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The authors illustrate how to perform maximum-likelihood estimation in

latent c lass ( L C ) analy sis when there are sampling weig hts. The methods

are natural extensions of the approac hes proposed b y C log g and E liason

( 1 9 8 7 ) and M ag idson ( 1 9 8 7 ) for dealing with sampling weig hts in the log -

linear analy sis of freq uenc y tab les. F or the log -linear form of the L C model,

the approac h c orresponds to a spec ial c ase of H ab erman’ s ( 1 9 7 9 ) log -linear

L C model with c ell weig hts. This approac h c an also b e applied to the

prob ab ility formulation of the L C model with c ell weig hts, whic h c an

ac c ommodate many indic ators. The authors propose an effi c ient estimation-

maximiz ation alg orithm for estimating the parameters for this formulation.

A small simulation study shows that the prob ab ility estimates ob tained b y

this approac h c ompare fav orab ly to other weig hting approac hes. S ev eral

empiric al examples are prov ided to illustrate v arious possib le weig hting

methods in L C analy sis.

Keywords: latent class analysis; mixture model; complex sampling;

log- linear analysis; E M algorith m

D ata sets from surv ey s often c ontain c ase or sampling weig hts. S uc h

weig hts c an b e used to adj ust for c ases that are under- or ov errepre-

sented in the sample b ec ause of the sampling sc heme. The prev ailing

method for dealing with sampling weig hts in the analy sis of freq uenc y

tab les is to c onstruc t a weig hted ob serv ed freq uenc y tab le and then to ana-

ly z e it as if it were an unweig hted tab le. This approac h is referred to as the

pseudo-maximum-likelihood ( M L ) estimation method ( R ao and Thomas
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1988; Skinner, Holt, and Smith 1989). An alternative method is to ignore

sampling weights in parameter estimation, possibly combined with a sec-

ond step in which certain model parameters are corrected for weighting.

I n the context of latent class (LC) analysis and mixture modeling, the

pseudo-ML approach has been advocated by Patterson, Dayton, and

G raubard (2002) and W edel, Ter Hofstede, and Steenkamp (1998) and the

two-step approach by Vermunt (2002) in a commentary on the Patterson

et al. (2002) article. Both approaches are implemented in the LC software

package Latent G OLD (Vermunt and Magidson 2005).

To illustrate the various available options for dealing with sampling

weights in LC analysis, consider the three-way cross-tabulation displayed

in Table 1, which contains information on three dichotomous indicators

obtained from a hypothetical survey containing sampling weights. Sup-

pose we wish to construct a two-class LC model based on these three indi-

cators denoted by Y1; Y2, and Y3. More precisely, we wish to estimate the

proportion of persons belonging to LC 1 and possibly to compare this pro-

portion across years or subgroups. The two current options are to use

either the unweighted observed frequencies (nj) or the weighted observed

frequencies (n
ðwÞ
j ) in the LC analysis. The latter approach yields pseudo-

ML estimates for the LC model parameters. W hen using the unweighted

frequencies, we may correct the sizes of LCs after obtaining estimates of

the model parameters; that is, we correct the unconditional class member-

ship probabilities for the fact that sampling weights may be correlated

with LC membership.

Table 1

C ros s -Tabulat ion of Three D ichot omous I n dicat ors

F rom a H y pot het ical S urv ey C on t ain in g S amplin g W eig ht s

j Y1 Y2 Y3 nj n
ðwÞ
j n

ðwÞ
j =nj zj

1 1 1 1 176 153.25 0.87 1.15

2 1 1 2 45 56.18 1.25 0.80

3 1 2 1 54 63.39 1.17 0.85

4 1 2 2 111 114.56 1.03 0.97

5 2 1 1 76 75.05 0.99 1.01

6 2 1 2 116 126.78 1.09 0.91

7 2 2 1 154 141.90 0.92 1.09

8 2 2 2 399 431.89 1.08 0.92
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In this article, we describe a third approach to weighting in LC analysis

that extends the approach proposed by Clogg and Eliason (1987) and

Magidson (1987) for ML estimation with sampling weights in log-linear

analysis, in which the unweighted observed frequencies (nj) are used as

data and the inverse of the cell-specific weights (zj) are included as a term

in the log-linear model (see also Agresti 2002:391). Our generalization of

this ML approach to LC models turns out to be a special case of Haber-

man’s (1979, 1988) log-linear model with cell weights for frequency

tables derived by indirect observations. A drawback of the estimation pro-

cedure proposed by Haberman for log-linear LC models is that it can be

used only when the number of indicators is small. To be able to use the

weighting method also with large numbers of indicators, we adapt the

weighting method to the probability formulation of the LC model and

develop an efficient EM algorithm for parameter estimation. Although

here we will concentrate on LC models, the resulting weighting method is

applicable to a much broader class of models for frequency tables.

It should be noted that pseudo-ML estimation and accompanying meth-

ods for computation of design-corrected standard errors (jackknife, linear-

ization, bootstrap, etc.) can deal not only with sampling weights, but also

with clustering and stratification, which are other relevant aspects of com-

plex sampling designs. A problem associated with pseudo-ML estimation

is, however, that standard goodness-of-fit tests and related measures such

as Akaike information criterion and Bayesian information criterion (BIC)

can no longer be used. This problem does not occur when using the ML

approach described in this article. In other words, the proposed ML

approach, while more limited than pseudo-ML estimation because it can

deal with only one aspect, sampling weights, of the sampling design, has

the advantage that it does not complicate model testing.

A question of interest is whether the new ML estimation method for

dealing with sampling weights in LC analysis yields more reliable esti-

mates of the population parameters of interest than the commonly used

methods. To answer this question, we compare the various approaches in

a small simulation study. Since it can be expected that the performance of

the weighting methods depends on the homogeneity of the measurement

model (Vermunt 2002), special attention is paid to this issue in the design

of the simulation study.

This report is organized as follows. The next section describes log-

linear analysis with sampling weights. Then, we show how to extend this

method to the log-linear and probability formulations of the LC model.
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Subsequently, we report the results from a simulation study and illustrate

the various weighting methods using several empirical examples. We end

with a short discussion.

Sampling Weights in Log-Linear Analysis

Let wi denote the sampling weight for case i, and let dij be an indicator

variable taking on the value 1 if case i falls into cell j of the frequency

table and 0 otherwise. The unweighted observed frequency for cell j, nj
can be obtained as follows:

nj =
X

i

dij:

In addition to this unweighted cell frequency, we can define the weighted

observed frequency, n
ðwÞ
j , computed as

n
ðwÞ
j =

X

i

dijwi:

Typically, a weighted analysis is performed by using the weighted observed

frequencies n
ðwÞ
j as data in an ‘ ‘ unweighted’’ analysis, which amounts to

using pseudo-ML estimation (Skinner et al. 1989). Clogg and Eliason

(1987) and Magidson (1987) showed that by correcting for the fact that

certain cases are over- or underrepresented in the sample, this procedure

gives the correct parameter estimates for saturated log-linear models. How-

ever, such weighting distorts the data so that certain assumption underlying

the goodness-of-fit tests for nonsaturated models will no longer be valid.

Specifically, if the Pearson and likelihood-ratio goodness-of-fit tests are

computed by comparing the estimated frequencies with the weighted

observed frequencies n
ðwÞ
j , these statistics will no longer be distributed as w2

because n
ðwÞ
j does not represent the number of independent observations

with answer pattern j. Only nj, the unweighted observed frequency, repre-

sents the number of independent observations.

Haberman (1978) proposed a log-linear model with cell weights that is

defined as

mj = expðxjβÞ zj = hj zj: ð1Þ

Here, mj is an unweighted expected cell frequency, hj is a weighted

expected cell entry, zj is a cell weight, and xjβ represents the linear term

of the log-linear model.
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Clogg and Eliason (1987) and Magidson (1987) showed that this log-

linear model can be used for ML estimation with sampling weights. This

requires equating zj to the inverse of the aggregated sampling weight for

cell j. More precisely,

zj =
nj

n
ðwÞ
j

:

By rewriting the model defined in equation (1) as

hj =mj

n
ðwÞ
j

nj
=

mj

zj
,

it is easier to see that the weighted expected cell count (hj) equals the

unweighted expected cell count (mj) times a cell-specific weight (z−1
j ).

Goodness-of-fit tests will now be valid because these are based on the

standard comparison of mj and nj (Hendrikx 2002).

Sampling Weights in Log-Linear LC Analysis

Similar to the treatment of sampling weights in standard log-linear

models, we can introduce sampling weights in log-linear LC models. The

formula for the log-linear LC model differs from the formula of the stan-

dard log-linear model described in equation (1) in that it requires an addi-

tional index for the unobserved latent variable(s). Denoting a category of

the (joint) latent variable by k, the log-linear LC model with sampling

weights can be defined as

mjk = expðxjk βÞzj = hjk zj: ð2Þ

Here, mjk is an expected cell frequency before weighting, hjk is an

expected cell entry in the population, and zj is again the inverse of the

aggregated sampling weight for answer pattern j. The design matrix with

elements xjk defines the log-linear terms appearing in the LC model of

interest. As shown below, in the standard LC model these are the main

effect, the one-variable terms for the latent and the manifest variables, and

the two-variable terms for the relationship between the latent and the

manifest variables. Note that mjk and hjk are cell entries in the table includ-

ing the latent variables. The corresponding entries in the observable table

(mj and hj) can be obtained by collapsing the table over the index k;

that is, mj =
P

k mjk and hj =
P

k hjk. Thus, as in the standard log-linear

model, the following relationship holds: mj = hj zj.
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Haberman (1979) proposed the following log-linear LC model:

mjk = expðxjkβÞzjk = hjkzjk ,

which is slightly more general than the model we need for dealing with

sampling weights. It becomes equivalent to the above model if we set

zjk = zj: Models of this form can be estimated with the generally available

software packages Newton (Haberman 1988), LEM (Vermunt 1997a), and

Latent GOLD (Vermunt and Magidson 2005). In the latter program,

logðzjk) should be used as an offset in the module for modeling choice

data.

As is shown in the appendix, ML estimation of b parameters of the

weighted log-linear LC model under Poisson or multinomial sampling

involves solving the following set of likelihood equations (see also Haberman

1979):
X

jk

bmjkxjku ¼
X

jk

bnjkxjku : ð3Þ

Here bnjk = nj bpk|j , u refers to the log-linear parameter concerned, and

bpkjj ¼bmjk=
P

k bmjk is the estimated probability of being in LC k given

response pattern j. Haberman (1979, 1988) showed how to solve this pro-

blem using Fisher scoring and a (modified) Newton-Raphson method. The

latter method is implemented in the NEWTON program (Haberman

1988). The LEM (Vermunt 1997a) and Latent GOLD (Vermunt and

Magidson 2005) programs estimate the weighted log-linear LC model by

EM and/or the Newton-Raphson method.

An Inefficient EM Algorithm

Suppose we have an LC model for three indicators Y1,Y2, and Y3 and a

single latent variable X. A particular category is referred to by the lower-

case equivalents of these symbols: y1, y2, y3, and x. We can now write the

log-linear LC model with cell weights as follows:

my1y2y3x = hy1y2y3x zy1y2y3 ,

with

hy1y2y3x = exp b+ bXx + bY1y1 +bY2y2 + bY3y3 + bY1Xy1x
+ bY2Xy2x

+ bY3Xy3x

� �
:

For this unrestricted log-linear LC model, the likelihood equations to be

solved at iteration cycle t are simply
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bmðtÞ
y1x

¼ bnðtÞy1x; bmðtÞ
y2x

¼ bnðtÞy3x; bmðtÞ
y3x

¼ bnðtÞy3x: ð4Þ

The terms at the right-hand side— bnðtÞy1x , bn
ðtÞ
y2x

, and bnðtÞy3x — are the expected

sufficients statistics that should be computed in the E step of the EM

algorithm, that is, by the appropriate collapsing of ny1y2y3 bp
ðt−1Þ
x|y1y2y3

, where

ny1y2y3 is an observed cell count and bpðt�1Þ
xjy1y2y3

¼ bmðt�1Þ
y1y2y3x=

P
x bm

ðt�1Þ
y1y2y3x is the

posterior probability of belonging to LC x for someone with the corre-

sponding observed values on the three indicators. This quantity is esti-

mated with the parameter values— or with estimated expected cell

frequencies— from the previous iteration cycle. In the M step, we need to

update the estimates for bmðtÞ
y1y2y3x

, for example, using a set of simple itera-

tive proportional fitting (IPF) cycles. The only modification of an EM

algorithm for log-linear LC models without cell weights is that in the cur-

rent situation the starting values for the expected cell entries— based on

the starting values for the parameters— should be multiplied by the cell

weights. In other words, the cell weights play a role only before the EM

iterations begin.

The main disadvantage of the estimation procedure for the log-linear

LC model is that it cannot be used for problems with more than a few indi-

cators since all cells in the estimated cross-tabulation of the observed and

latent variables are processed at each iteration step. Hence, a question of

interest is whether there is a way to solve the estimation problem by pro-

cessing only the cells with nonzero observed counts. As in an unweighted

analysis, this might be straightforward using the Lazarsfeld and Henry

(1968) and Goodman (1974a, 1974b) probability formulation of the LC

model instead of the log-linear LC model.

The Probability LC Model With Weights

An unrestricted LC model for three indicators can alternatively be

defined using the probability formulation; that is,

my1y2y3x = hy1y2y3x zy1y2y3 ,

with

hy1y2y3x = g pXx p
Y1jX
y1x

pY2jXy2x
pY3jXy3x

, ð5Þ

where pXx denotes the unconditional probability of belonging to LC x and

pY1|Xy1x
the conditional probability of giving response y1 on Y1 given that
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one belongs to LC x. The terms corresponding to the other two indicators

have a similar interpretation. Note that the term g is included to guarantee

that the sample size is reproduced. In an unweighted analysis, g will be

equal to the sample size N: Here, it equals

g=
N

P
y1y2y3x

pXx p
Y1jX
y1x p

Y2jX
y2x p

Y3jX
y3x zy1y2y3

:

To distinguish it from the log-linear LC model, we will refer to the model

described in equation (5) as the probability LC model.

The probabilities appearing in the probability LC model can be written

as a function of the collapsed version of hy1y2y3x. For example,

pY1jXy1x
=

hy1xP
y1
hy1x

, ð7Þ

where hy1x ¼
P

y2y3
hy1y2y3x, which is proportional to expðbY1y1 + bY1Xy1x

).

This shows the connection between the log-linear and probability LC

model. In an unweighted analysis, these probabilities can be estimated

using the information from only the nonzero observed cells, which makes

it possible to estimate an LC model with many items.1 A similar result

would apply if the likelihood equations to be solved at iteration t could be

written as

bmðtÞ
y1x

=

X

y2y3

bnðtÞy1y2y3x
zy1y2y3

; bmðtÞ
y2x

=

X

y1y3

bnðtÞy1y2y3x
zy1y2y3

; bmðtÞ
y3x

=

X

y1y2

bnðtÞy1y2y3x
zy1y2y3

: ð8Þ

It can easily be verified that this formula is not equivalent to the conditions

defining the ML solution described in equation (4). Actually, working

with conditions (8) is equivalent to performing a weighted analysis by

using n
ðwÞ
y1y2y3 =

ny1y2y3
zy1y2y3

as observed frequencies in an unweighted analysis,

that is, to using the pseudo-ML estimation approach.

An Efficient EM Algorithm

Now we describe an efficient EM algorithm for the probability LC

model with cell weights. For simplicity of exposition, we focus on the esti-

mation of a single set of the model probabilities, namely, pY1|Xy1x
or, more pre-

cisely, hY1Xy1x
. Note that because of the relationship described in equation (7),

we may redefine the problem of estimating pY1|Xy1x
as the estimation of hY1Xy1x

.
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As in the log-linear LC model, in the E step for iteration t, we obtain

estimates for the observed marginal frequencies bnðtÞy1x (the expected suffi-

cients statistics) using the data and the parameters of the previous itera-

tion. These are then used to obtain new bmðtÞ
y1x

in the M step; that is,

bmðtÞ
y1x

= bny1x. This is all we need to do in an unweighted analysis. In a

weighted analysis, however, computation of new bmðtÞ
y1x

is not sufficient

since the model probabilities are defined in terms of hy1x rather than in

terms of my1x. Updated estimates for hy1x are obtained as follows:

bhðtÞy1x =
bmðtÞ
y1x

bzðtÞy1x
=

bnðtÞy1x
bzðtÞy1x

: ð9Þ

As can be seen, computation of the new provisional estimates bhðtÞy1x requires
provisional estimates for the aggregated cell weights in marginal table

Y1 −X, which are denoted by bzðtÞy1x. It turns out that these can be calculated

in the E step together with the bnðtÞy1x. For that purpose, we first compute the

estimated frequencies in the marginal table concerned—bmðt−1Þ∗
y1x

—by collap-

sing the estimated unweighted frequencies from the previous iteration—

bmðt−1Þ
y1y2y3x

—over other variables:

bmðt�1Þ∗
y1x

¼
X

y2y3

bmðt�1Þ
y1y2y3x

¼
X

y2y3

bhðt�1Þ
y1y2y3x

zy1y2y3 : ð10Þ

At iteration t, the estimates for the cell weights in the marginal table

Y1 −X are

bzðtÞy1x ¼
bmðt�1Þ∗
y1x

bhðt�1Þ
y1x

: ð11Þ

Thus, a provisional marginal cell weight is the ratio of the current esti-

mates of the unweighted and the weighted marginal cell frequencies. A

similar EM algorithm was used by Vermunt (1997b) for log-linear event

history models with (partially) unobserved covariates.

Note that bmðt−1Þ
y1x

is the provisional value of a cell in the unweighted

marginal table concerned based on bnðt−1Þ
y1x

, whereas bmðt−1Þ∗
y1x

is the provi-

sional value based on the parameter estimates bhðt−1Þ

y1x
and the cell weights.

As long as convergence is not reached, bmðt−1Þ∗
y1x

will not be equal to bmðt−1Þ
y1x

.
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As can be seen from equation (10), for the computation of bmðt−1Þ∗
y1x

we

have to process all cells of the frequency table, which limits the applic-

ability of this approach to LC models with a relatively small number of

indicators. An important question is whether it is possible to compute

bmðt−1Þ∗
y1x

, and as a consequence,bzðtÞy1x using only the nonzero observed cells.

The assumption we make is that the weight for each cell with a zero

observed frequency has the same value a; that is, zy1y2y3 = a if ny1y2y3 = 0.

Let indicator variable ey1y2y3 be equal to 1 if ny1y2y3 6¼ 0, and 0 otherwise.

Now we can reformulate equation (10) as follows:

bmðt�1Þ∗
y1x

=

X

y2y3

bhðt�1Þ
y1y2y3x

zy1y2y3ey1y2y3 +
X

y2y3

bhðt�1Þ
y1y2y3x

a ð1� ey1y2y3Þ;

That is, we split the formula for bmðt−1Þ∗
y1x

into two parts, one part corre-

sponding to the nonzero observed cells and the other to the zero observed

cells. Making use of the fact that
P

y2y3
bhðt− 1Þ
y1y2y3x =

bhðt−1Þ
y1x , we can rewrite

this formula as follows:

bmðt�1Þ∗
y1x

=

X

y2y3

bhðt−1Þ
y1y2y3x

zy1y2y3ey1y2y3 +
bhðt−1Þ
y1x

a �
X

y2y3

bhðt−1Þ
y1y2y3x

a ey1y2y3

 !

=

X

y2y3

bhðt−1Þ
y1y2y3x

ðzy1y2y3 − aÞey1y2y3 +
bhðt−1Þ
y1x

a:

The term
P

y2y3
bhðt�1Þ
y1y2y3x ðzy1y2y3 � aÞey1y2y3 is computed from the nonzero

cells, and the term bhðt−1Þ

y1x
is a model parameter that is available from the

previous iteration cycle; this shows that updating bmðt−1Þ∗
y1x

and bzðtÞy1x requires
processing only the nonzero cells.

A question that remains is what value to use for a. Our solution is to

use a= 1, which amounts to assuming that the weighted and unweighted

observed cell frequencies are equal to one another. This is better than

a= 0 since that gives a model in which the observed zeroes are treated as

structural zeroes.2 With a= 1, we get

bmðt−1Þ∗
y1x

=

X

y2y3

bhðt−1Þ
y1y2y3x

ðzy1y2y3 − 1Þ+bhðt−1Þ
y1x

:

Using (11), this implies that bzðtÞy1x can be calculated in the E step as

follows:
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bzðtÞy1x =
P

y2y3
bhðt−1Þ
y1y2y3x ðzy1y2y3 − 1Þ

bhðt− 1Þ
y1x

+ 1

This defines an efficient and quite simple EM algorithm. In the tth E step,

we compute new bnðtÞy1x and bzðtÞy1x using the observed data (frequencies and

weights) and the parameters from the previous iteration. In the M step, we

use these quantities to obtain new parameter estimates, that is, new bhðtÞy1x
(see equation [ 9] ).

The γ Parameter

A similar procedure as above has to be used to obtain the g term, which

guarantees that
P

y1y2y3x
bmy1y2y3x

=N: Using the definition in equation (6),

the estimate for g at iteration t is simply

bgðtÞ = N
P

y1y2y3x
bpXðtÞx bpY1jXðtÞy1x

bpY2jXðtÞy2x
bpY3jXðtÞy3x zy1y2y3

:

Again, it is important to solve this without going through the complete

table. It turns out that we can use the following updating scheme for g:

bgðtÞ =bgðt−1Þ N

bmðt−1Þ∗
:

Above, we showed how to obtain bmðt−1Þ∗
y1x

using only the information from

the nonzero cells. In a similar way, we can obtain bmðt−1Þ∗
; that is, by

bmðt�1Þ∗
=

X

y1y2y3x

bhðt−1Þ
y1y2y3x

ðzy1y2y3 − 1Þ+bhðt−1Þ:

This computation of g is relevant not only in an efficient EM algorithm

but also for a Newton-Raphson algorithm since the g term is required to

get the correct log-likelihood value.

A Small Simulation Study

How Much Difference Does Weighting Make?

In this section, we show in which types of situations weighting makes

sense in an LC analysis, as well as which weighting methods yield asymp-

totic correct solutions. For the moment, we will work with population

distributions in order to prevent sampling fl uctuations from infl uencing

the conclusions. More specifically, we assess which weighting methods
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reproduce the known population values in the case of nonproportional

stratified sampling. Later, we investigate how well the methods that work

asymptotically (with sample sizes of infinity) work with sample sizes typi-

cal for survey research.

The stratification variable is a dichotomous variable denoted by A. The

p o p u l a t i o n a n d s a m p l e p r o p o r t i o n s f o r A= 1—d en o t ed b y pA1 a n d pA1—

eq u a l .9 a n d .5, r es p ec t i v el y . Thi s i s a t y p i c a l ex a m p l e o f o v er s a m p l i n g o f

a m i n o r i t y g r o u p ( l a r g e fi r m s , l a r g e c i t i es , et hn i c m i n o r i t i es , f em a l es i n

m a s c u l i n e j o b s ) . W e c a n c o r r ec t f o r t he o v er s a m p l i n g b y u s i n g s a m p l i n g

w ei g ht s wA
1 = 1:8 a n d wA

2 = :2, r es p ec t i v el y .

The p o p u l a t i o n m o d el i s a n L C m o d el f o r fi v e d i c ho t o m o u s i n d i c a t o r s :

pY1Y2Y3Y4Y5XjAy1y2y3y4y5 x a
=pXjAx a pY1jXAy1 x a

pY2jXAy2 x a
pY3jXAy3 x a

pY4jXAy4 x a
pY5 jXAy5 x a

,

w her e

pYr jXAyr x a
=

ex p bYr jAyra
+ bYrXjAyr x a

� �

P2
s= 1 ex p bYr jAsa + bYrXjAsx a

� �
:

W e a s s u m e t ha t p
X|A
11 = :1 a n d p

X|A
12 = :5, w hi c h m ea n s t ha t t he m i n o r i t y

g r o u p ( A= 2) ha s a m u c h l a r g er p r o b a b i l i t y o f b el o n g i n g t o t he ‘ ‘ l o w ’ ’

c l a s s ( X= 1) t ha n t he m a j o r i t y g r o u p . The o v er a l l p r o b a b i l i t y o f b ei n g i n

L C 1 i s pX1 = pA1p
X|A
11 + pA2p

X|A
12 = :14. N o t e t ha t w i t h pA1 = :5, t he u n w ei g ht ed

es t i m a t e f o r pX1 w i l l b e .3.

The q u es t i o n i s u n d er w hi c h c o n d i t i o n s a r e w e a b l e t o o b t a i n t he c o r r ec t

p o p u l a t i o n v a l u e o f pX1 . The i n v es t i g a t ed c o n d i t i o n s v a r i ed w i t h r es p ec t t o

t he s p ec i fi c a t i o n o f t he ef f ec t s - c o d ed l o g - l i n ea r p a r a m et er s b
Yr |A
1a a n d b

YrX|A
1xa ,

w hi c h d efi n e t he r es p o n s e p r o b a b i l i t i es pYr |XAyrxa
. I n t he h o m o g e n e o u s m ea -

s u r em en t m o d el s p ec i fi c a t i o n , w e s et b
Yr |A
1a = − :8+ :4 r a n d b

YrX|A
11a = :5 f o r

ea c h r ( i t em ) a n d a ( g r o u p ) . The h e t e ro g e n e o u s s p ec i fi c a t i o n s w er e o b t a i n ed

b y a l l o w i n g f o r b et w een - g r o u p v a r i a t i o n i n i t em d i f fi c u l t y ( p r o b a b i l i t y o f

g i v i n g t he Yr = 2 r es p o n s e) a n d / o r i t em d i s c r i m i n a t i o n ( s t r en g t h o f r el a t i o n -

s hi p b et w een X a n d Yr ) : W e m a d e o n e o r t w o i t em s m o r e d i f fi c u l t f o r A= 2

b y s et t i n g b
Yr |A
12 = b

Yr |A
11 + :4 a n d / o r o n e o r t w o i t em s l es s d i s c r i m i n a t i n g f o r

A= 2 b y s et t i n g b
YrX|A
112 = :1. The ei g ht s p ec i fi c a t i o n s w e u s ed a r e

I . ho m o g en eo u s m ea s u r em en t m o d el , pYr |XAyrxa
= pYr |Xyrx

f o r a l l r;

I I . Y3 i s m o r e d i f fi c u l t f o r A= 2;

I I I . Y3 d i s c r i m i n a t es l es s f o r A= 2;

I V . Y3 i s m o r e d i f fi c u l t a n d d i s c r i m i n a t es l es s f o r A= 2;
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V. Y3 is more difficult and Y4 discriminates less for A= 2;

VI. Y3 and Y4 are more difficult for A= 2;

VII. Y3 and Y4 discriminate less for A= 2; and

VIII. Y3 and Y4 are more difficult and discriminate less for A= 2.

These are typical measurement models in a multiple-group LC analysis

(Clogg and G oodman 1984, 1985).

We use four types of methods to deal with the nonproportional strati-

fied sampling:

0 . unweighted analysis;

1. two-step approach consisting of an unweighted analysis with an

adjustment of the estimate for pX1 using the weighted frequencies.

This can be either a single-step adjustment of pX1 (1a) or an iterative

reestimation of pX1 (1b);

2. analysis using weighted frequencies n
ðwÞ
j ;

3. weighted analysis using cell weights zj; and

4. unweighted analysis with A as a grouping variable assuming either a

homogeneous (4a) or a heterogeneous measurement model (4b).

The single-step adjustment after an unweighted analysis (1a) involves

reestimating bpXx as follows:

bpXx =
X

j

bpkjjnðwÞj :

A problem is that bpk|j is computed with the wrong unweighted estimate of

pXx . A better approach seems to be to reestimate pXx iteratively, fixing the

other model parameters at their estimated values. Reestimation involves

using n
ðwÞ
j as observed frequencies.

The model that is estimated with methods 0 , 1a, 1b, 2, and 3 is a stan-

dard LC model with five dichotomous indicators.3 This means that we do

not tak e into account possible differences in the measurement model

across levels of the stratifier. That is the reason that we use the same,

possibly incorrect, measurement model in method 4a.

Table 2 presents the results. With a homogeneous measurement model

(case I), each of the methods gives the correct value for pX1 except method

1a. Methods 2 and 3 also give the correct answer if the heterogeneity of

the measurement model concerns a single item (cases II– IV), but with

heterogeneity in two items the estimate is no longer correct. In the latter

cases, the bias of method 3 is slightly smaller than that of method 2.

Method 1a work s badly in all cases, whereas method 1b work s quite well,
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especially if the group differences concern only item discrimination (cases

II and VII). Surprisingly, the inclusion of the stratifier as a grouping vari-

able in combination with the wrong measurement model is among the

worst choices, which shows that one has to be cautious with this strategy.

The bias of method 4a is, however, small if the heterogeneity concerns

only difficulty parameters (cases II and VI). As seen from the results for

method 4b, specification of the correct measurement model yields, as

might be expected, the correct value for pX1 in all situations.

F rom the above, we can conclude that when the measurement model is

homogeneous, there is no need to use sampling weights when estimating

the class-specific response probabilities. U nbiased estimates for the class

siz es (here pX1 ) can be obtained in a second stage in which the weighted

frequencies are used as data and the class-specific response probabilities

are fixed to the estimated values from the unweighted analysis (method

1b). If the homogeneous measurement model assumption is incorrect for

no more than a single item, both methods that use sampling weights

(methods 2 and 3) still give the correct estimates for the class siz es. H ow-

ever, in situations where the parameters for more than a single item differ

across stratifier levels, these weighting methods will no longer provide

unbiased estimates of the class siz es.

Behavior of the Various Weighting

M ethod s With S am p l ing F l uc tuation

Above we studied the asymptotic performance (unbiasedness) of the

various weighting methods. In this section, we investigate how well the

T ab l e 2

E stim ates for πX

1 U nd er E ight T rue M od el s and S even Weighting

M ethod s for D eal ing With the S tratifi ed S am p l ing D esign

Method I II III IV V VI VII VIII

0. U nweighted .300 .300 .300 .300 .311 .310 .307 .353

1a. Two-step (noniterative) .218 .202 .226 .212 .222 .198 .236 .244

1b. Two-step (iterative) .140 .119 .137 .119 .124 .112 .134 .121

2. P seudo-ML .140 .140 .140 .140 .144 .142 .141 .151

3. Weighted ML .140 .140 .140 .140 .143 .141 .141 .148

4a. Multiple group (homogeneous) .140 .138 .16 6 .202 .186 .146 .232 .233

4b. Multiple group (heterogeneous) .140 .140 .140 .140 .140 .140 .140 .140

Note: ML=maximum likelihood.
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various methods behave when applied to a sample, that is, not only

whether estimates are unbiased but also whether they are stable. For this

purpose, we use a similar design as in the previous section. The starting

points are the same eight populations that differ with respect to the type of

heterogeneity of the measurement model across levels of the stratification

variable, as well as the various weighting methods described above. The

difference is that now we generate samples from the population distribu-

tions rather than use population data. The sample size we set to 1,000, a

moderate sample size in survey research. The simulation study consists of

1,000 replications.

To summarize, we generate 1,000 samples of size 1,000 from eight

populations. To each of these samples, we apply the various methods for

dealing with sampling weights. Tables 3 and 4 report the results from this

small simulation study; Table 3 gives the average and the standard devia-

tion of the estimated pX1 value across replications, and Table 4 gives the

same information on the logit scale.

The results are similar to the asymptotic results. O verall, the ML weight-

ing method proposed in this article (method 3) performs best, but the differ-

ence compared to method 2 (pseudo-ML) is not very large. It can also be

Table 3

Means and Standard Deviations for πX

1 A cross 1 , 0 0 0 Samples

of Siz e 1 , 0 0 0 Simulated From Eight True Models and Seven

Weighting Methods for Dealing With the Stratified Sampling Design

Method I II III IV V VI VII VIII

0. Unweighted .305 .304 .305 .303 .319 .315 .319 .357

(.046) (.043) (.061) (.052) (.060) (.044) (.079) (.067)

1a. Two-step .224 .206 .231 .215 .229 .203 .249 .250

(noniterative) (.044) (.039) (.057) (.048) (.055) (.039) (.076) (.064)

1b. Two-step .150 .128 .149 .128 .137 .121 .155 .136

(iterative) (.037) (.032) (.048) (.038) (.044) (.031) (.061) (.049)

2. Pseudo-ML .160 .156 .162 .155 .167 .158 .165 .172

(.061) (.056) (.069) (.058) (.068) (.056) (.075) (.069)

3. Weighted ML .152 .149 .153 .148 .157 .148 .155 .156

(.053) (.049) (.058) (.049) (.056) (.045) (.063) (.057)

4a. Multiple group .145 .143 .172 .203 .191 .151 .238 .237

(homogeneous) (.030) (.028) (.041) (.043) (.040) (.028) (.053) (.037)

4b. Multiple group .149 .147 .150 .147 .151 .148 .151 .150

(heterogeneous) (.035) (.036) (.040) (.038) (.040) (.036) (.041) (.044)

Note: ML=maximum likelihood.
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observed that weighting methods 2 and 3 yield larger standard deviations

across replications than the other methods, which indicates that there is a

clear trade-off between bias and stability of estimates.4 The fact that

weighting increases uncertainty about parameter estimates is a phenomenon

reported by various authors (Hendrikx 2002; Winship and Radbill 1994).

Empirical Examples

A Standard L C Model for Six Dichotomous I ndicators

To illustrate the performance of various weighting methods with real-

life data, we took six dichotomous indicators measuring work values from

D utch samples of the E uropean Values Study (E VS) 1990 and E VS 1999

surveys. The task for respondents was to pick a number of items that they

found important in a job out of a list of 15. For this example, we used 6 of

the 15 items: Y1, ‘‘chances for promotions’’; Y2, ‘‘use initiative’’; Y3,

‘‘achieve something’’; Y4, ‘‘responsible job’’; Y5, ‘‘job interesting’’; and

Y6, ‘‘meeting abilities.’’ The D utch E VS surveys contain case weights in

Table 4

Means and Standard Deviations for logit( πX

1 ) Across 1,000 Samples

of Size 1,000 Simulated Under Eight True Models and Seven

Weighting Methods for Dealing With the Stratified Sampling Design

Method I II III IV V VI VII VIII

0. Unweighted −0.832 −0.838 −0.841 −0.845 −0.773 −0.783 −0.786 −0.602

(0.216) (0.204) (0.291) (0.248) (0.280) (0.204) (0.373) (0.296)

1a. Two-step −1.261 −1.368 −1.228 −1.316 −1.239 −1.383 −1.148 −1.127

(noniterative) (0.250) (0.243) (0.323) (0.283) (0.315) (0.245) (0.414) (0.343)

1b. Two-step −1.766 −1.954 −1.789 −1.961 −1.887 −2.012 −1.773 −1.912

(iterative) (0.294) (0.294) (0.376) (0.342) (0.373) (0.289) (0.471) (0.417)

2. Pseudo-ML −1.727 −1.751 −1.718 −1.762 −1.681 −1.729 −1.714 −1.646

(0.442) (0.420) (0.486) (0.429) (0.475) (0.404) (0.529) (0.472)

3. Weighted ML −1.775 −1.796 −1.780 −1.801 −1.743 −1.795 −1.770 −1.746

(0.403) (0.380) (0.439) (0.388) (0.427) (0.349) (0.475) (0.420)

4a. Multiple group −1.792 −1.807 −1.597 −1.392 −1.466 −1.742 −1.188 −1.181

(homogeneous) (0.241) (0.231) (0.288) (0.273) (0.265) (0.218) (0.304) (0.207)

4b. Multiple group −1.768 −1.788 −1.766 −1.786 −1.764 −1.783 −1.761 −1.775

(heterogeneous) (0.278) (0.287) (0.312) (0.300) (0.313) (0.287) (0.317) (0.337)

Note: ML=maximum likelihood.
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order to correct for the sampling design and for unit nonresponse. Weights

differ across age groups, gender, and regions.5

The model we assume for the six work-value indicators is an LC model

with homogeneous response probabilities across the two time points.6

Table 5 reports the value of the likelihood-ratio statistic (L2) and the B IC

for one- to five-class models estimated using unweighted frequencies,

weighted frequencies, and cell weights. As can be seen, for each of the

three methods, the four-class model is the preferred model based on the

B IC criterion.7

The parameters for the four-class model obtained using the ML

approach with cell weights (see Table 6) show that there is one class that

finds all items important (class 1) and one class that finds all unimportant

(class 4). Classes 2 and 3 take an intermediate position, where class 2

gives higher importance to items Y2,Y4, and Y5 (the self-development

items), and the very small class 3 gives higher importance to items

Y1,Y2,Y3, and Y4 (the achievement items).

A similar four-class pattern as in Table 6 is found with both the

unweighted analysis and the analysis of weighted frequencies. However,

the estimated latent distribution and its change between 1990 and 1999 are

somewhat different for the three weighting methods (see Table 7). As can be

seen, compared to the unweighted analysis, using the sampling weights

increases the size of class 2 and decreases the size of class 3. This effect is

stronger when using the ML or cell weights approach described in this article

than when using the pseudo-ML or weighted frequencies approach. It can

also be seen that the parameter changes, resulting from using the sampling

weights, are somewhat larger for the first than for the second time point.

Table 5

Test R esults for the Models Estimated With the EVS J ob Attitude Data

nj n
ðwÞ
j nj and zj

Model d f L2 B IC L2 B IC L2 B IC

One-class 120 2,130.24 1,216.94 2,165.12 1,251.82 2,245.86 1,332.56

Two-class 112 399.50 −452.91 442.73 −409.68 447.09 −405.33

Three-class 104 195.99 −595.54 226.69 −564.84 224.26 −567.27

Four-class 96 121.70 −608.94 154.73 −575.91 157.46 −573.18

Five-class 88 110.17 −559.58 133.62 −536.13 136.15 −533.60

Note: EVS=European Values Study; L2 = likelihood-ratio statistic; B IC= B ayesian infor-

mation criterion.
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A Nonstandard LC Model

To illustrate the fact that the proposed ML weighting procedure can also

be applied with more advanced LC models, we present an example of an

LC model for incomplete ranking data. The data are again taken from the

Dutch samples of EVS 1990 and EVS 1999. The two indicators of interest

form Ingelhart’s (post)materialism scale. Respondents select their first and

second choices out of the following four ‘‘aims of the country’’: (1) ‘‘main-

tain order in the nation,’’ (2) ‘‘more say in important government deci-

sions,’’ (3) ‘‘fighting rising prices,’’ and (4) ‘‘protect freedom of speech.’’

Table 6

P arameters Estimates of the Four- Class Model

for the EVS Job Attitude Data Using Cell Weights

X= 1 X= 2 X= 3 X= 4

pXx .25 .42 .03 .31

p
XjT
x1

.31 .41 .00 .27

p
XjT
x2

.19 .42 .05 .34

p
Y1jX
1x

.84 .20 .79 .11

p
Y2jX
1x

.96 .77 .76 .19

p
Y3jX
1x

.95 .31 .77 .12

p
Y4jX
1x

.84 .41 .64 .14

p
Y5jX
1x

.93 .70 .10 .21

p
Y6jX
1x

.99 .88 .30 .30

Note: EVS = European Values Study.

Table 7

Estimated Latent Class P roportions of the Four- Class

Model for the EVS Job Attitude Data

Using nj Using n
ðwÞ
j Using nj and zj

pXx p
XjT
x1 p

XjT
x2 pXx p

XjT
x1 p

XjT
x2 pXx p

XjT
x1 p

XjT
x2

X= 1 .25 .30 .20 .25 .31 .19 .25 .31 .19

X= 2 .37 .35 .39 .40 .40 .40 .42 .41 .42

X= 3 .09 .08 .11 .06 .03 .09 .03 .00 .05

X= 4 .29 .27 .30 .29 .26 .32 .31 .27 .34

Note: EVS = European Values Study.
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We denote the first and second choice by Y1 and Y2, respectively. A

special feature of a ranking task is that it is impossible to select the same

answer twice, which means that the cell counts for Y1 = Y2 are structurally

zero. The data are modeled by a mixture variant of the strict-utility or

Bradley-Terry-Luce ranking model (Croon 1989). Using T (time) as a

grouping variable, this LC model can be defined as follows:

p
Y1Y2XjT
y1y2xt

= p
XjT
xt p

Y1jXT
y1xt

p
Y2jY1XT
y2y1xt

= p
XjT
xt

expðbYXTy1xt
Þ

P
y1
expðbYXTy1xt

Þ

expðbYXTy2xt
Þ

P
y2 6¼y1

expðbYXTy2xt
Þ

,

for Y1 6¼ Y2, and p
Y1Y2X|T
y1y2xt

= 0 otherwise. As can be seen, the first- and

second-choice probabilities are parameterized by a set of class- and time-

specific utilities b, which are assumed to be equal across choices. For

identification, the b parameters are assumed to sum to 0 across alternatives

(
P

y b
YXT
yxt = 0).8 The more complicated subscript y2 6¼ y1 appearing in the

sum of the denominator for the second choice is needed because the alter-

native selected as first choice should be eliminated from the set of alterna-

tives for the second choice.

This mixture Bradley-Terry-Luce ranking model cannot be defined as a

log-linear model for the joint distribution of the latent and manifest vari-

ables, which means that in this case we have to use the probability formu-

lation of the LC model. An additional feature of the data set we use for

this example is that for some respondents the information on the first or

second choice is missing. We use the partially observed data in the model

estimation, assuming that the missing data is missing at random.

Table 8 reports the test results for the estimated models using the

weighting method proposed in this study. The model with the lowest BIC

value is the two-class model with a partially heterogeneous measurement

structure. Inspection of the estimated parameters of the heterogeneous

two-class model shows that the first item, ‘‘maintain order in the nation,’’

became more popular between 1990 and 1999, irrespective of the LC. We

modeled this by augmenting the homogeneous two-class model by a sin-

gle parameter capturing the change in popularity of the first item.

The parameter estimates are presented in Table 9. LC 1 is the materia-

listic class having higher probabilities for Items 1 and 3, and LC 2 is the

postmaterialistic class having higher probabilities for Items 2 and 4. The

latent change shows an increase of materialistic class, even after filtering

out the increased popularity of materialistic Item 1.
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Discussion

We showed how to obtain ML estimates for log-linear LC models when

there are sampling weights by generalizing results from standard log-linear

analysis with sampling weights. The method can be implemented using the

procedures for log-linear analysis of incomplete tables of Haberman’s

(1988) NEWTON program and Vermunt’s (1997a) LEM program. It can

also be implemented in Latent GOLD (Vermunt and Magidson 2005) by

using the log of the cell weights as an offset in the module for choice data.

Table 8

Test Results for the Models Estimated With the EVS Inglehart Items

Model L2 df BIC

One-class heterogeneous 173.18 16 51.40

Two-class heterogeneous 24.57 8 −36.32

One-class homogeneous 250.49 19 105.88

Two-class homogeneous 51.54 14 −55.01

Two-class partially heterogeneous 37.46 13 −61.48

Note: EVS=European Values Study; L2 = likelihood-ratio statistic; BIC=Bayesian informa-

tion criterion.

Table 9

Parameter Estimates for Tw o-Class Partially H eterogeneous

LC Model for the EVS Inglehart Items

X= 1 X= 2

p
XjT
x1

0.62 0.38

p
XjT
x2

0.66 0.34

bYX1x 1.05 −0.41

bYX2x −1.06 0.37

bYX3x −0.33 −1.07

bYX4x 0.33 1.11

bYT12 0.89 0.89

p
Y1jXT
1x1

0.54 0.12

p
Y1jXT
2x1

0.07 0.26

p
Y1jXT
3x1

0.13 0.06

p
Y1jXT
4x1

0.26 0.55

Note: LC= latent class; EVS=European Values Study.
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We also showed how to estimate a probability-based LC model with sam-

pling weights without processing the complete table. This makes it possible

to apply the proposed weighting method to large problems. The only

assumption that needs to be made is that the cell weights are equal for all

zero cells, for example, equal to 1.

The probability LC model is a special case of a much broader class of

models for frequency tables. Therefore, the proposed weighting method

can be generalized quite easily to more complicated probability models

with latent and partially observed categorical variables, such as the modi-

fied LISREL approach of Hagenaars (1990) and Vermunt (1997b) and the

missing data models of Winship and Mare (1989). The proposed method

can also be used to define LC models (with many indicators) in which

some of the cells are restricted to be structurally zero, such as LC models

for capture-recapture data (see Agresti 2002:544).

Because sampling weights increase standard errors, for linear regres-

sion analysis Winship and Radbill (1994) recommended using the

unweighted solution when parameter estimates are substantively similar

with and without weighting. Similar advice could be given for LC analy-

sis: If the variables used to construct the weights do not affect the mea-

surement part of the model, an unweighted analysis is the preferred

approach. As we demonstrated, LC sizes can easily be corrected using the

two-step approach. In other cases, it is recommended to use sampling

weights, where the pseudo-ML and ML weighting methods can be

expected to give similar results in terms of parameter values. Whereas in

pseudo-ML estimation one can obtain correct standard errors, for instance,

by means of a linearization variance estimator or a jackknife procedure

(Skinner et al. 1989), construction of valid goodness-of-fit tests is not pos-

sible. The main advantage of the proposed ML approach is therefore that

it provides valid goodness-of-fit tests.

Appendix
Lik elihood Eq uation for Log-Linear LC Model

In this appendix, we derive the likelihood equation for the weighted

log-linear LC model under Poisson and multinomial sampling. The contri-

bution of cell j to Poisson log-likelihood is

log Lj = njlog
X

k

mjk

 !
−

X

k

mjk ,
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and the first-order derivatives are

∂ log Lj

∂bu
= nj

X

k

mjkP
k0
mjk0

xjku �
X

k

mjkxjku

=

X

k

bnjkxjku �
X

k

mjkxjku:

where

bnjk =bnjk
mjkP
k0
mjk0

=bnjkpjjk:

This means that the likelihood equations have the form
X

jk

mjkxjku =
X

jk

bnjkxjku:

Under multinomial sampling, the contribution of cell j to the likelihood

equals

log Lj = nj log
X

k

mjk

 !
− nj log

X

j0k

mj0k

0
@

1
A

and the corresponding first-order derivatives have the form

∂ log Lj

∂bu
= nj

X

k

mjkP
k0 mjk0

xjku − nj
X

j00k

mj00kP
j0k0

mj0k0
xj00ku

=

X

k

bnjkxjku − nj
X

j00k

mj00kP
j0k0

mj0k0
xj00ku:

Assuming that
P

jk mjk =
P

j nj, the sum of all cells (index j) yields

X

j

∂ log Lj

∂bu
=

X

jk

bnjkxjku −
X

jk

mjkxjku:

This shows that Poisson and multinomial sampling give the same likeli-

hood equation.

Note that zj cancels in the computation of the posterior probabilities:

pkjj =
mjkP
k0
mjk0

=
hjkP
k0
hjk0

,

which shows that the posterior class membership probabilities do not

depend on the sampling weights.
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Notes

1. It should be noted that latent class (LC) models for large numbers of indicators raise

other problems associated with sparseness, which complicates model evaluation.

2. As indicated by one of the reviewers, in some situations one may wish to combine

several values of a. More specifically, one may use a= 0 for zero observed cells that are

considered structural zeroes and a= 1 for zero cells that are considered sampling zeroes.

This can be easily achieved without any modification of the algorithm described here.

Structural zero cells should be given a cell weight of 0 and a ey1y2y3 value of 1 (instead

of 0).

3. The model is estimated treating the expected cell counts defining the population as

data, that is, as if they were observed frequencies.

4. The mean squared error could be used to determine the combined effect of bias and

variability. It can easily be obtained from the numbers reported in these two tables, that is, as

the sum of squared bias and squared standard deviation.

5. As was mentioned earlier, the presented maximum-likelihood (ML) approach ignores

clustering. But since the European Values Study (EVS) sample for the Netherlands was not

clustered, this is valid in the current example. This may, however, not be the case for other

EVS countries since each participating country has its own sampling plan.

6. We assume time-homogeneous response probabilities for simplicity of exposition. In

the next, more advanced example, we consider models with different response probabilities

across time points.

7. It should be noted that the use of L2 and Bayesian information criterion is somewhat

questionable for the pseudo-ML estimation approach (the method based on weighted frequen-

cies) because these measures contain the log-likelihood function in their formulae instead of

the pseudo-log-likelihood function.

8. Note that these log-linear parameters are not assumed to sum to zero across LCs. An

equivalent model would be obtained by adding this constraint and including an item intercept

bYTyt in the model.
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