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It is shown how to implement an EM algorithm for maximum likelihood
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makes use of the conditional independence assumptions implied by
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1 Introduction

A well-established estimation method for hierarchical models is maximum likelihood

(ML). While ML estimation is straightforward with normal level-1 errors, with

nonnormal dependent variables, it requires approximation of the integrals in the

likelihood function corresponding to the mixing distribution. The most common

method is to approximate the likelihood function using Gauss–Hermite or adaptive

quadrature numerical integration. Software packages implementing such methods

include the MIXOR family programs (HEDEKER and GIBBONS, 1996), the SAS

NLMIXED procedure, and the STATA GLLAMM routine (RABE-HESKETH,

PICKLES and SKRONDAL 2001, 2002, 2003). MIXOR and NLMIXED are two-level

programs. GLLAMM can also be used for ML estimation of hierarchical nonlinear

models with more than two levels of nesting.

If the mixed model of interest is a two-level model, ML estimation can be performed

by means of the EM algorithm (BOCK and AITKIN, 1981; AGRESTI et al., 2000), which is

a natural approach to estimation problems with missing data (here, the random effects
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for each case). The standard EM algorithm can, however, not be used for other types of

mixed models because the number of entries in the relevant posterior distribution is

huge, making the method impractical. To be more specific about the problem

associated with standard EM, suppose that we have an three-level random-intercept

model. The E step involves computing the posterior distribution of the random

intercepts corresponding to each of the three-levels units; that is, the joint distribution

of the level-3 random intercept and the random intercepts for all level-2 units belonging

to the level-3 unit concerned. With 10 quadrature nodes and 20 level-2 units per level-3

unit, this is a posterior distribution with 101+20 entries. This illustrates that computer

storage and time increases exponentially with the number of level-2 units within level-3

units, which makes EM impractical with more than a few level-2 units per level-3 unit.

This is unfortunate because EM is a very stable and quite fast algorithm.

MIXOR, NLMIXED, and GLLAMM maximize the log-likelihood using

Newton-type algorithms. LESAFFRE and SPIESSENS (2001) reported difficulties with

the MIXOR and NLMIXED Newton-type algorithms in finding the global ML

solution in nonlinear mixed (two-level) models: different routines and algorithms

may give different solutions for the same number of quadrature points. It can be

expected that this problem becomes even worse in models with more than two levels.

Fortunately, the Newton algorithm used by GLLAMM – the only one of the three

programs that can deal with more than two levels of nesting – seems to be more

stable. GLLAMM, however, uses numerical first and second derivatives of the log-

likelihood, which is computationally intensive in models with more than a few

parameters. Although it cannot be expected that EM resolves all the ‘‘problems’’

associated with the Newton-type methods, it would be useful to have an EM

algorithm for nonlinear hierarchical models as an additional tool. The most

important advantage of EM is that it converges irrespective of the starting values.

Analytical derivatives for the M step are readily obtained, but can also be adopted

from existing generalized linear modeling packages.

The most common specification for the mixing distribution is multivariate normal.

However, instead of working with such a parametric distribution for the random

coefficients, it is also possible to use a nonparametric specification (LAIRD, 1978;

AITKIN, 1999). This yields what is usually referred to as latent class regression or

finite mixture regression (VERMUNT and MAGIDSON, 2000; VERMUNT and VAN DIJK,

2001; WEDEL and DESARBO, 2002). An advantage of such a nonparametric approach

is that it is not necessary to introduce possibly inappropriate and unverifiable

assumptions about the distribution of the random effects (AITKIN, 1999).

The latent class regression models developed so far can, however, only deal with

two-level data structures. The main reason for this is that, as explained above for the

parametric case, the standard EM algorithm cannot be used for ML estimation of

nonparametric hierarchical models with more than two levels. Although it is possible

to estimate latent classes regression models using Newton–Raphson, it is well-known

that this requires good starting values and that such good starting values may be

difficult to find.
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This paper shows how to implement an EM algorithm for ML estimation of

parametric and nonparametric hierarchical nonlinear models with more than two

levels. The new algorithm makes use of the conditional independence assumptions

implied by the hierarchical model of interest. More specifically, it is based on the fact

that lower level observations are independent of each other given the higher-level

random effects. The underlying idea of using the structure of the model of interest for

the implementation of the EM algorithm is similar to what is done in hidden Markov

models. For these models, BAUM et al. (1970) developed an efficient EM algorithm

which is known as the forward–backward algorithm because it moves forward and

backward through the hidden Markov chain. The version of EM described in this

paper will be called the upward–downward algorithm because it moves upward and

downward through the hierarchical structure. VERMUNT (2003) used the same kind

of algorithm for a two-level extension of the standard latent model. Although for

simplicity of exposition I will concentrate on the three-level case, the proposed

method can easily be generalized to any number of levels.

The next section describes the parametric three-level hierarchical model of interest,

as well as its ML estimation by means of the upward–downward algorithm.

Subsequently, attention is paid to the three-level extension of the latent class

regression model. The proposed methods are illustrated with an empirical

application. The paper ends with a short discussion.

2 The nonlinear three-level model with parametric random effects

Let i denote a level-1 unit, j a level-2 unit, and k a level-3 unit. The total number of

level-3 units is denoted by K, the number of level-2 units within level-3 unit k by nk,

and the number of level-1 units within level-2 unit jk by njk. Let yijk be the response of

level-1 unit ijk on the outcome variable of interest, and let xijk, z
ð2Þ
ijk , and z

ð3Þ
ijk be the

design vectors associated with S fixed effects, R(2) level-2 random effects, and R(3)

level-3 random effects, respectively. It is assumed that the conditional densities of the

responses given covariates and random effects are from the exponential family.

Denoting the link function by g[Æ], the nonlinear three-level model (NLTM) can be

defined as

g½Eðyijk jxijk ; zð2Þijk ; z
ð3Þ
ijk ; b

ð2Þ
jk ; b

ð3Þ
k Þ� ¼ gijk ¼ x0ijka þ z

ð2Þ0
ijk b

ð2Þ
jk þ z

ð3Þ0
ijk b

ð3Þ
k :

Here, a is the vector of unknown fixed effects, b
ð2Þ
jk is the vector of unknown random

effects for level-2 unit jk, and b
ð3Þ
k is the vector of unknown random effects for level-3

unit k.

As usual, we assume the distribution of the random effects b
ð2Þ
jk and b

ð3Þ
k to be

multivariate normal with zero mean vector and covariance matrices R(2) and R(3). For

parameter estimation, it is convenient to standardize and orthogonalize the random

effects. For this, let b
ð2Þ
jk ¼ Cð2Þh

ð2Þ
jk , where C(2)C(2)¢¼R(2) is the Cholesky decompo-

sition of R(2). Similarly, we define b
ð3Þ
k ¼ Cð3Þh

ð3Þ
k : The reparameterized NLTM is then
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gijk ¼ x0ijka þ z
ð2Þ0
ijk C

ð2Þh
ð2Þ
jk þ z

ð3Þ0
ijk C

ð3Þh
ð3Þ
k : ð1Þ

The means and variances of h
ð2Þ
jk and h

ð3Þ
k are 0 and 1, respectively. Note that a, C(2),

and C(3) contain the unknown parameters to be estimated.

Log-likelihood function

The parameters of the NLTM can be estimated by maximum likelihood (ML). The

likelihood function is based on the probability densities of the level-3 observations,

denoted by Pðykjxk; z
ð2Þ
k ; z

ð3Þ
k Þ. Here, yk, xk, z

ð2Þ
k , and z

ð3Þ
k contain the responses and

design vectors for all cases belonging to level-3 unit k. In order to simplify notation,

the conditioning on the design vectors is replaced by an index corresponding to the

unit concerned, yielding the short-hand notation Pk(yk) for the probability density of

level-3 unit k.

The log-likelihood to be maximized equals

log L ¼
XK
k¼1

log PkðykÞ;

where

PkðykÞ ¼
Z

hð3Þ
Pkðykjhð3ÞÞ f ðhð3ÞÞdhð3Þ

¼
Z

hð3Þ

Ynk
j¼1

Pjkðyjk jhð3ÞÞ
( )

f ðhð3ÞÞdhð3Þ; ð2Þ

and

Pjkðyjk jhð3ÞÞ ¼
Z

hð2Þ
Pjkðyjk jhð2Þ; hð3ÞÞ f ðhð2ÞÞdhð2Þ

¼
Z

hð2Þ

Ynjk
i¼1

Pijkðyijk jhð2Þ; hð3ÞÞ
( )

f ðhð2ÞÞdhð2Þ: ð3Þ

As can be seen, the responses of the nk level-2 units within level-3 unit k are assumed

to be independent of one another given the random effects h(3), and the responses of

the njk level-1 units within level-2 unit jk are assumed to be independent of one

another given the random effects h(2) and h(3). Note that level-2 and level-3 random

effects are assumed to be mutually independent – f(h(2)|h(3)) ¼ f(h(2)) – which is a

common assumption in multilevel models.

The integrals at the right-hand side of equations (2) and (3) can be evaluated

by the Gauss–Hermite quadrature numerical integration method (STROUD and

SECREST, 1966; BOCK and AITKIN, 1981; HEDEKER and GIBBONS, 1996; RABE-

HESKETH, PICKLES and SKRONDAL 2001, 2002), in which the multivariate normal

mixing distribution is approximated by a limited number of discrete points. More

precisely, the integrals are replaced by summations over M and T quadrature points,
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PkðykÞ ¼
XM
m¼1

Pkðykjhð3Þm Þpðhð3Þm Þ

¼
XM
m¼1

Ynk
j¼1

Pjkðyjkjhð3Þm Þ
" #

pðhð3Þm Þ

¼
XM
m¼1

Ynk
j¼1

XT
t¼1

Ynjk
i¼1

Pijkðyijk jhð2Þt ; hð3Þm Þ
( )

pðhð2Þt Þ
" #

pðhð3Þm Þ: ð4Þ

Actually, we should use a ‘‘	’’ instead of a ‘‘¼’’ sign in this expression because we

are approximating the integral by a summation. However, for simplicity of notation

in this and next formulas, we retain the ‘‘¼’’.

In the above formula, h
ð2Þ
t and hð3Þm are quadrature nodes and pðhð2Þt Þ and pðhð3Þm Þ are

quadrature weights corresponding to the (multivariate) normal densities of interest.

Because the random effects are orthogonalized, the nodes and weights of the separate

dimensions equal the ones of the univariate normal density, which can be obtained

from standard tables (see, for example, STROUD and SECREST, 1966). Suppose that

each dimension is approximated with Q quadrature nodes. The T ¼ QR(2)

and

M ¼ QR(3)

weights are then obtained by multiplying the weights of the separate

dimensions. The integral can be approximated to any practical degree of accuracy by

setting Q sufficiently large. LESAFFRE and SPIESSENS (2001) and RABE-HESKETH,

SKRONDAL and PICKLES (2002) showed that the number of quadrature points needs

to be very large in some situations. In such cases, it is better to use adaptive

quadrature.

The upward–downward variant of the EM algorithm

A natural way to solve the ML estimation problem of the parameters a, C(2), and C(3)

is by means of the EM algorithm (DEMPSTER, LAIRD and RUBIN, 1977). The E step

of the EM algorithm involves computing the expectation of the complete data log-

likelihood, which in the NLTM is of the form

log Lc ¼
XM
m¼1

XT
t¼1

XK
k¼1

Xnk
j¼1

Xnjk
i¼1

Pjkðhð2Þt ; hð3Þm jykÞ log Pijkðyijk j; hð2Þt ; hð3Þm Þ: ð5Þ

The terms containing the priors pðhð2Þt Þ and pðhð3Þm Þ are omitted from Lc because these

do not contain parameters to be estimated.

Equation (5) shows that, in fact, the E step involves obtaining the posterior

probabilities Pjkðhð2Þt ; hð3Þm jykÞ given the current estimates for the unknown model

parameters. In the M step of the algorithm, the a, C(2), and C(3) parameters are

updated so that the expected complete data log-likelihood given in equation (5) is

maximized (or improved). This can be accomplished using standard algorithms for

the ML estimation of generalized linear models.

The problematic part in the implementation of EM for the NLTM is the E step in

which one has to obtained the posterior probabilities Pjkðhð2Þt ; hð3Þm jykÞ. A standard
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implementation of the E step would involve computing the joint conditional

expectation of the nkÆR
(2)+R(3) random effects for level-3 unit k; that is, the joint

posterior distribution Pkðhð2Þt1 ; h
ð2Þ
t2 ; . . . ; h

ð2Þ
tnk
; hð3Þm jykÞ with MÆTnk entries. Note that this

amounts to computing the expectation of all the ‘‘missing data’’ for a level-3 unit.

These joint posteriors would subsequently be collapsed to obtain the marginal

posterior probabilities for each level-2 unit j within level-3 unit k, Pjkðhð2Þt ; hð3Þm jykÞ.
This yields a procedure in which computer storage and time increases exponentially

with the number of level-2 units, which means that it can only be used with very

small nk.

However, it turns out that it is possible to compute the nk marginal posterior

probability distributions Pjkðhð2Þt ; hð3Þm jykÞ without going through the full posterior

distribution by making use of the conditional independence assumptions associated

with the density function defined in equation (2). In that sense, our procedure is

similar to the forward–backward algorithm for the estimation of hidden Markov

models with large numbers of time points (BAUM et al., 1970; JUANG and RABINER,

1991). The procedure described below could be called an upward–downward

algorithm. First, random effects are integrated out, going from the lower to the

higher levels. Subsequently, the relevant marginal posterior probabilities are

computed going from the higher to the lower levels. This yields a procedure in

which computer storage and time increases only linearly with the number of level-2

observations instead of exponentially, as would have been the case with a standard

EM algorithm.

The marginal posterior probabilities Pjkðhð2Þt ; hð3Þm jykÞ can be decomposed as

follows:

Pjkðhð2Þt ; hð3Þm jykÞ ¼ Pkðhð3Þm jykÞPjkðh
ð2Þ
t jyk; hð3Þm Þ:

Our procedure makes use of the fact that in the NLTM

Pjkðhð2Þt jyk; hð3Þm Þ ¼ Pjkðhð2Þt jyjk; hð3Þm Þ;

i.e., h
ð2Þ
t is independent of the observed and latent variables of the other level-2 units

within the same level-3 unit given h(3). This is the result of the fact that level-2

observations are mutually independent given the level-3 random effects, as is ex-

pressed in the density function described in equation (2). Using this important result,

we get the following slightly simplified decomposition:

Pjkðhð2Þt ; hð3Þm jykÞ ¼ Pkðhð3Þm jykÞPjkðh
ð2Þ
t jyjk; hð3Þm Þ: ð6Þ

The computation of the marginal posterior probabilities therefore reduces to the

computation of the two terms on the right-hand side of this equation. The term

Pkðhð3Þm jykÞ is obtained by

Pkðhð3Þm jykÞ ¼
Pkðyk; hð3Þm Þ
PkðykÞ

ð7Þ

where
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Pkðyk; hð3Þm Þ ¼ pðhð3Þm Þ
Ynk
j¼1

Pjkðyjk jhð3Þm Þ

PkðykÞ ¼
XM
m¼1

P ðyk; hð3Þm Þ:

The other term, Pjkðhð2Þt jyjk; hð3Þm Þ, is computed by

Pjkðhð2Þt jyjk; hð3Þm Þ ¼
Pjkðyjk; h

ð2Þ
t jhð3Þm Þ

Pjkðyjkjhð3Þm Þ
;

where

Pjkðyjk; h
ð2Þ
t jhð3Þm Þ ¼ pðhð2Þt Þ

Ynjk
i¼1

Pijkðyijk jhð2Þt ; hð3Þm Þ

Pjkðyjkj; hð3Þm Þ ¼
XT
t¼1

Pjkðyjk; h
ð2Þ
t jhð3Þm Þ:

Thus, first the level-2 posterior probabilities Pjkðhð2Þt jyjk; hð3Þm Þ are obtained from the

level-1 information Pijkðyijkjhð2Þt ; hð3Þm Þ, and subsequently the level-3 posterior proba-

bilities Pkðhð3Þm jykÞ are obtained from the level-2 information Pjkðyjkjhð3Þm Þ. This is called

the upward step of the algorithm because one goes up in the hierarchical structure.

In the downward step, one computes Pjkðhð2Þt ; hð3Þm jykÞ by means of equation (6).

The upward–downward method can easily be generalized to more than three

levels. For example, with four levels, one would have to compute the three terms

P‘ðhð4Þo jy‘Þ, Pk‘ðhð3Þm jyk‘; hð4Þo Þ, and Pjk‘ðhð2Þt jyjk‘; hð3Þm ; hð4Þo Þ, where ‘ refers to a level-four

unit and o to a quadrature point for the level-four unit random effects. These three

terms are obtained in the upward step and used to calculate the relevant marginal

posteriors in the downward step.

A practical problem in the implementation of the E step is that underflows may

occur in the computation of Pkðhð3Þm jykÞ. More precisely, the numerator of

equation (7) may become equal to zero for each m because it may involve

multiplication of a large number, (nk+1)(njk+1), of probabilities. Such underflows

can, however, be prevented by working on a log scale. Letting amk ¼ log½pðhð3Þm Þ� þPnk

j log½Pjkðyjkjhð3Þm Þ� and bk ¼ max(amk), Pkðhð3Þm jykÞ can be obtained by

Pkðhð3Þm jykÞ ¼
expðamk 
 bkÞPM
p expðapk 
 bkÞ

:

Standard errors and identification issues

Unlike Newton-like methods, the EM algorithm does not provide standard errors of

the model parameters as a by-product. Estimated asymptotic standard errors can be

obtained by computing the observed information matrix, the matrix of second-order

derivatives of the log-likelihood function toward all model parameters. The inverse
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of this matrix is the estimated variance–covariance matrix. For the example

presented later on, the necessary second derivatives were obtained numerically using

analytic first derivatives. Note that the first derivatives are provided by the proposed

EM algorithm.

The information matrix can also be used to check identifiability. A sufficient

condition for local identification is that all the eigenvalues of this matrix are larger

than zero. Although it is based on limited experience, so far no identification

problems were encountered in the NLTMs that were estimated.

3 The nonlinear three-level model with nonparametric random effects

So far, we assumed that the random effects at the various levels come from

parametric distributions. It is, however, also possible to work with discrete

unspecified mixing distributions yielding a nonparametric random-effects approach

(LAIRD, 1978). For the two-level case, these models are usually referred to as latent

class or finite mixture regression models (VERMUNT and MAGIDSON, 2000; VERMUNT

and VAN DIJK, 2001; WEDEL and DESARBO, 2002). Here, I present a three-level

extension but, as in the parametric case, extension to more than three levels is

straightforward.

An advantage of the presented nonparametric approach is that it is not necessary

to introduce possibly inappropriate and unverifiable assumptions about the

distribution of the random effects (AITKIN, 1999). Another important advantage is

that it is computationally much less intensive than the parametric approach,

especially in models containing more than two or three random effects.

Using the same notation as in the previous section, a three-level latent class

regression model could be specified as follows

g½Eðyijk jxijk ; zð2Þijk ; z
ð3Þ
ijk ; b

ð2Þ
t ; bð3Þ

m Þ� ¼ gijkjtm ¼ x0ijka þ z
ð2Þ0
ijk b

ð2Þ
t þ z

ð3Þ0
ijk bð3Þ

m :

Here, a is the vector of unknown fixed effects, b
ð2Þ
t is the vector of unknown random

effects for level-2 units belonging to latent class t, and bð3Þ
m is the vector of unknown

random effects for level-3 units belonging to latent class m. For identification, the

parameters for m ¼ 1 and t ¼ 1 are fixed to zero, which amounts to using dummy

coding for the ‘‘nominal’’ latent class variables.

As can be seen, an important difference with the parametric approach is that it is

no longer assumed that each level-2 and each level-3 unit has its own set of regression

parameters. Instead it is assumed that each level-2 unit belongs to one of T latent

classes of level-2 units, and that each level-3 unit belongs to one of M latent classes of

level-3 units. Each latent class has its own set of regression coefficients. With the

maximum number of identifiable latent classes, the mixing distribution may be

interpreted as a nonparametric distribution, yielding what is called the nonpara-

metric ML estimator (NPMLE; LAIRD, 1978). In practice, however, we will stop

increasing the number of latent classes when the model fit no longer improves.
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The contribution to the likelihood function of the level-3 case k is similar to the

contribution described in equation (4); that is,

PkðykÞ ¼
XM
m¼1

Ynk
j¼1

XT
t¼1

Ynjk
i¼1

PijkjtmðyijkÞ
( )

pð2Þ
t

" #
pð3Þ
m : ð8Þ

An important difference with the parametric case is that this is not an approximate

density but an exact density. Moreover, the probabilities pð2Þ
t and pð3Þ

m are now

unknown parameters to be estimated instead of fixed quadrature weights. The other

unknown parameters determining the probabilities Pijk|tm(yijk) are the fixed and

class-specific regression coefficients a, b
ð2Þ
t , and bð3Þ

m .

The ML estimation problem of the parameters a, b
ð2Þ
t , bð3Þ

m , pð2Þ
t and pð3Þ

m can be

solved by means of the EM algorithm (DEMPSTER, LAIRD and RUBIN, 1977). The E

step of the EM algorithm involves computing the expectation of the complete data

log-likelihood, which in the nonparametric NLTM is of the form

log Lc ¼
XM
m¼1

XT
t¼1

XK
k¼1

Xnk
j¼1

Xnjk
i¼1

Pjkðt;mjykÞ log PijkjtmðyijkÞ

þ
XM
m¼1

XT
t¼1

XK
k¼1

Xnk
j¼1

Pjkðt;mjykÞ log pð2Þ
t

þ
XM
m¼1

XK
k¼1

Xnk
j¼1

PkðmjykÞ log pð3Þ
m : ð9Þ

This shows that, in fact, the E step involves obtaining the posterior probabilities

Pjk(t,m|yk) and Pk(m|yk) given the current estimates for the unknown model

parameters. In the M step of the algorithm, the model parameters are updated so

that the expected complete data log-likelihood given in equation (9) is maximized (or

improved). This can be accomplished using standard algorithms for the ML

estimation of generalized linear models.

The upward–downward version of the EM algorithm proceeds in the same manner

as in the parametric case. Instead of computing the T Æ M marginal posteriors

Pjkðhð2Þt ; hð3Þm jykÞ associated with the quadrature points, we have to obtain the T Æ M
marginal posteriors Pjk(t, m|yk); that is, the posterior probability that a level-2 unit j

belongs to latent class t and level-3 unit k to latent class m. As can be seen from

equation (7), the univariate posteriors Pk(m|yk) are obtained as a by-product of the

upward–downward algorithm.

4 Application to attitudes towards abortion data

To illustrate the NLTM, I obtained a data set from the data library of the Multilevel

Models Project, at the Institute of Education, University of London (multilevel.

ioe.ac.uk/intro/datasets.html). The data consist of 264 participants in 1983 to
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1986 yearly waves from the British Social Attitudes Survey (MCGRATH and

WATERTON, 1986). It is a three-level data set: Individuals are nested within districts

and time points are nested within individuals. The total number of level-3 units

(districts) is 54.

The dependent variable is the number of yes responses on seven yes/no questions

as to whether it is a woman’s right to have an abortion under a specific circumstance.

Because this variable is a count with a fixed total, it is most natural to work with a

logit link and binomial error function. Individual level predictors in the data set are

religion, political preference, gender, age, and self-assessed social class. In

accordance with the results of GOLDSTEIN (1995), we found no significant effects

of gender, age, self-assessed social class, and political preference. Therefore, we did

not use these predictors in the further analysis. The predictors that were used are the

level-1 predictor year of measurement (1 ¼ 1983; 2 ¼ 1984; 3 ¼ 1985; 4 ¼ 1986)

and the level-2 predictor religion (1 ¼ Roman Catholic, 2 ¼ Protestant; 3 ¼ Other;

4 ¼ No religion). Because there was no evidence for a linear time effect, we included

time as a set of dummies in the regression model.

The most general three-level model that is used contains a fixed intercept, 6 fixed

slopes (three for time and three for religion), a random intercept at level 2, and a

random intercept at level 3. The parametric form of this model is

gijk ¼ a0 þ
X6

‘¼1

a‘x‘ijk þ cð2Þhð2Þj þ cð3Þhð3Þk ;

where gijk is the logit of agreeing with an item. Note that c(2) and c(3) are the standard

deviations of the two random intercepts. The nonparametric three-level model used

is of the form

gijkjtm ¼ a0 þ
X6

‘¼1

a‘x‘ijk þ bð2Þ
t þ bð3Þ

m :

The analysis was performed with an experimental version of the Latent GOLD

program (VERMUNT and MAGIDSON, 2000) that implements both the parametric and

the nonparametric NLTM.

Table 1 reports fit measures obtained with the various models that were estimated.

In the computation of BIC, I treated the number of level-3 units (54) as the total

sample size. There is no general agreement on what sample size to use in the

computation of BIC in multilevel models. The main argument for treating the

number of level-3 units as sample size is that these are the independent sources of

information. In this example, however, conclusions do not change if the number of

level-2 units is used as sample size for BIC.

Model I is the model without random effects, while the others contain level-2 and/

or level-3 random intercepts. In the parametric (normal) specifications, the integrals

in the log-likelihood function were approximated using ten quadrature nodes per

dimension. In order to verify the stability of the results, the models were also

estimated with many more than ten quadrature point as well as with the GLLAMM
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adaptive quadrature option (RABE-HESKETH, SKRONDAL and PICKLES, 2002). For

the model with two random effects, the log-likelihood stayed more or less the same.

For the models with a single random effect, we obtained somewhat higher log-

likelihood values. With 50 quadrature points, Models II and III gave log-likelihood

values of )1710.46 and )2058.23, respectively.

In order to give an impression about computation time, estimation of the most

extended parametric model (Model IV) took less than 20 seconds with the

experimental version of Latent GOLD, while estimation with GLLAMM took

about ten times as long. It should be noted that GLLAMM is not only slower

because it uses Newton–Raphson with numerical derivatives, but also because it is

written in an interpreter language (STATA). Estimation of any of the nonparametric

models with our code took less than a second. Although this option is not

documented, GLLAMM can also be used to estimate nonparametric models with

more than two levels (RABE-HESKETH, personal communication).

The fit measures of the reported models show that the level-2 variance is clearly

significant (compare Model II and Models V–VIII with Model I). The higher log-

likelihood values and the lower BIC values indicate that the nonparametric models

(Models VI–VIII) capture the heterogeneity in the intercept somewhat better than

the parametric model (Model II). Based on the BIC values of Models V–VIII, it can

be concluded that in the nonparametric approach no more than four latent classes of

level-2 units are needed.

If we do not take into account the level-2 variation in the intercept, there is also

clear evidence for a level-3 effect on the intercept (compare Model III and Models

IX–XII with Model I). On the other hand, if the level-2 variation is taken into

account, the importance of the level-3 variation reduces enormously: In terms of

BIC, Model IV is only slightly better than Model II and Model XIII is even worse

than Model VII. What is clear from the test results is that the between individuals

(level-2) variation is much more important than the between districts (level-3)

variation.

Table 1. Fit measures for the estimated models

Model Level-2 Level-3 Log-likelihood #parameters BIC

I no no )2188.38 7 4404.68

II normal no )1711.76 8 3455.43

III no normal )2061.09 8 4158.08

IV normal normal )1708.72 9 3453.34

V 2-class no )1754.67 9 3545.24

VI 3-class no )1697.42 11 3438.72

VII 4-class no )1689.47 13 3430.80

VIII 5-class no )1686.02 15 3431.87

IX no 2-class )2092.24 9 4220.38

X no 3-class )2058.09 11 4160.06

XI no 4-class )2053.77 13 4159.40

XII no 5-class )2053.76 15 4167.35

XIII 4-class 2-class )1687.85 15 3435.53
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Table 2 reports the parameter estimates for Models I, II, IV, VII, and XIII. As far

as the fixed part is concerned, the substantive conclusions would be similar in all five

models. The attitudes are most positive at the last time point (reference category) and

most negative at the second time point. Furthermore, the effects of religion show that

people without religion (reference category) are most in favor and Roman Catholics

and Others are most against abortion. Protestants have a position that is close to the

no-religion group.

A natural manner to quantify the importance of the random intercept terms is by

their contribution to the total variance. The level-1 variance can be set equal to the

variance of the logistic distribution (p2/3 ¼ 3.29), yielding a total variance equal to

3.29 + 1.212 + 0.472 ¼ 4.98, in Model IV. Thus, after controlling for the time and

religion effects, in Model IV, the level-2 and level-3 variances equal 29% (1.212/4.98)

and 4% (0.472/4.98) of the total variance, respectively.

The random part of the latent class regression models can be interpreted in two

different ways. On the one hand, we can name the latent classes based on their

coefficients. Note that the parameters for the first class are fixed to zero for

identification, which amounts to using dummy coding with class 1 as reference

category. On the other hand, using basic statistics calculus, one can compute the

level-2 and level-3 standard deviations from the class sizes and class-specific

regression coefficients, which are the parameters of the random part of the model in

Table 2. Parameter estimates for models I, II, IV, VI, and XIII

Model I Model II Model IV Model VII Model XIII

Fixed effects

Intercept 1.50 (0.07) 1.97 (0.13) 2.09 (0.18) 0.97 (0.16) 0.96 (0.17)

Time

1983 )0.13 (0.08) )0.16 (0.08) )0.16 (0.08) )0.16 (0.08) )0.16 (0.08)

1984 )0.55 (0.07) )0.68 (0.08) )0.68 (0.08) )0.67 (0.08) )0.67 (0.08)

1985 )0.22 (0.08) )0.27 (0.08) )0.27 (0.08) )0.26 (0.08) )0.26 (0.08)

Religion

Catholic )1.08 (0.10) )1.07 (0.21) )1.59 (0.32) )1.64 (0.25) )1.32 (0.32)

Protestant )0.38 (0.06) )0.49 (0.19) )0.71 (0.21) )0.22 (0.14) )0.29 (0.16)

Other )0.82 (0.08) )1.12 (0.17) )1.32 (0.24) )0.66 (0.17) )0.78 (0.20)

Random intercepts

Level-2 standard deviation 1.20 (0.05) 1.21 (0.07) 1.43 1.38

Level-3 standard deviation 0.47 (0.33) 0.28

Class-sizes

Level-2, t ¼ 1 0.33 (0.05) 0.42 (0.05)

Level-2, t ¼ 2 0.29 (0.04) 0.34 (0.05)

Level-2, t ¼ 3 0.21 (0.03) 0.22 (0.04)

Level-2, t ¼ 4 0.17 (0.06) 0.02 (0.03)

Level-3, m ¼ 1 0.62 (0.20)

Level-3, m ¼ 2 0.38 (0.20)

Class-specific intercepts

Level-2, t ¼ 2 1.16 (0.12) 1.26 (0.13)

Level-2, t ¼ 3 3.39 (0.27) 3.52 (0.26)

Level-2, t ¼ 4 )0.77 (0.11) )1.19 (0.50)

Level-3, m ¼ 2 )0.57 (0.14)
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the parametric approach. In Model XIII, the level-2 standard deviation equals 1.38,

which is somewhat higher than in the parametric model, and the level-3 standard

deviation equals 0.28, which is lower than in the parametric model. These numbers

correspond with variance contributions of 36 and 1 percent, respectively.

5 Discussion

An EM algorithm was presented for the ML estimation of hierarchical nonlinear

models. This upward–downward method prevents the need for processing the full

posterior distribution, which becomes infeasible with more than a few level-2 units

per level-3 unit. The relevant marginal posterior distributions can be obtained by

making use of the conditional independence assumptions underlying the hierarchical

model. As was shown, it is straightforward to generalize the method to models with

more than three levels.

A limitation of the parametric approach is that the numerical integration to be

performed for parameter estimation can involve summation over a large number of

quadrature points when the number of random effects is increased. Despite the fact

that the number of points per dimension can be somewhat reduced with multiple

random effects and adaptive quadrature, computational burden becomes enormous

with more than five or six random coefficients. There exist other methods for

computing high-dimensional integrals, like Bayesian simulation and simulated

likelihood methods, but these are also computationally intensive.

As indicated by VERMUNT and VAN DIJK (2001), these practical problems do not

occur when using a nonparametric random-effects model since the sum appearing in

the log-likelihood function will always be over a small number of latent classes. For

instance, computation time was less than a second for each of the latent class

regression models presented in Table 1, and computation time does not increase very

much if also the three time effects are assumed to be random (class specific). The

nonparametric approach is not only attractive for this reason, but also because it

does not rely on strong unverifiable assumptions about the random effects (AITKIN,

1999). In certain situations, one may prefer to use such strong distributional

assumptions, for instance, because they yield a more parsimonious description of the

heterogeneity. In the application, however, we saw that the latent class model

captured much better the level-2 variation than the model with normally distributed

random effects. This is a clear indication that the parametric specification is too

restrictive for this data set.
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