown to perform well for standard LC

analysis (Nylund, Asparouhov, & Muthén, 2007), various other model selection

criteria are available, such as the integrated classification likelihood (Biernacki,

Celeux, & Govaert, 2000). Their strictness influences the probability to start a

new branch within a LCT, implying that the choice for the decision criterion can

affect the bottom of the tree significantly. Whereas we used the standard maxi-

mum likelihood method for the estimation of the submodels forming a LCT, it may

be worth considering other estimation procedures, such as the recently proposed

minimum φ -divergence estimation method (Felipe, Miranda, & Pardo, 2015).

Summarizing, it can be stated that various option are available for deciding

on the size of the splits of a LCT. In a purely exploratory analysis, the proposed

relative improvement of fit measure seems to be a useful tool for deciding about

the number of starting classes, while in other situations one may wish to base this

decision on content information. The form of the tree and thus the composition of

the classes will therefore be subject to the available information and requirements

of the research question at hand. There are many ways to derive a clustering from

a data set, and it is best to assume that there is no particular method which is

correct in all situations (Hennig, 2015). In other words, we do not want to claim

that the LCT approach will always yield the best or the true clusters, but this is

often also unlikely for a standard LC analysis. In practice, a researcher may start

with a standard LC analysis, and switch to our LCT approach when encountering

difficulties in deciding about the number of classes or interpreting the differences
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between a possibly large number of classes.
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begin
Decide on the number of classes at the first split of the tree (on the

complete data) based on the relative improvement of fit measure.

Make a new data set for every new class where each observation gets

as a weight equal to its posterior probability for the class concerned

end

while Splits have been made at the previous level of the tree do

for Every new class at the previous level do

if A split is preferred over no split then
Construct a new data set for each class and estimate 1 and 2

class models to decide whether a further split is needed;

end

end

end
Algorithm 1: Algorithm to construct a LCT
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Figure 1: Example of a tree structure with two binary splits.
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Figure 2: Two examples of three classes and one of four classes.
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Figure 3: A tree structures with three binary splits.
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Figure 4: A 3-class LC model.
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Figure 6: Boxplots of the improvement in fit from 2 to 3 and from 3 to 4 classes

relative to the improvement from 1 to 2 classes, based on the configurations pre-

sented in Figure 2.
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Figure 8: Layout of a LCT starting with a two-class split on the Social Capital

data set.
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Figure 9: Profile plots of the first two levels of a LCT on Social Capital with only

2-class splits. Conditional response probabilities of the 18 items are shown on the

y-axis and different (sub)classes are shown on the x-axis.

41



14527

7518 3915 3093

4313 3205 1901 1193

1688 212

1064 624

Figure 10: Layout of a LCT starting with a three-class split on the Social Capital

data set.
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Figure 11: Profile plots of a LCT with a root of three classes on social capital.
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Figure 12: Layout and class sizes of the LCT based on the discrete choice data on

(Post-)Materialism.
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Table 1: Fit statistics and their relative improvement of the Social Capital data.

logL P BIC AIC RLL RBIC RAIC

1 -94204 18 188581 188444

2 -89510 37 179376 179095 1.000 1.000 1.000

3 -88501 56 177539 177115 0.215 0.199 0.212

4 -88117 75 176952 176383 0.082 0.064 0.078

5 -87826 94 176553 175840 0.062 0.043 0.058

6 -87619 113 176321 175464 0.044 0.025 0.040

7 -87425 132 176114 175113 0.041 0.022 0.038

8 -87322 151 176090 174945 0.022 0.003 0.018

9 -87234 170 176098 174808 0.019 -0.001 0.015
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Table 2: Indicators for the Latent Class Discrete Choice model
Item A Item B Item C

Maintaining a high level of economic growth. Maintaining order in the nation. A stable economy.

Making sure the country has strong defense forces.
Giving people more say in important

government decisions.

Progress toward a less impersonal

and more human society.

Seeing that people have more say about how things are

done at their jobs and in their communities.
Fighting rising prices.

Progress toward a society in which

ideas count more than money.

Trying to make our cities and countryside more beautiful. Protecting freedom of speech. The fight against crime.
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Table 3: Fit statistics and their relative improvement of the Discrete Choice data.

logL P BIC AIC RLL RBIC RAIC

1 -98236 9 196557 196489

2 -95154 19 190490 190347 1.00 1.00 1.00

3 -94389 29 189056 188837 0.25 0.24 0.25

4 -93965 39 188304 188009 0.14 0.12 0.13

5 -93796 49 188060 187689 0.05 0.04 0.05

6 -93678 59 187920 187474 0.04 0.02 0.04

7 -93596 69 187853 187331 0.03 0.01 0.02

8 -93531 79 187818 187220 0.02 0.01 0.02

9 -93465 89 187782 187109 0.02 0.01 0.02

10 -93416 99 187779 187030 0.02 0.00 0.01
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Table 4: Logits of the latent class discrete choice models.
Level of the tree 1 2 3

Classes 1 2 3 4 11 12 31 32 111 112

Set A

Economic growth 1.590 0.217 0.302 2.075 1.571 1.750 0.438 0.045 1.452 1.800

Strong defence forces -0.992 -0.797 -2.178 -1.526 -1.525 -0.609 -2.255 -2.123 -1.311 -1.813

More say at work 0.009 0.561 1.662 0.440 0.456 -0.514 1.490 2.088 0.667 0.209

Beautiful cities -0.606 0.019 0.213 -0.989 -0.502 -0.626 0.326 -0.010 -0.808 -0.196

Set B

Maintaining order 1.678 0.160 -0.500 -0.652 1.796 1.581 -0.299 -0.962 1.983 1.685

More say -0.924 -0.334 0.774 0.617 -0.839 -0.996 0.476 1.532 -0.807 -0.852

Fight rising prices -0.521 0.470 -0.893 0.024 -0.886 -0.154 -1.183 -0.618 -0.696 -1.292

Freedom of speech -0.233 -0.297 0.619 0.010 -0.071 -0.431 1.005 0.048 -0.480 0.460

Set C

Stable economy 1.467 0.050 -0.591 1.638 1.356 1.619 -0.663 -0.488 1.367 1.353

Humane society -0.484 -0.206 1.050 -0.223 -0.366 -0.648 0.918 1.314 -0.222 -0.577

Ideas count -1.415 -0.658 0.112 -1.102 -1.365 -1.476 0.188 -0.014 -1.465 -1.234

Fight against crime 0.432 0.814 -0.570 -0.313 0.375 0.504 -0.443 -0.813 0.319 0.459
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Appendix

Table 5: Conditional probabilities and class sizes of the LC analysis on Social

Capital
C1 C2 C3 C4 C5 C6 C7 C8

Fair 0.29 0.88 0.89 0.68 0.00 0.84 0.82 0.76

Trust 0.19 0.19 0.48 0.37 0.50 0.93 0.56 0.79

Frat 0.06 0.71 0.76 0.49 0.00 0.46 0.59 0.56

Serv 0.02 0.03 0.18 0.35 0.12 0.05 0.09 0.34

Vet 0.01 0.00 0.26 0.21 0.17 0.08 0.14 0.65

Polit 0.03 0.03 0.06 0.37 0.10 0.00 0.08 0.16

Union 0.00 0.00 0.10 0.08 0.08 0.03 0.03 0.31

Sport 0.12 0.10 0.08 0.33 0.17 0.02 0.21 0.19

Youth 0.08 0.11 0.30 0.21 0.42 0.08 0.68 0.64

School 0.01 0.00 0.05 0.04 0.28 0.16 0.65 0.66

Hobby 0.03 0.04 0.20 0.01 0.31 0.25 0.48 0.70

Sfrat 0.02 0.04 0.22 0.12 0.23 0.13 0.14 0.38

Nat 0.00 0.01 0.19 0.02 0.11 0.00 0.04 0.33

Farm 0.01 0.01 0.08 0.04 0.08 0.02 0.02 0.21

Lit 0.01 0.02 0.03 0.08 0.06 0.10 0.06 0.16

Prof 0.01 0.01 0.32 0.02 0.19 0.12 0.08 0.58

Church 0.02 0.09 0.55 0.05 0.26 0.03 0.19 0.66

Other 0.05 0.10 0.17 0.13 0.15 0.20 0.07 0.22

Class sizes 0.41 0.23 0.11 0.07 0.06 0.05 0.04 0.03
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Table 7: Conditional probabilities and class sizes of the LCT starting with a split

of three classes on Social Capital
1 2 3 11 12 31 32 311 312 3111 3112

Fair 0.37 0.97 0.67 0.37 0.37 0.71 0.62 0.69 0.81 0.75 0.60

Trust 0.12 0.84 0.50 0.13 0.12 0.56 0.41 0.55 0.67 0.60 0.47

Frat 0.04 0.09 0.23 0.07 0.00 0.32 0.08 0.30 0.49 0.17 0.54

Serv 0.02 0.06 0.34 0.03 0.00 0.41 0.23 0.37 0.70 0.33 0.44

Vet 0.05 0.07 0.12 0.09 0.00 0.16 0.07 0.15 0.18 0.05 0.33

Polit 0.01 0.02 0.14 0.01 0.00 0.18 0.08 0.16 0.36 0.15 0.18

Union 0.13 0.11 0.16 0.19 0.05 0.15 0.16 0.15 0.21 0.08 0.26

Sport 0.11 0.15 0.47 0.17 0.02 0.40 0.58 0.37 0.64 0.34 0.43

Youth 0.03 0.03 0.35 0.05 0.00 0.19 0.60 0.13 0.62 0.12 0.16

School 0.05 0.07 0.40 0.07 0.03 0.29 0.59 0.23 0.75 0.28 0.13

Hobby 0.04 0.07 0.27 0.06 0.00 0.29 0.23 0.28 0.40 0.31 0.23

Sfrat 0.01 0.03 0.18 0.01 0.00 0.25 0.06 0.22 0.50 0.21 0.24

Nat 0.01 0.02 0.10 0.02 0.00 0.13 0.06 0.11 0.26 0.11 0.10

Farm 0.02 0.03 0.08 0.03 0.01 0.08 0.09 0.07 0.16 0.05 0.09

Lit 0.02 0.05 0.31 0.02 0.00 0.37 0.22 0.33 0.65 0.47 0.11

Prof 0.03 0.15 0.41 0.04 0.02 0.50 0.27 0.46 0.81 0.54 0.33

Church 0.24 0.33 0.62 0.29 0.17 0.57 0.72 0.54 0.76 0.57 0.49

Other 0.07 0.12 0.17 0.09 0.03 0.19 0.14 0.18 0.26 0.19 0.16

Class sizes 0.52 0.27 0.21 0.30 0.22 0.13 0.08 0.12 0.01 0.07 0.04
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