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This article presents a unifying approach to the analysis of repeated univariate categori-
cal (ordered) responses based on the application of the generalized log-linear modeling
framework proposed by Lang and Agresti. It is shown that three important research ques-
tions in longitudinal studies can be addressed simultaneously. These questions are the
following: What is the overall dependence structure of the repeated responses? What is
the structure of the change between consecutive time points? and What is the structure of
the change in the marginal distributions? Each of these questions involves specifying
log-linear models for different marginal distributions of the multiway cross classifica-
tion of the responses. The proposed approach is illustrated by means of two real data
examples.
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1. INTRODUCTION

Consider the four-way cross tabulation presented in Table 1. It con-
tains data on marijuana use taken from four annual waves (1977-1980)
of the National Youth Survey (Elliot, Huizinga, and Menard 1989;
Lang, McDonald, and Smith 1999). The table reports the information
on marijuana use of 237 respondents who were age 14 in 1977. The
variable of interest is a trichotomous ordinal variable: marijuana use
in the past year measured at four occasions. This is the kind of data that
plays a central role in this article.

Longitudinal data obtained via panel studies contain rich informa-
tion on processes of social and psychological change. The analysis of
this kind of data is, however, not straightforward. The most important
problem is that we are dealing with dependent observations.
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Consequently, when modeling such repeated responses, one has to
take into account that one does not have four times 237 independent
observations but 237 multivariate observations. There are three main
approaches to the analysis of longitudinal data: conditional or transi-
tion models, random-effects models, and marginal models (Diggle,
Liang, and Zeger 1994; Fahrmeir and Tutz 1994). Transition models
like Markov-type models concentrate on changes between consecu-
tive time points. Random-effect and marginal models can be used to
investigate changes in univariate distributions. These three
approaches not only differ in the questions they address but also in the
way they deal with the dependencies between observations. Because
of their structure, transition models take the bivariate dependencies
between observations at consecutive occasions into account. Random-
effects models capture the dependence by introducing a latent vari-
able. In marginal models, the dependency is dealt with in a more ad
hoc way in the estimation procedure.

This article presents a unifying approach to the analysis of
univariate repeated (ordered) categorical responses that combines ele-
ments of the approaches discussed above. Restrictions on cell counts
are formulated in the form of log-linear models. Our approach simul-
taneously addresses three important questions about a panel data set:

Vermunt et al. / JOINT AND MARGINAL DISTRIBUTIONS 171

TABLE 1: Data on Marijuana Use in the Past Year Taken From Four Yearly Waves of
the National Youth Survey (1977-1980)

1979 (C)

1 2 3

1977 1978 1980 (D) 1980 (D) 1980 (D)

(A) (B) 1 2 3 1 2 3 1 2 3

1 1 115 18 7 6 6 1 2 1 5
1 2 2 2 1 5 10 2 0 0 6
1 3 0 1 0 0 1 0 0 0 4
2 1 1 3 0 1 0 0 0 0 0
2 2 2 1 1 2 1 0 0 0 3
2 3 0 1 0 0 1 1 0 2 7
3 1 0 0 0 0 0 0 0 0 1
3 2 1 0 0 0 1 0 0 0 1
3 2 0 0 0 0 2 1 1 1 6

NOTE: The three levels of the ordinal response variable marijuana use are never (1), no more
than once a month (2), and more than once a month (3).



1. What is the overall dependence structure of the repeated responses?
2. What is the structure of the change between consecutive time points?
3. What is the structure of the change in the marginal distributions?

To answer the first question, we have to analyze the joint distribu-
tion of the responses. We are interested in whether, for example, a
first-order Markov model, a Rasch-type model, or a model containing
only two-variable interactions describes the associations in the four-
way table. It should be noted that these three structures correspond to
the three approaches to longitudinal data analysis mentioned above.

The second question is about the gross change between t and t + 1,
which involves modeling the bivariate marginal distributions formed
by responses at consecutive time points. For these margins, we might
specify well-known models for the association in squared tables, such
as (quasi-)independence, (quasi-)symmetry, and linear-by-linear
association models, as well as models that restrict the transition proba-
bilities. In addition, questions concerning the stability of these
bivariate marginal associations and transitions over time can be
addressed.

The third question concerns the univariate marginal distributions.
An important test is, of course, the hypothesis of marginal homogene-
ity or no net change. In most longitudinal studies, we want to check
whether at the aggregate level the situation changed. If the marginal
homogeneity hypotheses do not hold, we may want to test certain
hypotheses about the observed marginal change.

Using log-linear analysis techniques, it is no problem to address the
question related to the joint distribution of the four responses.
Methods based on the use of standard log-linear models have also
been proposed to address questions concerning bivariate and
univariate marginal distributions. These methods make, however, cer-
tain assumptions about the joint distribution. The two most important
examples are the indirect test for marginal homogeneity assuming a
quasi-symmetry model for the joint distribution (Bishop, Fienberg,
and Holland 1975; Conaway 1989; Meiser, Von Eye, and Spiel 1997)
and the modeling of bivariate margins assuming a Markov structure
for the joint distribution (Andersen 1990; Lindsey 1993). If the
quasi-symmetry model holds, a conditional test between this model
and the symmetry model yields a test for marginal homogeneity
(Caussinus 1965). If the first-order Markov assumption holds, the
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adjacent two-way tables can be analyzed as if they were tables from
independent samples. A problem with these approaches is, however,
that the validity of the test for the marginal model depends on the
validity of assumptions about the joint distribution. Consequently, if
the model for the joint distribution does not hold, we no longer have a
valid test for the models we are interested in.

We propose an alternative, more direct, log-linear modeling
approach to the analysis of multiwave panel data that overcomes the
above problems. As long as no contradictory constraints are specified,
any kind of model for the joint distribution can be combined with any
kind of model for the bivariate and univariate distributions. For exam-
ple, marginal homogeneity can be tested in conjunction with a
first-order Markov model for the joint distribution, and symmetric
association in consecutive bivariate margins can be assumed in com-
bination with a second-order Markov model for the joint distribution.
Our work is related to the work of Agresti (1997) and Croon, Bergsma,
and Hagenaars (2000). They concentrated, however, on the change in
the marginal association between two response variables in two-wave
panel studies. Here, we focus on models for a single response variable
that is observed at three or more occasions.

Rather than using standard log-linear models, we use the general-
ized log-linear modeling approach proposed by Lang and Agresti
(1994), which permits simultaneous modeling of marginal and joint
distributions. Besides its flexibility, other potential benefits of this
simultaneous modeling approach relative to a separate fitting
approach come in terms of model parsimony and more efficient esti-
mators of cell expected frequencies and model parameters. One also
obtains a single test that simultaneously summarizes goodness of fit
and a single set of fitted values and residuals (Becker, Minick, and
Yang 1998; Lang and Agresti 1994). Another advantage of using a
simultaneous modeling approach is that it makes it possible to detect
that the postulated hypotheses for the various distributions are incom-
patible with one another. For example, in one of the reported analyses,
we found that a model of homogeneous bivariate transition probabili-
ties is incompatible with a constant univariate marginal shift model.

Estimation of the models presented in this article cannot be done
with standard software for log-linear analysis. For this article, we used
an experimental version of the LEM program (Vermunt 1997) that
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implements the estimation procedure proposed by Bergsma (1997),
which is a slightly modified version of the Fisher-scoring method
described in Lang and Agresti (1994).

The remainder of this article is organized as follows. Section 2 links
the three questions about panel data to the generalized log-linear mod-
eling approach. Sections 3, 4, and 5 describe the most interesting
log-linear models for joint, bivariate, and univariate distributions in
panel studies. Section 6 discusses the issue of simultaneously model-
ing joint and marginal distributions. Section 7 gives some details on
maximum likelihood estimation. In section 8, we illustrate our
approach by means of a second empirical example. The article ends
with a short discussion.

2. GENERALIZED LOG-LINEAR MODELS FOR PANEL DATA

Let mijk
ABCD

� denote an expected cell entry in the four-way table
obtained by cross tabulating the measurements of the same variable at
four time points. Here, A, B, C, and D serve as variable labels and i, j, k,
and � as their indices.

We are interested in modeling the joint distribution of A, B, C, and
D, as well as the three two-way margins of adjacent time points and the
four one-way margins. The latter two types of margins are obtained by
collapsing the cell entries mijk

ABCD
� over the appropriate indices.

Denoting a summation over a certain index by a “+,” the marginal cell
entries of interest aremij

ABCD
+ + ,m jk

ABCD
+ + ,m k

ABCD
+ + � ,mi

ABCD
+ + + ,m j

ABCD
+ + + ,m k

ABCD
+ + + , and

mABCD
+ + + � .
Lang and Agresti (1994) proposed a generalization of the standard

log-linear models that allows specifying log-linear models for sums of
cell entries (see also Becker 1994; and Bergsma 1997). The model
they proposed is of the form

ln A m = X b. (1)

Here, m is the vector of expected cell entries, and A is a matrix with
ones and zeroes that is used to define the appropriate marginal cell en-
tries. The other two terms, X and b, have their standard meaning, that
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is, the model or design matrix and the vector of unknown parameters.
The same model can also be described without using matrix notation:

ln a m b xik k
k

j ij
j

∑ ∑= .

As can be seen, this yields a log-linear model for sums of cell entries
or, equivalently, for marginal cell entries. This is the basic structure
that we use to specify log-linear models for the various types of mar-
ginal tables.

It should be noted that the original model proposed by Lang and
Agresti (1994) is C ln A m = X b. The matrix C can be used to define
certain contrasts like log odds or log odds ratios. Because we restrict
ourselves to log-linear models for marginal frequencies, we can use
the slightly simpler formulation without the C matrix.

Below, we describe the most important log-linear models for the
cell entries of the joint, the two-way marginal, and the one-way mar-
ginal distributions. In each case, we begin with the saturated model
and then proceed considering more parsimonious models that are of
practical interest in the context of longitudinal data analysis. We also
present the results obtained when applying these models to the data
reported in Table 1.

3. LOG-LINEAR MODELS FOR THE JOINT DISTRIBUTION

The most general log-linear model for the cell entries in the joint
distribution mijk

ABCD
� is the saturated log-linear model. This model is

given by

ln mijk
ABCD

� = λ + λ i
A + λ j

B + λ k
C + λ �

D + λ ij
AB + λ ik

AC + λ i
AD
� + λ jk

BC

+ λ j
BD

� + λ k
CD

� + λ ijk
ABC + λ ij

ABD
� + λ ik

ACD
� +λ jk

BCD
� + λ ijk

ABCD
� . (2)

More restricted models can be obtained by setting certain parame-
ters equal to zero and/or imposing certain equality constraints.1 Here,
we will concentrate on restrictions that make sense in the context of
the analysis of panel data.
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Note that a model for the joint distribution can be obtained from the
generalized log-linear model described in equation (1) by setting the
matrix A equal to the identity matrix. The X matrix is a standard
design matrix. It should also be noted that for the estimation of models
for the joint distribution, we do not need the marginal log-linear mod-
eling framework. However, as will be shown in section 6, this
approach makes it possible to combine a model for the joint distribu-
tion with models for the bivariate and/or univariate distribution.

A more or less exploratory method to obtain a simpler structure in-
volves including all terms up to a certain order. The most restrictive
model of interest is the independence model, which is obtained by
omitting all two-, three-, and four-variable terms from the saturated
model. Another relatively simple model is obtained by excluding all
three- and four-factor terms from equation. This model assumes that
there is an association between each pair of points in time:

ln mijkl
ABCD = λ + λ i

A + λ j
B + λ k

C + λ �
D + λ ij

AB

+ λ ik
AC + λ i

AD
� + λ jk

BC + λ j
BD

� + λ k
CD

� . (3)

Models that have proved useful for longitudinal data are Markov
models. Their underlying assumption is that the (conditional) depend-
ence between responses becomes weaker when time points are farther
apart. The most restrictive model of this type is the first-order Markov
model, which postulates that there is only an association between ad-
jacent time points, that is,

ln mijk
ABCD

� = λ + λ i
A + λ j

B + λ k
C + λ �

D + λ ij
AB + λ jk

BC + λ k
CD

� .

As can be seen, this model assumes conditional independence be-
tween A and C, between A and D, and between B and D.

Less restrictive is the second-order Markov model, which is
obtained by excluding terms involving variables that are more than
two time points apart—in this case, A and D—from the saturated
model. This model is defined as

ln mijkl
ABCD = λ + λ i

A + λ j
B + λ k

C + λ �
D + λ ij

AB

+ λ ik
AC + λ jk

BC + λ j
BD

� + λ k
CD

� + λ ijk
ABC + λ jk

BCD
� .
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Here, the responses at waves 1 and 4 are assumed to be independent
given the states at waves 2 and 3. A restricted variant can be obtained
by excluding the three-variable terms λ ijk

ABC and λ jk
BCD

� from the model.
Other kinds of log-linear models that are often used to model

dependencies among repeated observations are symmetry and
quasi-symmetry models. These are multivariate generalizations of the
well-known symmetry and quasi-symmetry models for square tables
(Bishop et al. 1975). The multivariate quasi-symmetry model is also
known as the Rasch model (Kelderman 1984; Conaway 1989; Agresti
1993).

The symmetry model states that mijk
ABCD

� is identical for each permu-
tation of (i, j, k, �). This model can be obtained from the saturated
model described in equation (2) by imposing certain equality restric-
tions on its parameters. More precisely, all effects are assumed to be
symmetric, which means equal for each permutation of their indices,
and all effects of the same order are assumed to be equal. For the one-
and two-variable effects, this means

λ i
A = λ i

B = λ i
C = λ i

D , and (4)

λ ij
AB = λ ji

AB = λ ij
AC = λ ji

AC = λ ij
AD = λ ji

AD = λ ij
BC =

λ ji
BC = λ ij

BD = λ ji
BD = λ ij

CD = λ ji
CD . (5)

A similar set of constraints is imposed on the three- and four-vari-
able terms. An important feature of the symmetry model in the context
of longitudinal data analysis is that it implies homogeneity of the
bivariate and univariate marginal tables, that is,

mij
ABCD
+ + = mi j

ABCD
+ + = mi j

ABCD
+ + = m ij

ABCD
+ + = m i j

ABCD
+ + = m ij

ABCD
+ +

and mi
ABCD
+ + + = m i

ABCD
+ + + = m i

ABCD
+ + + = m i

ABCD
+ + + .

The quasi-symmetry model is a generalization of the complete
symmetry model that permits different one-variable effects and,
hence, marginal heterogeneity (Conaway 1989; Hagenaars 1990;
Meiser et al. 1997). This implies that, in comparison with the com-
plete symmetry model, the restrictions on the first-order effects given

Vermunt et al. / JOINT AND MARGINAL DISTRIBUTIONS 177



in equation (4) are relaxed, whereas the constraints on two-, three- and
four-factor terms are still in operation.

Structures of complete symmetry or quasi-symmetry can also be
specified for “non-saturated” models (Bishop et al. 1975). For
instance, the model of complete symmetry without four-factor inter-
action is obtained by setting λ ijk

ABCD
� = 0. Similarly, complete symmetry

and quasi-symmetry models without three- and four-variable interac-
tions can be obtained. This involves imposing the constraints
described in (4) and (5) on the model given in equation (3) (see, for
instance, Meiser et al. 1997).

Although Markov-type models are especially suited for the analy-
sis of longitudinal data, symmetric structures can be used for all kinds
of multivariate observations. A disadvantage of the symmetric associ-
ation models is that they postulate that the strength of the association
between each pair of times is the same, irrespective of how far they are
apart from one other. This assumption seems to be very unrealistic,
especially if the number of time points is larger than, say, three.

When the response variable is an ordinal variable, it makes sense to
use the ordering of the categories to gain parsimony. For this purpose,
we can use log-linear models for ordinal variables proposed by Good-
man (1979) (see also Clogg and Shihadeh 1994). The simplest ordinal
model is the uniform association model, which is obtained by using
the variable indices as category scores:2

λ ij
AB = i • j • λ ..

AB . (6)

This yields a two-way interaction between A and B containing only
one parameter, λ ..

AB .
The first part of Table 2 presents the values of the likelihood-ratio

statistic (L2) obtained when estimating several of the models outlined
above with the data reported in Table 1. It is well known that asymp-
totic p values are unreliable when analyzing sparse frequency tables
like the one we have here. To circumvent this problem, we estimated
the p values by means of parametric bootstrapping (see, for example,
Langeheine, Pannekoek, and Van de Pol 1996; or Vermunt 1999).

The quasi-symmetry model, one of the simple structure models that
are often applied with repeated categorical responses data, is too
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restricted for this data set (L2 = 72.3; df = 60; �p = .00). As a result, the
multivariate symmetry model also will not fit the data. Another simple
structure model is the first-order Markov model, which cannot be
rejected at a 5% significance level: L2 = 58.7; df = 60; �p = .05. How-
ever, it is clear that the model with all two-variable terms (L2 =36.9;
df = 48; �p = .12), the second-order Markov model (L2 = 19.6; df = 36;
�p = .30), as well as the second-order Markov model without
three-variable terms (L2 = 37.9; df = 52; �p= .26) fit better. Inspection of
the results of the latter three models showed that, compared to the
first-order Markov model, the only significant terms are the λ jl

BD

parameters. The model that is obtained by adding the λ jl
BD parameters

to the first-order Markov model fits the data very well (L2 = 41.6; df =
56; �p = .32) and can, therefore, serve as the final model for the joint
distribution.
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TABLE 2: Goodness-of-Fit Statistics for the Estimated Models for the Data in Table 1

Model L2 df �p

Joint distribution
1. Independence 403.3 72 .00
2. All two-variable terms 36.9 48 .12
3. First-order Markov 58.7 60 .05
4. Second-order Markov 19.6 36 .30
5. Second-order Markov without three-variable terms 37.9 52 .26
6. First-order Markov + λ j

BD
� 41.6 56 .30

7. Quasi-symmetry 72.3 60 .00
8. Symmetry 158.2 66 .00

Bivariate marginal distributions
1. Quasi-symmetry 1.2 3 .77
2. Symmetry 59.0 9 .00
3. Uniform association 31.5 9 .00
4. Homogeneous quasi-symmetry 20.2 9 .02
5. Homogeneous transitions with quasi-symmetry 22.1 13 .05

Univariate marginal distributions
1. Homogeneity 58.1 6 .00
2. Ordinal nonconstant shift 2.0 3 .59
3. Ordinal constant shift 10.6 5 .08

Simultaneous models
1. J(6) ∩ B(1) ∩ U(S) 43.0 59 .42
2. J(6) ∩ B(S) ∩ U(2) 43.5 59 .37
3. J(6) ∩ B(1) ∩ U(2) 44.8 62 .47

NOTE: The reported p values are estimated by means of parametric bootstrapping using 1,000
replications.



4. LOG-LINEAR MODELS FOR
THE BIVARIATE MARGINAL DISTRIBUTIONS

What we are interested in now is the pairwise associations between
adjacent time points without conditioning on an individual’s response
at the other two occasions. This involves the specification of models
for the three second-order marginal tables AB, BC, and CD, with cell
entriesmij

ABCD
+ + ,m jk

ABCD
+ + ,m k

ABCD
+ + � , respectively. These marginal cell entries

have to be specified by the matrix A appearing in equation (1), which
will contain one row for each relevant marginal cell entry. With four
time points and a trichotomous response variable, this will be 27
(3 times 9) rows. For example, an element of the row corresponding to
mABCD

+ +12 will be 1 if B = 1 and C = 2, and 0 otherwise.
We start again with a saturated log-linear model, in this case for

each of the three bivariate marginal tables. These are given by

ln mij
ABCD
+ + = α(1) + α i

A( )1 + α j
B( )1 + α ij

AB( )1 ,

ln m jk
ABCD
+ + = α(2) + α j

B( )2 + α k
C( )2 + α jk

BC( )2 ,

ln m kl
ABCD
+ + = α(3) + α k

C( )3 + α l
D( )3 + α kl

CD( )3 .
(7)

Here, the α parameters denote marginal log-linear parameters. Note
that we added a superscript, say t, to denote the time point, where t = 1,
t = 2, and t = 3 refer to the pairs AB, BC, and CD, respectively. This sat-
urated model can also be specified with the X matrix (see equation 1),
which will contain nine columns per bivariate table. The X matrix is a
block-diagonal matrix of the form

X =

X

X

X

AB
sat

BC
sat

CD
sat

0 0

0 0

0 0

















.

Here, XAB
sat , XBC

sat , and XCD
sat refer to the three bivariate margins. Each of

these submatrices has the form of a design matrix of a saturated model
for a two-way table.
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Several meaningful restrictions can be used to simplify these satu-
rated models. One type are the widely discussed models for the analy-
sis of square turnover tables (see Bishop et al. 1975; Andersen 1990;
Hout, Duncan and Sobel 1987; Hagenaars 1990). For example, we
might consider the model of marginal symmetry for t = 1, t = 2, and t =
3, which implies imposing the following restrictions on the parame-
ters of equation (7):

α i
A( )1 = α i

B( )1 , α j
B( )2 = α j

C( )2 , α k
C( )3 = α k

D( )3 ,

in combination with

α ij
AB( )1 = α ji

AB( )1 , α jk
BC( )2 = α kj

BC( )2 , α k
CD

�
( )3 = α

�k
CD( )3 .

It should be noted that the model of marginal symmetry implies
homogeneity of the univariate distributions; that is, mi

ABCD
+ + + = m i

ABCD
+ + + =

m i
ABCD
+ + + = m i

ABCD
+ + + . The model of marginal quasi-symmetry is obtained

by relaxing the constraints on the one-variable terms. Another class of
marginal log-linear models is obtained by taking the ordinality of vari-
ables into account. The model of marginal uniform association for t =
1, t = 2, and t = 3 is defined by

α ij
AB( )1 = i • j • α ..

( )AB 1 , α jk
BC( )2 = j • k • α ..

( )BC 2 , α kl
CD( )3 = k • � • α ..

( )CD 3 .

Note that these restrictions are similar to the one described in equa-
tion (6). In addition, it should be noted that these restrictions yield a
symmetric association structure or, equivalently, a restricted
quasi-symmetry model.

Specifying restrictions for the separate bivariate marginal tables is
just the first step in the simplification of the bivariate marginal associ-
ation structure. A second step will generally consist of testing hypoth-
eses with respect to the homogeneity of certain parameters over time.
Croon et al. (2000) discussed several types of homogeneity hypothe-
ses in the context of generalized log-linear models. In our case, there
are three kinds of interesting across-time equality constraints. The
first involves

α ij
AB( )1 = α ij

BC( )2 = α ij
CD( )3 , (8)
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which yields a homogenous marginal association model. Note that
such a constraint can be combined with any of the above within-
margin constraints. For example, in combination with a uniform asso-
ciation structure, restriction (8) yields a homogenous uniform mar-
ginal association model.

The second type of homogeneity constraint is obtained by combin-
ing restrictions described in (8) with

α j
B( )1 = α j

C( )2 = α j
D( )3 .

It may not be immediately clear, but this yields time-homogenous
transition probabilities. Note that the transition probabilities for the
first time point equal

π
α α

ji
B A ij

ABCD

i
ABCD

j
B

ij
ABm

m

|
( ) ( )exp( )

exp
= =

++ +

+ + + ′

1 1

j j
B

ij
AB∑ ′ ′+( )( ) ( )α α1 1

.

As can be seen, the main effect and the parameter for the first of the
two time points—in this case, αA( )1 and αi

A( )1 —cancel from this ex-
pression. Consequently, by restricting the other effects to be time ho-
mogenous, one obtains time-homogeneous transition probabilities.
The last homogeneity model involves the two above constraints in
combination with

α i
A( )1 = α i

B( )2 = α i
D( )3 .

This yields complete bivariate marginal homogeneity,3 that is, mij
ABCD
+ + =

m ij
ABCD
+ + =m ij

ABCD
+ + , and, as a result, also univariate marginal homogeneity:

mi
ABCD
+ + + = m i

ABCD
+ + + = m i

ABCD
+ + + = m i

ABCD
+ + + . If none of the above homogeneity

assumptions holds, we might want to investigate whether some struc-
ture can be detected in the change of the marginal association over
time. An option could be to test whether the strength of the marginal
association changes linearly over time. This implies imposing the fol-
lowing constraint on the two-way interactions:

α ij
t..( ) = t • α ij

..(.) .
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This is similar to constraints used in log-linear models for two-way ta-
bles with a third so-called layer variable. Here, the variable “time”
serves as layer.

The second part of Table 2 reports the goodness-of-fit statistics
obtained when applying some of the above bivariate models to the
data in Table 1. From the three models that do not impose homogene-
ity constraints, only the marginal quasi-symmetry model fits the data
well: L2 = 1.2; df = 3; �p= .77. The homogeneity constraints across time
points seem to be too restrictive for this data set.

5. LOG-LINEAR MODELS FOR
THE UNIVARIATE MARGINAL DISTRIBUTIONS

The last question about the ordinal repeated responses in Table 1 re-
fers to the four first-order marginal distributions. Saturated log-linear
models for these univariate marginal distributions are

ln mi
ABCD
+ + + = γ(1) + γ i

A( )1 ,

ln m j
ABCD
+ + + = γ(2) + γ j

B( )2 ,

ln m k
ABCD
+ + + = γ(3) + γ k

C( )3 ,

ln m ABCD
+ + + � = γ(4) + γ

�
D( )4 .

(9)

These marginal cell entries have to be specified by the matrix A ap-
pearing in equation (1), which will contain one row for each relevant
marginal cell entry. With four time points and a trichotomous response
variable, this will be 12 (4 times 3) rows. For example, an element of
the row corresponding to mABCD

+ + +2 will be 1 if C = 2 and 0 otherwise. The
block diagonal X matrix for the saturated model will contain three col-
umns per marginal table; that is,

X

X

0 X

0 X

0 X

=



















A
sat

B
sat

C
sat

D
sat

0 0 0

0 0

0 0

0 0

.
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Here, XA
sat , XB

sat , XC
sat , and XD

sat refer to the four univariate margins.
Each of these submatrices has the form

XA
sat = XB

sat = XC
sat = XD

sat =

1 1 0

1 0 1

1 1 1− −

















.

When modeling univariate margins, the most interesting types of hy-
potheses concern constraints across time points. The most restricted
variant is the model of marginal homogeneity, that is,

mi
ABCD
+ + + = m i

ABCD
+ + + = m i

ABCD
+ + + = m i

ABCD
+ + + .

This model is obtained by restricting the one-variable terms to be
equal across time points:4

γ i
A( )1 = γ i

B( )2 = γ i
C( )3 = γ i

D( )4 ,

which involves using a design matrix like

X =

− −

− −

1 0 0 0 1 0

1 0 0 0 0 1

1 0 0 0 1 1

0 1 0 0 1 0

0 1 0 0 0 1

0 1 0 0 1 1

0 0 1 0 1 0

0 0 1 0 0 1

0 0 1 0 1 1

0 0 0 1 1 0

0 0 0 1 0 1

0 0 0 1 1 1

− −

− −











































.
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As can be seen, imposing equality constraints across log-linear pa-
rameters involves adding up the corresponding columns of the design
matrix.

Less restricted models than this marginal homogeneity model can
be specified when the categories of the response variable are ordered.
Lang and Eliason (1997) proposed what they called marginal shift
models, which they applied for modeling differences in marginal dis-
tributions in square social mobility tables. A constant marginal shift
model is obtained by imposing the following structure on the
one-variable terms appearing in equation (9):

γ i
t.( ) = i • t • γ .

.(.) .

As can be seen, the time-specific one-variable terms are restricted by
means of a kind of uniform association model. This yields a marginal
shift that is constant across time points and across categories of the re-
sponse variable. We call this model the ordinal constant shift model.
Rather than equal-interval scores, we could also use other sets of cate-
gory scores for the response variable and/or time. Furthermore, we
could use the less restricted model

γ i
t( ) = i • γ .

.( )t ,

which relaxes the assumptions that the change is constant over time.
This model could be labeled an ordinal nonconstant marginal shift
model. Similarly, we could relax the assumption that the shift is con-
stant across levels of the response variable:

γ i
t( ) = t • γ i

.(.) .

This model could be labeled the nominal constant shift model.
The goodness-of-fit statistics for some of the above models applied

to data in Table 1 are displayed in the third part of Table 2. The mar-
ginal homogeneity model does not hold for this data set (L2 = 58.1; df =
6; �p = .00). The ordinal nonconstant marginal shift model fits very
well: L2 = 2.0; df = 3; �p = .59. Even though the more restricted ordinal
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constant shift model cannot be rejected at a 5 percent significance
level (L2 = 10.6; df = 5; �p= .08), it fits significantly worse than the ordi-
nal nonconstant marginal shift model.

6. SIMULTANEOUS LOG-LINEAR MODELS

What we have been doing so far is restricting either the joint, the
bivariate, or the univariate distributions, assuming a saturated model
for the other distributions. With the generalized log-linear modeling
approach, it is straightforward to specify the restrictions on the three
kinds of margins simultaneously.

Using a nomenclature that is similar to the one introduced by Lang
and Agresti (1994), let J(.) denote the model for the joint distribution,
B(.) the model for the bivariate marginal distributions, and U(.) the
model for the univariate marginal distributions. With J(X) ∩ B(Y) ∩
U(Z), we can denote the model that specifies simultaneously model X
for the joint distribution, model Y for the bivariate marginal distribu-
tions, and model Z for the univariate marginal distributions.

Actually, the models described in the previous sections are special
cases of the general class of simultaneous models for joint and mar-
ginal distributions. Let S denote the saturated model. Fitting a stan-
dard log-linear model is equivalent to fitting the simultaneous model
J(X) ∩ B(S) ∩ U(S), that is, we model the joint association structure of
the responses without making assumptions about the bivariate or
univariate marginal distributions. Similarly, a model that restricts the
bivariate marginal associations without restricting the first-order mar-
ginal distributions and the joint distribution—for example, marginal
quasi-symmetry or marginal uniform association—can be denoted by
J(S) ∩ B(Y) ∩ U(S). Models for the univariate marginal distributions,
such as marginal homogeneity, which involve imposing restrictions
on the univariate marginal distributions without restricting the joint
and bivariate marginal distributions, can be denoted by J(S) ∩ B(S) ∩
U(Z).

Lang (1996) showed that in situations in which a joint and a mar-
ginal model are asymptotically separable, the chi-squared statistic for
the simultaneous model can be asymptotically partitioned into two
components, which implies that the fit of the simultaneous hypothesis
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can be assessed by separately testing the subhypotheses regarding the
joint and the marginal distributions. In such cases, the likelihood-ratio
test of the simultaneous model is asymptotically equivalent to the sum
of the values of the separate models. The models are asymptotically
separable if the marginal frequencies constrained by the marginal
model are a linear combination of the sufficient statistics of the
log-linear model for the joint distribution. This implies that the model
for the joint distribution, J(X), must contain the unrestricted associa-
tion terms corresponding to the bivariate and univariate marginal dis-
tributions modeled by B(Y) and U(Z). For example, if we assume a
first-order Markov model for mijk

ABCD
� , the marginal model for the

bivariate tables with cell entries mij
ABCD
+ + , m jk

ABCD
+ + , and m k

ABCD
+ + � is asymp-

totically separable from the joint distribution model. But, the asymp-
totic separability condition would not be satisfied if we would omit
one of the λ ij

AB , λ jk
BC , or λ kl

CD terms from J(X). According to Lang, sepa-
rability is especially important when analyzing sparse tables (see also
Bergsma 1997). In that case, the goodness of fit of a marginal model
can be assessed by taking the difference between the L2 value of the
joint distribution model and the L2 value of the simultaneous model.

It should be noted that Lang’s (1996) sufficient conditions for sepa-
rability concern the joint model and a single marginal model. This
implies for our case that J(X) and the combination of B(Y) and U(Z)
are separable under the conditions mentioned above. It can be
expected that similar conditions yield a mutual separability of B(Y)
and U(Z), which is confirmed by the test results we obtained for the
estimated simultaneous models (see below). However, further study
that is outside the scope of this article is needed for a formal proof.

Another issue in simultaneous modeling is that in some cases a
simultaneous model for the joint and marginal distributions may be
equivalent to a more restricted model for the joint distribution. For
instance, the complete symmetry model for the joint distribution is
equivalent to the simultaneous model that specifies quasi-symmetry
for the joint distribution and marginal homogeneity for bivariate mar-
ginal distributions (Lang and Agresti 1994). This means that we have
to be cautious not to impose redundant constraints. As explained in the
next section, there is a way to detect such redundant constraints.

For the data in Table 1, separate fitting suggests that the first-
order Markov model with the BD interaction, J(6), provides a good
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description of the joint distribution; the model of marginal quasi-
symmetry, B(1), fits best for the bivariate marginal distributions; and
the ordinal nonconstant shift model, U(2), describes well the change
in the univariate marginal distributions. The L2 values for three simul-
taneous models are given in Table 2. Both model J(6) ∩ B(1) ∩ U(S)
and J(6) ∩ B(S) ∩ U(2) fit well. The same applies to the model that
combines the three best separate sets of constraints ,
J(6) ∩ B(1) ∩ U(2): L2 = 44.8; df = 62; �p= .47. Note that this L2 value is
exactly the same as the sum of the L2 values of the separate models
(41.6 + 1.2 + 2.0 = 44.8), which is an indication that mutual separabil-
ity holds.

The most important parameters of the final model J(6) ∩ B (1) ∩
U(2) are the ordinal marginal shift parameters. These take on the val-
ues –0.47, –0.01, 0.17, and 0.32, which shows that the use of mari-
juana increases with age as well as that the increase is largest between
the first two time points. Another interesting result is that the strength
of the (symmetric) association in the bivariate tables declines over
time, which is an indication that, controlling for the marginal shift,
more changes occur at the later ages than at the earlier ages. This is
confirmed by the two-way associations in the model for the joint
distribution.

7. MAXIMUM LIKELIHOOD ESTIMATION

Lang and Agresti (1994) showed how to estimate models of the
form described in equation (1) by means of maximum likelihood.5 For
that purpose, the model described in equation (1) has to be reformu-
lated as follows:

U′(ln A m) = 0, (10)

where the matrix U is the orthogonal complement of X. This means
that U′X = 0. Actually, we replace log-linear models by their implied
constraints on the logs of the (marginal) cell frequencies.
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Assuming a Poisson sampling scheme, maximum likelihood esti-
mation of the cell entries m involves finding the saddle point of the fol-
lowing Lagrange log-likelihood function:

L = n′(ln m) – 1′m + λ′U′ (ln A m).

Here, n is the vector of observed cell entries and λ a vector of
Lagrange multipliers. Thus, what we are doing is estimating the cell
counts m under the constraints formulated in equation (10). Bergsma
(1997) showed that with a nonsaturated model for the joint distribu-
tion, it is more efficient to treat the joint model and the marginal mod-
els differently (see also Lang et al. 1999). More precisely, he proposed
using the orthogonal complement transformation only for the mar-
ginal part of the model while retaining the log-linear parameterization
for the joint distribution. This yields the Lagrange log-likelihood
function

L = n′(ln m) – 1′m + λ′BUU′BU (ln ABU m),

with ln m = XJbJ. The subscripts refer to the three parts of the simulta-
neous model. To find the restricted maximum likelihood solution, we
used the version of the Fisher-scoring algorithm proposed by Bergsma
(1997:119-22), which is implemented in an experimental version of
the LEM program (Vermunt 1997). Let

1 = n′(ln m) – 1′m and h = U′BU (ln ABU m);

that is, the kernel of the Poisson log-likelihood and the constraints on
the bivariate and univariate margins, respectively. Bergsma’s algo-
rithm needs the following derivatives with respect to bJ:

k
l

b
B

l

b b
H

h
b

=
∂

∂
= − ∂

∂ ∂
= ∂

∂′
J J J J

,
2

, .

The two-step iteration scheme can now be defined as

λ BU
new = – (H′B–1H)–1 (H′B–1k + h),

Vermunt et al. / JOINT AND MARGINAL DISTRIBUTIONS 189



b J
new = b J

old + stepB–1 (k + Hλ BU
new ).

As can be seen, at each iteration cycle, first new estimates for the
Lagrange multipliers λ BU are obtained. Subsequently, the log-linear
parameter bJ are updated using the new estimates of λ BU . The param-
eter step is a step size that has to be adjusted to guarantee conver-
gence.6 The number of degrees of freedom corresponding to a model is
equal to the rank of the information matrix, which is a by-product of
the Fisher-scoring algorithm. Thus, by using this estimation method,
one is automatically warned if a model with redundant constraints is
specified: In that case, the rank of the information matrix will be less
than the number of constraints. In addition, one can see which of the
constraints is redundant. This proved very useful in the analyses re-
ported in this article.

8. A SECOND EMPIRICAL EXAMPLE

Consider Table 3, taken from an article of Langeheine and Van de
Pol (1994) on latent and mixed Markov models. The data stem from a
five-wave consumer panel study. The dichotomous response variable
indicates whether a family purchased the product of the brand under
study (level 2) or whether it purchased another brand (level 1).7
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TABLE 3: Data From a Five-Wave Consumer Panel

Wave 4 (D)

1 2

Wave 1 Wave 2 Wave 3 Wave 5 (E) Wave 5 (E)

(A) (B) (C) 1 2 1 2

1 1 1 464 31 26 12
1 1 2 28 9 6 5
1 2 1 49 5 7 2
1 2 2 12 5 12 10
2 1 1 79 11 10 8
2 1 2 12 8 3 12
2 2 1 31 5 7 9
2 2 2 25 12 15 58



Each of the three questions described in the introduction of this arti-
cle is of interest in this application. First, we are interested in the over-
all association structure: Does a Markov- or a Rasch-type model pro-
vide an adequate description of the data? Second, we want to study the
adjacent bivariate tables giving information on the net change from
one occasion to the next: Are the transitions time homogeneous?
Third, we are interested in the gross change or the change in the
univariate distributions: Is there marginal homogeneity or a constant
marginal shift?

We start with the modeling of the joint distribution. From the test
results reported in Table 4, it can be seen that the first- and second-
order Markov do not fit the data. The same applies to the multivariate
symmetry and quasi-symmetry models. A model that performs well is
the model that contains all two-variable associations. From this
model, we can exclude the λ jm

BE term, which is the only two-variable
interaction term that is not significant. It will be clear that the
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TABLE 4: Goodness-of-Fit Statistics for the Estimated Models for the Data in Table 3

Model L2 df p

Joint distribution
1. Independence 883.8 26 .00
2. All two-variable terms 8.7 16 .92
3. First-order Markov 187.2 22 .00
4. Second-order Markov 42.2 16 .00
5. All two-variable terms except λ jm

BE 8.8 17 .95
6. Quasi-symmetry 48.3 22 .00
7. Symmetry 116.8 26 .00

Bivariate marginal distributions
1. Homogeneous association 7.4 3 .06
2. Homogeneous transitions 11.8 6 .07
3. Homogeneous margins 60.6 7 .00

Univariate marginal distributions
1. Homogeneity 55.2 4 .00
2. Constant shift 4.2 3 .24

Simultaneous models
1. J(5)∩B(2)∩U(S) 20.1 23 .64
2. J(5)∩B(S)∩U(2) 13.0 20 .88
3. J(5)∩B(2)∩U(2) 68.9 24 .00
4. J(5)∩B(1)∩U(2) 19.9 23 .65



association structure in the joint distribution is quite complicated in
this example.

The second part of Table 4 reports the estimated models for the
bivariate margins. As can be seen, the model with homogeneous asso-
ciations, as well as the more restricted model with homogeneous tran-
sition probabilities, fit the data at a 5 percent significance level. The
assumption of complete homogeneity of the bivariate margins does
not hold. The test results for the models for the univariate margins
show that marginal homogeneity does not hold. The constant marginal
shift model fits very well.

The first two simultaneous models combine model J(5) with either
model B(2) or model U(2). The test results show what could be
expected: The L2 values are near to the sum of the ones of the two sepa-
rate models. However, if we combine the three sets of constraints,
J(5) ∩ B(2) ∩ U(2), we get an L2 value that is much higher that the sum
of the separate models. What happens is that the only constant mar-
ginal shift that is in agreement with homogeneous transitions is a mar-
ginal shift of zero, which yields marginal homogeneity. That is the
reason why this model has the same L2 value as model J(5) ∩
B(3) ∩ U(S). This shows the importance of simultaneous modeling: It
prevents ending up with submodels that are incompatible. In this
example, it turns out that the hypothesis of constant marginal shift is
incompatible with homogeneous transitions. An alternative is to com-
bine the constant shift model with the homogenous marginal associa-
tion model, which yields J(5) ∩ B(1) ∩ U(2). This model fits the data
very well: L2 = 19.9; df = 23; p = .65.

The most interesting parameter estimates of the last model are the
homogeneous bivariate association parameter (.54) and the constant
marginal shift parameter (–.15). The value of the association parame-
ter shows that there is quite a strong association between the responses
at adjacent occasions: The odds ratio equals exp (4 × .54), or 8.7. The
negative value of the constant marginal shift parameter indicates that
there is a shift from level 2 of the response variable to level 1. So, the
popularity of the brand under study declined during the observation
period.

192 SOCIOLOGICAL METHODS & RESEARCH



9. DISCUSSION

This article described a general approach to the analysis of uni-
variate (ordinal) categorical panel data based on applying the general-
ized log-linear model proposed by Lang and Agresti (1994). The pre-
sented approach overcomes the most important limitations of standard
log-linear approaches for modeling marginal distributions of repeated
responses, which only yield valid results if a certain restricted log-
linear model holds for the joint distribution. Our approach makes it
possible to test a large variety of hypotheses about the general associa-
tion structure between responses, as well as about the net and gross
change that occurs over time. There are several possible extensions of
the approach proposed here. One important extension is the inclusion
of (possibly time-varying) explanatory variables in the model. This is
straightforward within the presented generalized log-linear modeling
framework, especially if we switch to the slightly more general C ln A
m = Xb.

Another extension is the inclusion of latent variables to deal with
measurement error in the recorded states and with the problem of
unobserved heterogeneity. The approach described in this article
could, for example, be used in latent and/or mixed Markov models
(see, for instance, Langeheine and Van de Pol 1994). Recently, Becker
and Yang (1998) showed how to combine generalized log-linear mod-
els with latent class models using an EM algorithm. A third important
extension is the possibility of dealing with partially missing data, a
problem that often occurs in panel studies. For this purpose, we could
use the same type of EM algorithm.

The last possible extension that we would like to mention is the pos-
sibility of working with a more general class of restrictions than the
log-linear restrictions described in this article. The generalized log-
linear modeling approach makes it possible to specify, for instance,
restrictions on cumulative and global odds ratios, which could be an
alternative to our models for local odds ratios. By means of the recur-
sive exp-log models proposed by Bergsma (1997), an even more gen-
eral class of constraints can be specified. An example is the model
E ln(D exp (C(ln A m))) = 0, which allows defining restrictions on
association measures like Kendall’s tau, gamma, Somer’s d, and
Cohen’s kappa.
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NOTES

1. Of course, it is also necessary to impose identifying constraints on the parameters. Here,
we use ANOVA-type constraints for identification.

2. Note that we use a dot in a parameter to denote that the concerning index is no longer
active.

3. Note that complete bivariate marginal homogeneity is actually a linear constraint on cell
entries. Therefore, it can also be specified with the approach proposed by Haber and Brown
(1986).

4. Note that the marginal homogeneity model can also be formulated as a model with linear
constraints on the cell entries. In that sense, it fits within the framework proposed by Haber and
Brown (1986).

5. Another estimation procedure that can be used but has certain disadvantages compared to
maximum likelihood is weighted least squares (Grizzle, Starmer, and Koch 1969). In addition, a
quasi-likelihood approach known as generalized estimating equations has been proposed for es-
timating the parameters of marginal models (see, for instance, Diggle, Liang, and Zeger 1994;
Fahrmeir and Tutz 1994).

6. We used a step size of 1/4 in the first two iterations, 1/2 in the next two iterations, and 1 in
the remaining iterations. In cases in which we had convergence problems with this procedure, we
kept the step size of 1/2 until convergence.

7. Note that in this example, we are not able to present models that make use of the ordinal na-
ture of a response variable. These models were, however, already illustrated with the first data
set.
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