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Conclusions about changes in categorical characteristics based on observed panel data
can be incorrect when (even a small amount of) measurement error is present. Random
measurement errors, referred to as independent classification errors, usually lead to over-
estimation of the total amount of gross change, whereas systematic, correlated errors
usually cause underestimation of the transitions. Furthermore, the patterns of true change
may be seriously distorted by independent or systematic classification errors. Latent
class models and directed log-linear analysis are excellent tools to correct for both inde-
pendent and correlated measurement errors. An extensive example on labor market
states taken from the Survey of Income and Program Participation panel is presented.
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I t has long been recognized that turnover tables showing the tran-
sitions between discrete states provide important, basic tools for

understanding processes of social change (Lazarsfeld and Rosenberg
1955, sec. 3; Plewis 1985). At the same time, it is well known that even
small amounts of measurement error may result in distorted turnover
tables and misleading conclusions about the changes that are taking
place (Maccoby 1956; Hagenaars 1990, 1994). The main purpose of
this article is to show how to find the true changes and analyze transi-
tion data when the data are affected by random, but especially by cor-
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related, systematic measurement errors. Only categorical variables
will be dealt with here, and, accordingly, measurement errors will be
denoted as classification errors or misclassifications. By way of exam-
ple, data concerning labor flows will be used in which the transitions
between labor market states, characterized as employed (E), unem-
ployed (U), and not in the labor force (N), are observed at successive
points in time.

Data to estimate gross flows (gross changes) can in principle be
obtained in two ways: (1) longitudinal (panel) surveys, in which the
same respondents are interviewed on successive occasions during
each of which information about the respondent’s current labor status
is obtained, and (2) retrospective surveys, in which at one moment in
time information is gathered about the respondent’s labor status in the
past. In practice, all kinds of mixtures of these two basic approaches
occur. With longitudinal (panel) data, the classification errors for the
successive occasions are usually only moderately or not at all corre-
lated with one another given that the moments of observation are not
too close to each other in time. These (nearly) independent measure-
ment errors usually attenuate the associations between the variables
and lead to spurious observed transitions and overestimation of the
amounts of gross changes in the labor market. In retrospective sur-
veys, on the other hand, classification errors are usually of a system-
atic nature and often lead to underestimation of the turnover, since
respondents tend to be consistent in their answers and to forget about
past changes in their labor market status (Kalton and Citro 1994;
O’Muircheartaigh 1996).

In most classical methods for correcting for measurement errors
and estimating the true gross flows, it is assumed that the measure-
ment errors are independent of one another; that is, the independent
classification error (ICE) assumption is made (Biemer and Trewin
1997; Kuha and Skinner 1997). More specifically, it is assumed that
errors referring to two different occasions are independent of each
other conditional on the true (labor market) states, and that errors
depend only on the present true state, not on what has happened in the
past, nor on what has been observed before. One group of classical
methods compares the survey data with a gold standard, that is, with
data that are considered to be (almost) perfectly valid. Such standards
may be obtained from administrative sources or from specifically
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arranged reinterviews. If validation data are not available, which is the
rule rather than the exception, the role of the gold standard is taken
over by an ICE model in which explicit assumptions are made about
the error structure and the nature of the true transition processes (Abowd
and Zellner 1985; Poterba and Summers 1986; Chua and Fuller 1987;
Sutcliffe 1965a, 1965b). To be useful in empirical research, at least a
portion of the model assumptions should be empirically testable. A
powerful model in this respect is Lazarsfeld’s latent class model,
either in its standard form (Lazarsfeld and Henry 1968; Goodman
1974a, 1974b) or in the form of a latent Markov model (Van de Pol and
Langeheine 1990; Collins and Wugalter 1992).

Unfortunately, there is much empirical evidence showing that the
ICE assumption very often does not hold, especially in retrospective
surveys, and that estimation procedures based on the ICE assumption
often yield quite misleading and unrealistic descriptions of labor mar-
ket dynamics (Lemaitre 1988; Skinner and Torelli 1993). In this arti-
cle, strategies are proposed to correct gross flows estimates when the
data are subjected to correlated classification errors. These strategies
are based on a reformulation of the latent class model as a log-linear
model with latent variables (Haberman 1979, chap. 10), more specifi-
cally as a causal directed log-linear model with latent variables
(Hagenaars 1988, 1990, 1993, 1998; Vermunt 1996, 1997b; see also
Goodman 1973; Whittaker 1990; Lauritzen 1996).1

The labor market data that serve as our example are from the 1986
panel of the Survey of Income and Program Participation (SIPP), one
of the major longitudinal labor surveys in the United States. To under-
stand the analyses to come, it is necessary to have some basic knowl-
edge of the design of this study.

SIPP:
A BRIEF DESCRIPTION

The SIPP is a multipanel survey of the U.S. noninstitutional popu-
lation age 15 and older. Its main aim is to collect information on income,
program participation, labor force activity, and household composi-
tion (U.S. Department of Commerce 1991; Citro and Kalton 1993). It
was started in 1984 by the U.S. Bureau of the Census, and each year a
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new panel of about 20,000 individuals is included in the survey. The
respondents are contacted on a personal basis; telephone and proxy
interviews are avoided as much as possible. The SIPP panel of respon-
dents is divided into four rotation groups. A particular rotation group
is interviewed at the beginning of every fifth month; every month, one
and just one of the four groups is being interviewed. During the inter-
view, the respondents are asked to provide information on the topics
mentioned above for the reference period, that is, for the four calendar
months preceding the interview. This basic design is repeated eight
times. As a consequence of this particular rotation design, the SIPP
has characteristics of both a retrospective study and a longitudinal
study.

In the Labor Force and Recipiency section of the SIPP question-
naire, each respondent is asked to report on a weekly basis about his or
her own labor market status during the past four calendar months. The
respondents are asked first whether they had a job or a business at any
point in time during the preceding four months. If they give a negative
answer, respondents are asked whether they spent any time looking for
work or were in layoff and, if so, in which weeks. If their first answer is
positive, they are asked whether they worked for the entire reference
period (all 18 weeks). If they report they worked for a shorter period, a
long series of questions starts: Respondents have to indicate exactly in
which weeks they had a job and in which weeks they were in layoff or
looking for a job. Moreover, they have to tell for any of the weeks they
had a job or were in a business, whether they were absent without pay
from work and, if so, why they were absent. The weekly information is
usually recoded to obtain a monthly classification with the three cate-
gories mentioned above: employed (E), unemployed (U), and not in
the labor force (N). If a respondent belongs to different states in a sin-
gle month, we follow Martini (1989), who classified the respondents
in each month according to their modal position in the labor market,
taking into consideration all four or five weeks of the month.

Because of its detailed questionnaire, the SIPP provides one of the
best data sources on U.S. labor market dynamics. At the same time the
task for the respondents is quite formidable, and there are theoretical
reasons and empirical indications for assuming that SIPP data are
affected by correlated response errors. To discuss the nature of these
classification errors, some terminology must be introduced. The moment
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a particular rotation group is being interviewed will be called a wave.
As remarked above, during that wave, the rotation group concerned
provides information about its labor market behavior during the four
previous months (the reference period). After four months, a new
wave takes place for this rotation group. So, observed labor market
transitions between any two months will be based on information
either from the same wave or from two different waves. Month-to-month
transitions observed retrospectively within the same wave will be
called within-wave transitions, whereas transitions observed on the
basis of information gathered at two different waves of the same rota-
tion group will be referred to as between-wave transitions. With
regard to the within-wave transitions, it is likely that, going backward
in time during one wave, the errors for each weekly report will be sys-
tematic and correlated due to all kinds of conditioning effects (Martini
1988; Kasprzyk et al. 1989, pt. 6). Failing memory will cause respon-
dents to forget about spells of employment or unemployment, or mis-
place them in time. “Laziness” combined with the SIPP questionnaire
structure may cause respondents to report a stable situation across all
four months, or misplace changes of state toward the beginning or the
end of the reference period. The status reported for the most recent
week may be mechanically repeated for the entire reference period, or
the misclassifications for one particular week may carry over to the
next week. The true state at the beginning of the reference period, that
is, the moment the interview takes place, may influence all answers
for the whole reference period.

There are several empirical indications in SIPP data for the actual
presence of these kinds of correlated misclassifications and condition-
ing effects. Although a true gold standard is missing, based on what is
known from other sources the within-wave SIPP data seem to under-
estimate the gross changes in labor status. Furthermore, for a particu-
lar rotation group, as a rule, the within-wave transitions show more
stability than the between-wave transitions. There is also the tendency
that the within-wave stability between the two consecutive months at
the beginning of the reference period, which are the farthest away
from the moment of interviewing, is larger than the stability between
the two months at the end of the reference period, which are the closest
to the moment of interviewing. Finally, there is the notorious and
well-documented phenomenon called the seam effect (Young 1989;

234 SOCIOLOGICAL METHODS & RESEARCH



Burkhead and Coder 1985). If a turnover table is constructed for any
two particular successive months for all four rotation groups, then,
because of the typical structure of the SIPP, for three of the rotation
groups the information is based on within-wave transitions and for
one group on between-wave transitions. Now, the seam effect is called
the phenomenon that the amount of gross changes for two particular
successive months is far less when estimated on the basis of within-
wave transitions than when based on between-wave transitions.

The data in Table 1 illustrate these tendencies. The data refer to the
SIPP 1986 panel, which was started in February 1986 (asking ques-
tions to the first rotation group about the period from October 1985 to
January 1986) and ended in August 1988. We considered the period
from January 1986 to December 1987, in which we have the informa-
tion for all four rotation groups. Row ALL contains the average
observed transition rates for all two consecutive months during that
period based on the complete sample. The last row in the table, row 41,
contains the average between-wave transition rates for all four groups
during the same period, that is, the average transition rates at the seam
between the last month of a particular reference period and the first
month of the next reference period. Rows 12, 23, and 34 contain the
average within-wave transition rates during the same period and for all
four groups. The 12 transitions are the average transitions occurring
between the first two months of the reference periods, whereas 34
transitions refer to the more recent average transitions between the
third and fourth month of the reference period (with obvious meaning
for the remaining row 23). The tendencies that are visible in Table 1
and have been described above indicate that the data are not error free,
and that the classification errors are systematic and correlated with
each other.

In the following sections, we will show how one may deal with
these kinds of longitudinal data when they can be assumed to be error
free or only affected by independent classification errors. The
(Markov) models described will serve as baseline models for analyses
that take the possible systematic nature of the misclassifications into
account. From application to SIPP data, many practical difficulties for
carrying out these kinds of analyses become visible. Because these
practical difficulties are in no way unique for SIPP data, they will be
given explicit attention.
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MANIFEST AND LATENT MARKOV MODELS

Markov chains have been widely used in the analyses of (labor)
turnover tables. Figure 1 represents the basic causal model that is rele-
vant here, where A, B, C, and D denote respondents’ labor market
position in four consecutive months. Figure 1 represents a directed
graph in which the arrows indicate direct effects from one variable to
another controlling for the appropriate antecedent and intervening
variables (Lauritzen 1996; Cox and Wermuth 1996). Given the causal
order of the variables in Figure 1 and following the principles of
Goodman’s (1973) modified path approach, the probability πabcd

ABCD ,
denoting the joint probability of belonging to labor market states a, b,
c, and d on variables A, B, C, and D, with the subscripts a, b, c, and d
varying over the set of labor market states {E, U, N}, may be decom-
posed as follows:

π π π π πabcd
ABCD

a
A

ba
B A

cab
C AB

dabc
D ABC= � � � , (1)

where πa
A indicates the probability of being observed in category a of

A, πba
B A| is the conditional probability of scoring b on B provided that

one belongs to category a of A, and the other symbols have similar and
obvious meanings. Furthermore, all probabilities are subjected to the
usual restrictions: Their lower bounds are zero, their upper bounds are
one, and they sum to one where appropriate. In equation (1), the score
on each successive variable depends in principle on all variables that
are causally prior to the variable concerned. To evaluate the complete
modified path model, the appropriate logit or (the equivalent) log-
linear models are defined in agreement with the investigator’s hypo-
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TABLE 1: Survey of Income and Program Participation Observed Gross Flows (average
monthly transitions, percentages) (January 1986 to December 1987)

EE EU EN UE UU UN NE NU NN

All 97.04 1.31 1.62 20.27 67.65 12.11 2.41 2.13 95.46
12 98.27 1.04 0.69 15.46 79.63 4.91 1.15 1.42 97.43
23 97.41 1.13 0.96 17.37 75.96 6.70 1.38 1.71 96.91
34 97.85 1.20 0.95 19.23 73.25 7.52 1.28 1.69 97.07
41 94.04 2.10 3.87 26.81 42.20 30.99 5.65 3.77 90.58

NOTE: E = employed, U = unemployed, N = not in the labor force.



theses for each of the (marginal) tables corresponding to the condi-
tional probabilities on the right-hand side of equation (1). The result-
ing estimates of the right-hand side parameters are used to obtain the
estimate for the joint probability πabcd

ABCD on the left-hand side of equa-
tion (1).2

Although leading to exactly the same results, it may be insightful to
first simplify equation (1) before defining the appropriate log-linear
(sub)models (Lauritzen 1996; Vermunt 1997b; Hagenaars 1998). If the
model in Figure 1 is true in the population, each variable is influenced
only by its causally immediately preceding variable, which leads to
certain conditional independence relations between the variables:
Variable C is conditionally independent of A given B, variable D is
conditionally independent of A given B or C, and variable D is condi-
tionally independent of B given C. Therefore, if the model in Figure 1
is true, equation (1) can be simplified as follows:

π π π π πabcd
ABCD

a
A

ba
B A

cb
C B

dc
D C= � � � . (2)

Figure 1 and equation (2) represent a first-order, nonstationary Markov
chain in which there are only effects from time point t to time t + 1.
Second-order chains may be defined by adding direct effects from t to
t + 2, and so on (and replacing in equation [2] πcb

C B| by πcab
C AB| and πdc

D C|

by πdbc
D BC| ). For first- or higher order, nonstationary Markov chains,

standard methods provide the maximum likelihood estimates �πabcd
ABCD

that can be compared with the observed proportions pabcd
ABCD in the usual

way by means of chi-square statistics to test the model assumptions
(Goodman 1973; Lauritzen 1996).

In terms of Goodman’s modified path approach or directed log-linear
modeling, the first-order, nonstationary Markov chain amounts to
estimating a saturated log-linear (logit) model for each of the elements
on the right-hand side of equation (2). Employing the usual shorthand
notation for hierarchical log-linear models, model {A} is applied to
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Figure 1: First-Order Markov Chain for Four Measurements Over Time



observed marginal table A to estimate πa
A , model {AB} is applied to

observed marginal table AB to obtain estimates for πba
B A| , and so on. It is

of course also possible to define nonsaturated, restricted log-linear
models for one or more of these (marginal) tables, for example, sym-
metry or quasi-independence models. The Markov chain can also be
made stationary by equating the transition tables A-B, B-C, and C-D,
that is, π π πji

B A
ji

C B
ji
D C| | |= = (with or without the restriction of dynamic

equilibrium π π π πi
A

i
B

i
C

i
D= = = ). Introducing the stationarity assump-

tion yields a model that is strictly speaking no longer a log-linear
model, since it requires defining restrictions for sums of frequencies,
in this case the equality of particular marginal one- or two-variable dis-
tributions. Such restrictions can be handled by the marginal modeling
approach (Bishop, Fienberg, and Holland 1975, chap. 7; Vermunt
1997b:43-45; Lang and Agresti 1994; Becker and Yang 1998;
Bergsma 1997; Diggle, Liang, and Zeger 1996).

Because in our example data from several (rotation) groups are
available, an extra grouping variable G must be introduced, with sub-
script g running from one through four (since there are four rotation
groups):

π π π π π πgabcd
GABCD

g
G

ag
A G

bga
B GA

cgb
C GB

dgc
D GC= � � � � . (3)

By defining the appropriate log-linear models for the elements on the
right-hand side of equation (3), completely homogeneous models
might be defined in which the Markov chain model is completely
identical for all groups, or completely heterogeneous models might be
defined in which all (Markov) parameters are different for all groups.
And, of course, many “in-between” models exist.

If the most restricted, that is, homogeneous, first-order, stationary
Markov model does not fit the data for the four rotation groups, a
well-fitting model can always be found by relaxing one or more of the
restrictions. In the end, the heterogeneous, highest order, nonsta-
tionary Markov model will always fit the data perfectly (with zero
degrees of freedom). Another important strategy for obtaining
well-fitting (parsimonious) models advocated by Van de Pol and
Langeheine (1990) is to assume the population is heterogeneous and
consists of two or more (unknown, latent) groups that behave differ-
ently but, hopefully, according to a simple Markov chain, albeit with
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different sets of parameters. Their mixed Markov model deals with
this unobserved heterogeneity.

So far, it is assumed that all measurements are perfect and that there
are no classification errors, a presumption that is known to be false for
SIPP data. Therefore, a (Markov) model that takes measurement error
into account is needed. Such a model is the latent Markov model, orig-
inally developed by Wiggins and Poulsen (Wiggins 1955, 1973;
Lazarsfeld and Henry 1968, chap. 9; Poulsen 1982) and put into a
much more general framework by Van de Pol and Langeheine (1990)
(see also the literature on hidden Markov chains [Juang and Rabiner
1991; Hughes, Guttorp, and Charles 1999]). The latent Markov model
can also be viewed as a modified path model with latent variables,
referred to as a modified LISREL model (Hagenaars 1990) or, in
terms of the above, a directed log-linear model with latent variables.

The model in Figure 2 represents the standard basic latent Markov
model. A, B, C, and D denote the labor market positions in four con-
secutive months as reported by the respondents (see Figure 1). Vari-
ables W, X, Y, and Z are their latent, not directly observed counterparts.
W through Z are trichotomous latent variables, representing the true
labor market states E, U, and N in the four successive months. The
observed variables A through D are probabilistically, not perfectly,
related to the latent variables: There is a chance that the respondents
give the wrong answers and report states that are different from their
true (latent) states.

Essential to latent variable models in general, and to the latent
Markov model in particular, is that the joint probability that now
involves both observed and latent variables be decomposed into a
structural (causal) portion and a measurement portion (Hagenaars
1998):

π π πwxyzabcd
WXYZABCD

wxyz
WXYZ

abcdwxyz
ABCD WXYZ= ( )( )� . (4)

The first element on the right-hand side of equation (4) (πwxyz
WXYZ ) refers

to the joint probability distribution for variables W through Z; it forms
the structural portion, from which it may be inferred how variables W
through Z are (causally) related to each other. All variables in the
structural portion happen to be latent. The second right-hand side
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element (πabcdwxyz
ABCD WXYZ| ) is the measurement portion and indicates how

the scores on indicators A through D depend on the structural variables
W through Z. In the standard latent Markov model in Figure 2, it is
assumed that the latent state transitions follow a first-order Markov
chain over time. Furthermore, the standard latent class assumption of
local independence is made, implying that the states observed at dif-
ferent occasions are independent of each other given the true state. In
other words, the classification errors in the observed variables are con-
ditionally independent of each other given the latent variables. Fur-
thermore, each observed variable depends directly on only one latent
variable. Obviously, the standard ICE assumption is made here. Given
the validity of the first-order Markov and the ICE assumptions, equa-
tion (4) can be rewritten as follows:

π π π π π π πwxyzabcd
WXYZABCD

w
W

xw
X W

yx
Y X

zy
Z Y

aw
A W

b= ( )(� � � �
x

B X
cy
C Y

dz
D Z� � �π π ). (5)

The elements of the (first) structural portion on the right-hand side of
equation (5) have an important interpretation: Given the validity of the
model, they represent the true labor market transitions from time point
t to t + 1, corrected for the misclassifications in the observed variables.
The elements of the measurement portion are directly related to the
reliabilities at the different points in time. For example, πaw

A W| is the
conditional probability of observing state a in the first month of the
reference period when the true state in the first month is w; a and w
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Figure 2: Standard First-Order Independent Classification Error Latent Markov Model
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may refer to the same state of the set {E, U, N}, in which case πaw
A W|

indicates the conditional probability of the observed classification
being correct, that is, in agreement with the true state, or a and w may
refer to a different state, resulting in the conditional probability of a
misclassification.3

If the data from the four rotation groups are simultaneously dealt
with, an extension of equation (5) similar to the extension from equa-
tion (2) to equation (3) is required. Because of the way the SIPP is
designed, the four rotation groups are in principle equivalent samples
from the same population. Consequently, the (joint) distribution of the
latent variables W through Z that are considered to reflect the true
labor market positions in the population is not influenced by grouping
variable G. However, the conditional response probabilities (the relia-
bilities) may vary across groups, since the temporal distance between
the date of the interview and a particular month for which the informa-
tion is given is different for the four groups. These considerations lead
to equation (6):

π π π π π π πgwxyzabcd
GWXYZABCD

g
G

w
W

xw
X W

yx
Y X

zy
Z Y

ag= ( )(� � �
w

A GW
bgx
B GX

cgy
C GY

dgz
D GZ� � � �π π π ). (6)

As before, saturated or nonsaturated log-linear models can be
defined for the elements on the right-hand side of equation (6). Given
appropriate (Poisson or [product]multinomial) sampling schemes,
maximum likelihood estimates for the elements on the right-hand side
of equation (5) or (6) can be found by standard methods, employing
(combinations) of EM, Newton/Raphson, or scoring algorithms. Imple-
mentations of these algorithms with the kinds of models in hand have
been described by Hagenaars (1990, 1993), Van de Pol and Langeheine
(1990), Collins, Fidler, and Wugalter (1996), and, especially, Vermunt
(1996, 1997b). The analyses for this article were carried out by means
of Vermunt’s (1997a) program iEM.

Once the maximum likelihood estimates for the right-hand side ele-
ments of equation (5) or (6) have been obtained, the maximum likelihood
estimate of the joint probability πwxyzabcd

WXYZABCD (equation [5]) or πgwxyzabcd
GWXYZABCD

(equation [6]) can be computed. Summation of �πwxyzabcd
WXYZABCD (or

�πgwxyzabcd
GWXYZABCD ) over the latent variables yields the maximum likelihood

estimates �πabcd
ABCD (or �πgabcd

GABCD ), which after multiplication by sample



size N can be compared in the usual ways with the observed frequen-
cies fabcd

ABCD (or fgabcd
GABCD ) to test the model.

When applying the latent Markov models in equations (5) and (6) to
SIPP data, several difficulties were encountered. Most problems fol-
low from the sparse and unbalanced nature of the observed frequency
table. As can be inferred from Table 1, the monthly changes in labor
market states are very small, and consequently variables A through D
are highly multicollinear, that is, highly correlated with one another.
Therefore, even though each rotation group has about 5,000 respon-
dents and observed table ABCD contains only 34 = 81 cells, the
observed table is a very sparse table with many zero entries. For most
models, this will result in many extremely small estimated cell fre-
quencies. Consequently, the approximation of the distributions of the
standard chi-square test statistics toward the theoretical chi-square
distribution will be problematic, as will be the approximation of the
distributions of the maximum likelihood estimates of the parameters
toward the normal distribution. So, one should proceed very cau-
tiously when employing these conventional test statistics. The main
problem is that the asymptotic theory underlying maximum likeli-
hood estimation and testing (or for that matter estimation and testing
procedures based on principles other than maximum likelihood) may
not be appropriate for such sparse tables. This issue will be taken up
again in the discussion. Below, a few practical consequences of sparse
tables will be dealt with that are closely related to the main problem
but deserve to be mentioned separately.

Sparse tables easily lead to boundary estimates, that is, to estimated
(conditional) probabilities equal to zero or one. Often, such solutions
with boundary estimates are local solutions of the maximum likeli-
hood equations, and better, “more likely” solutions exist, as may be
discovered by using a large number of different sets of initial parame-
ter estimates. But even if the boundary solution is the best in the sense
that no solution with a higher likelihood exists within the allowable
parameter space, the estimates found must be regarded as either “ter-
minal estimates” (Goodman 1974b) or conditional maximum likeli-
hood estimates given that the boundary values are true for the popula-
tion. However, this latter position is hard to defend if the boundary
estimates result from sampling zeroes in the sparse table and not from
a priori intended structural zeroes. It is therefore unclear whether to
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take the quasi-structural zeroes into account when determining the
number of degrees of freedom.

Besides making it hard to determine the nature of the estimates,
boundary estimates can make it difficult to investigate the
identifiability of the model. Identifiability can be a serious problem in
latent variable models (Goodman 1974a; De Leeuw, Van der Heijden,
and Verboon 1990; Clogg 1981) and must be expected to be a major
problem in the kinds of models and data discussed here. A sufficient
condition for local identifiability is that the information matrix (or,
equivalently, the variance-covariance matrix of the parameter esti-
mates) has full rank. In practice, one has to work with the estimated
information matrix (for which iEM provides all eigenvalues). For a
model to be identifiable, all eigenvalues should be strictly positive.
Boundary estimates lead to nonpositive eigenvalues. If these bound-
ary estimates have not been fixed a priori, it may be unclear whether
the model is identifiable without these boundary estimates. For SIPP
data, the models in equations (5) and (6) yielded many (estimated)
nonpositive eigenvalues in combination with many boundary esti-
mates. To determine the identifiability of the models as such, simu-
lated data were used to obtain a solution without boundary estimates,
and the eigenvalues were inspected for this solution.

Application of this procedure made it clear that neither in equation
(5) nor in equation (6) were all parameters identified. This is well
known from the literature on latent Markov chains and has been dem-
onstrated by Poulsen (1982) and Van de Pol and Langeheine (1990),
who indicated how this problem might be solved. Extra restrictions
are needed to make the models identifiable, such as assuming equal
reliabilities for all four indicators or stationarity of the first-order
latent Markov chain, or, for the model in equation (6), equating partic-
ular reliabilities across groups. (For similar problems and solutions
with continuous variables, see Heise [1969].) Several variants and
combinations of these extra restrictions were used. The test outcomes
and the parameter estimates for the several variants were similar. All
models had to be rejected (p < .00) on the basis of the Pearson chi-
square and likelihood ratio L2. For example, the test results for the
first-order, nonstationary Markov chain (equation [5]) applied to the
first rotation group, with the additional restriction that the correspond-
ing probabilities of a misclassification be the same for all four indica-
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tors yielded χ2 = 147.49, L2 = 86.75, df = 54, p = .00; adding to this
model the stationarity assumption of equal latent transition tables
resulted in the following test results: χ2 = 189.33, L2 = 104.61, df = 66,
p = .00. Given the problems caused by the sparse tables discussed
above, it is uncertain whether these test results should be trusted.
However, this is not too important, since there are other compelling
reasons for rejecting these models. All models that are essentially
based on equation (5) or (6) represent ICE models, and the resulting
latent transition tables correspond only to the true changes if the ICE
assumption is true. As discussed above, there are strong theoretical
and empirical indications that the classification errors in the SIPP are
not independent of each other. Not surprisingly, then, in all these ICE
models the peculiarities found in the observed SIPP data (see Table 1)
and that led to the conclusion of correlated errors did not disappear at
the latent level. The latent turnover tables show even more stability
than the observed tables, the latter already being considered too high.
Also, the notorious seam effect was present at the latent level. Obvi-
ously, models are needed that reckon with dependent, correlated
misclassifications.

In the next section, we will present models by which one can tackle
the problem of correlated measurement errors. To keep the exposition
of the approach simple and comprehensible, these models will be
defined for the reference period of just one rotation group, using only
one indicator for each latent variable. A disadvantage of the simplified
approach is that the proposed models as such are not identified unless
severe (and perhaps unrealistic) restrictions are imposed on the model
parameters. Therefore, in the next section, no empirical results will be
presented (although these restricted models did fit the data). Later, a
more elaborate empirical example will be presented.

MODELS FOR CORRELATED CLASSIFICATION ERRORS

Because of the presence of the within-wave response consistencies,
the associations between the observed variables are not completely
explained by the direct effects of the latent variables on the indicators
(as in Figure 2). There exist additional sources of association between
the indicators over and above the portion that is explained by the indi-
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cators’ relations with their latent variables (Hagenaars 1988). A very
general, but also from a certain point of view, uninformative way to
model this additional source of association is to assume that there
exists a hidden, unmeasured (latent) variable that causes consistency
among the answers. The model in Figure 3a represents this approach,
where V is the extra latent variable that influences all answers. V is
assumed to be independent of the proper latent variables W through Z.
This is the usual kind of assumption, made for reasons of
identifiability or interpretability of the model, but it is not a necessary
restriction. If Figure 3a is viewed as a directed graph, it corresponds to
the following equation:

π π π π π π πvwxyzabcd
VWXYZABCD
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X W

yx
Y X
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Z Y
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dvz
D VZ� � � �π π π ). (7)

Variable V is treated as a categorical latent variable. Therefore, the
number of categories of V has to be determined. One might start with
two categories and add more categories until the model is no longer
identified or until a good fit with the data has been obtained. Another
possibility is of course that one has theoretical reasons to start with a
certain number of categories; here, for instance, three categories
denoting the overall tendency of people to give the answer “employed,”
“unemployed,” or “not in the labor force,” respectively, regardless of
their true position. This categorical hidden variable approach is
closely related to (more standard, linear) models with correlated error
terms (Bollen 1989, chap. 5), unobserved heterogeneity (Heckman
and Singer 1982; DeSarbo and Wedel 1993; Vermunt 1996, 1997b), or
random coefficients (Bryk and Raudenbush 1992; Qu, Tan, and
Kutner 1996; Hadgu and Qu 1998).

Because an extra latent variable V has been introduced without
additional observed indicators, the model of equation (7) has to be
examined very carefully for (extra) identifiability problems. One pos-
sible but nonsufficient way of achieving identifiability is to define more
restrictive log-linear models, for example, no-three-variable-interaction
models for the three-way tables involving latent variable V in equation
(7). Finding appropriate and meaningful restrictions may be problem-
atic, since it is often difficult to provide a compelling substantive inter-
pretation of latent variable V. Usually, this variable just accounts for
the correlated error terms, but, from a substantive point of view, in an
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unknown way and a large number of different interpretations can be
attached to V. In general, preference should be given to models that
incorporate the presumed nature of the systematic response errors.

One possible substantive explanation for the correlated misclassifi-
cations within a particular reference period is that the respondent has
the tendency to adapt the information about the past to the present, true
position. In other words, the true position at the time of the interview
influences all answers. Because the SIPP interview takes place at the
beginning of the fifth month, latent variable Z (i.e., the true labor mar-
ket position for the fourth month) comes closest to the true position at
the time of the interview. Therefore, it is assumed, as depicted graphi-
cally in Figure 3b, that Z directly influences not only its own indicator
D but also A, B, and C:

π π π π π πwxyzabcd
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C YZ

dz
D Z� � � ). (8)

Restricted (log-linear or logit) models may be defined (and are neces-
sary to achieve identifiability) for the probabilities on the right-hand
side of equation (8). The model in Figure 3b still fulfills the local inde-
pendence assumption (i.e., the indicators are independent of each
other within the categories of the latent variables that influence the
indicators) but not the ICE assumption (i.e., the answers at a particular
point in time do not depend only on the true position at that particular
point in time).

A possible response mechanism to account for the correlated mis-
classifications that violates the local independence assumption occurs
when the respondent adapts an answer to previously given answers.
During the SIPP interview, the respondent is shown a calendar and
asked to recall his or her labor history during the reference period on a
weekly basis. It is assumed here that while performing this task, the
respondent most probably thinks first about his or her present status
and then recalls his or her labor market states going back in time. This
assumption implies that D may have an influence on A, B, and C; C on
A and B; and B on A. Of course, we have no proof of the validity of
these back-in-time dependencies, but they do lead to better fitting
models than forward-in-time dependencies (which assume that A
influences B, C, and D, etc.). The graphical models in Figures 3c and
3d depict two possible variants. In Figure 3c, it is assumed that only
the first given answer (D) has a direct influence on all later answers:
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Figure 3: First-Order Latent Markov Model with Correlated Classification Errors
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In Figure 3d, the assumption is made that only each immediately pre-
vious answer directly influences the next one:
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None of the above models is identifiable without further restric-
tions. Which particular model and which particular set of additional
restrictions to choose depend on the design of a particular study and
the way the data have been collected, and, of course, on theoretical
considerations and empirical results: whichever theoretically mean-
ingful model explains the observed data best.4 An extensive applica-
tion to SIPP data of one particular model will be presented in the next
section.

MODELING SYSTEMATIC
MISCLASSIFICATIONS IN THE SIPP

Although the approach sketched above on how to handle system-
atic misclassifications is very general and flexible, in this concrete
(SIPP) case these models are not identified as such and, even with
identifying restrictions, are often still just “poorly identified” (Davidson
and MacKinnon 1993, sec. 6.3), certainly in combination with the
very sparseness of the table. Using more data in the sense of using the
data from all four rotation groups of the SIPP does not really solve the
identification problem; an important source of the identification prob-
lem here is that each latent variable has only one indicator. Fortu-
nately, for each time period of the SIPP study, a second (dichotomous)
indicator for respondents’ labor market status is available using a
question from another section of the SIPP questionnaire, that is, the
Earnings and Employment section, in which the respondents were
interviewed again about their labor market position but in a cruder
manner. The question posed to respondents was whether they did or
did not have a job during the whole reference period. If they stated that
they did not have a job, they received a score of NJ (no job) on all four
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monthly second indicators. If they answered that they had a job, they
were asked to indicate precisely in which calendar period(s) they were
employed. On the basis of these answers, respondents were assigned
either to category NJ or to category J (had a job) of the second indica-
tor (applying the previously discussed monthly modal assignment
rule). The basic ICE latent Markov model with two indicators is
depicted in Figure 4.

Variables A through D in Figure 4 indicate the four trichotomous
labor market indicators that were used above; more precisely, they
refer to the labor market status in the months January, February,
March, and April (1986). The four trichotomous latent variables W
through Z are (again) their unobserved counterparts. The four new
dichotomous indicators are denoted by E, F, H, and I, with categories
indicated as e, f, h, i, respectively, each varying over the set {J, NJ}.
For a particular month, if no classification errors were made, all peo-
ple in observed category J would belong to latent category E and all
respondents in observed category NJ would belong to either latent cat-
egory U or latent category N. It was assumed that given the more
global character of this question and the less complicated task the
respondent had to perform, the errors for these four dichotomous indi-
cators would have the ICE property. However, this was not the case, as
was clear from an inspection of the observed relationships between
the four dichotomous indicators. The same irregularities as for indica-
tors A through D, such as the seam effect, showed up, although to a
smaller extent.

The basic starting equation corresponding to the graphical ICE
model in Figure 4, but now extended to include the four rotation
groups used in the analyses, looks as follows (denoting the group vari-
able again by G and assuming, as above, that the distribution of the
latent variables is the same for all groups; see equation [6]):
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The maximum likelihood estimates of πgwxyzabcdefhi
GWXYZABCDEFHI in equation (11)

can be found by defining saturated log-linear models for the (mar-
ginal) tables corresponding to the (conditional) probabilities on the
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right-hand side of equation (11), that is, model {G} for marginal table
G; model {W} for marginal table W; models {WX}, {XY}, and {YZ}
for marginal tables WX, XY, and YZ, respectively; model {WGA} for
marginal table WGA; and so on (employing the standard shorthand
notation for hierarchical log-linear models).

In the directed log-linear model of equation (11), it is assumed that
within each rotation group, the ICE assumption holds, an assumption
that is known to be false for SIPP data. The ICE model in equation (11)
serves as a baseline model, albeit in a simplified form. In the analyses
reported below, it will be assumed that the reliabilities of indicators A
through D are equal to each other and are the same for all groups, as are
the reliabilities of indicators E, F, H, and I. Possible distortions of the
equalities of the reliabilities are supposed to be caused by possible
extra effects among the indicators.

Reliability is essentially determined by the nature and strength of
the relation between a latent variable and its indicator(s). With cate-
gorical data, two approaches prevail. One is defining reliability in
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Figure 4: First-Order Independent Classification Error Latent Markov Model With
Two Indicators



terms of conditional response probabilities, that is, in terms of the
probability of giving the correct answer in agreement with one’s true
(latent) position (see note 3). In the other approach, reliability is
defined in terms of the odds ratio describing the relationship between
the latent variable and the indicator. Although the two approaches
have much in common, they are not completely equivalent. In the con-
ditional response probabilities approach, the equal reliabilities
assumption implies for equation (11), imposing the appropriate equal-
ity restrictions within the set of conditional probabilities {πagw

A GW| ,

πbgx
B GX| , πcgy

C GY| , πdgz
D GZ| } and within the set {πegw

E GW| , π fgx
F GX| , πhgy

H GY| , πigz
I GZ| }

(Mooijaart and Van der Heijden 1992; Vermunt 1996, 1997b [to be
implemented by means of, for example, iEM]). In terms of the log-
linear parameterization, such equality restrictions on the conditional
probabilities imply particular restrictions on both one- and two-variable
log-linear effects (Haberman 1979:551; Hagenaars 1990:31; Heinen
1996:66-71). In the odds ratio approach to reliability (chosen here),
only restrictions on particular odds ratios (or the corresponding two-
variable log-linear effects, such as λ wa

WA , λ xb
XB ) are imposed, and no re-

strictions are imposed on one-variable log-linear effects (such as λ a
A ,

λ b
B ).5

For marginal tables WGA, XGB, YGC, and ZGD corresponding
with conditional probabilities πagw

A GW| , πbgx
B GX| , πcgy

C GY| , πdgz
D GZ| in equation

(11), no-three-variable-interaction (logit) models are defined ({WG,
WA, GA}, {XG, XB, GB}, {YG, YC, GC}, and {ZG, ZD, GD}, respec-
tively), and analogous no-three-variable-interaction models are
defined for marginal tables WGE, XGF, YGH, and ZGI. Furthermore,
the equal reliabilities assumption is made by restricting the relations
between the latent variables and their indicators in the following way:

λ λ λ λij
WA

ij
XB

ij
YC

ij
ZD= = = for all ij.          (12)

λ λ λ λij
WE

ij
XF

ij
YH

ij
ZI= = =

Because of the absence of all three-variable interactions (involving
G), the relations between a particular latent variable and its two indica-
tors are the same for all four rotation groups. Because of the restric-
tions in equation (12), the reliabilities of indicators A through D are
identical, as are the reliabilities for indicators E, F, H, and I. The test

Bassi et al. / ESTIMATING TRUE CHANGES 251



outcomes for the thus restricted (and identifiable) model of equation
(11) are presented in model 1 of Table 2. Given the extreme sparseness
of the observed table, the test statistics cannot be expected to follow
the theoretical chi-square distribution, as is immediately clear from
the extremely large difference between Pearson and log-likelihood
ratio chi-squares. The p value found has no meaning here (and is there-
fore not reported). But the test outcomes for this model are useful as a
standard of comparison for the models to come that are not based on
the ICE assumption.

From some preliminary analyses and substantive considerations, it
was concluded that the best way to introduce extra effects among the
indicators would be to assume that within a particular reference
period, each answer is directly influenced by the immediately preced-
ing answer (see Figure 3c). Because the answers obtained from two
different, successive interviews are four months apart, the misclassifi-
cations for the indicators belonging to two different reference periods
are assumed to be independent of each other. Given the SIPP inter-
viewing scheme, all information for rotation group 1 about the labor
market states in the months January through April has been obtained
within the same interview, and therefore direct test-retest effects should
be expected between each pair of two successive months. This is
depicted in Figure 5 by the three arrows for group 1. For rotation group
2, the information on the states in February through April belongs to
one reference period but the scores in January to another. Therefore, in
Figure 5 there are no arrows (direct effects) between the answers in
January and February for group 2. For similar reasons, the arrow
between February and March is missing for group 3 and the arrow
between March and April is missing for group 4. All this leads to the
following restricted correlated error model (model 2 in Table 2). First,
to introduce the direct test-retest effects of the previous answer, equa-
tion (11) is replaced by the following equation:
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To obtain the intended maximum likelihood estimates for the ele-
ments on the right-hand side of equation (13), saturated (logit) models
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{G}, {W}, {WX}, {XY}, and {YZ} are defined for subtables G, W, XW,
XY, and YZ, respectively. To obtain the estimate of πagwb

A GWB| , a logit
model has to be defined in which the effects of G, W, and B on A are
defined for subtable GWAB in agreement with the hypotheses. The
appropriate log-linear model is a restricted version of hierarchical
model {WGB, WA, GAB}:
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(14)

The effects represented by the term {WGB} reflect the fact that in the
relevant logit equation for the effects of W, G, and B on A, one condi-
tions on the joint distribution of the independent variables. The term
{WA} refers to the direct effects of W on A, which do not interact with
G or B; therefore, the reliabilities are equal across groups. Moreover,
λ wa

WA in equation (14) has to be restricted according to equation (12)
because it is assumed that the reliabilities are constant over time. The
effects represented by the term {GAB} imply that there is a direct
effect of B on A and that this effect may be different for the four rotation
groups. This three-variable interaction effect is necessary because A
and B have different positions within the interview scheme of the four
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TABLE 2: Models for Survey of Income and Program Participation Data (rotation
groups 1 through 4) (January 1986 to April 1986)

Model Pearson 2 L2 df BIC

1. Equation (11): Independent
classification error, but no
three-variable interactions
and equal reliabilities
(equation [12]) 8,354,349.78 5,547.19 5,106 –45,021.04

2. Equation (13): Not indepen-
dent classification error, but
equal reliabilities and with
test-retest effects for within-
wave observation 110,860.59 2,472.98 5,061 –47,649.58

3. Model 2, but restricted test-
retest effects “a,” “b,” “c” in
Figure 5 35,291.97 2,686.89 5,091 –47,732.78



rotation groups. In particular, it is assumed that B has no effect on A
within rotation group 2 because the information on A and B has been
obtained during two different interviews (see Figure 5). Such a restric-
tion about the conditional relationship between A and B for group 2
being zero (i.e.,λ ab

AB G
2
| ) can be imposed by reparameterizating equation

(14) and replacing the terms (λ λab
AB

gab
GAB+ ) byλ abg

AB G| , resulting in the fol-
lowing equation:
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For each rotation group g, there are four independent conditional
effects λ abg

AB G| to estimate, imposing the usual identifying restrictions.
These 16 independent parameters replace completely the (16 inde-
pendent) effects (λ λab

AB
gab

GAB+ ) and, without further restrictions, equa-
tions (14) and (15) yield completely identical estimates �πwgab

WGAB . By set-

ting up the appropriate design matrix for conditional effects,λ abg
AB G| can

be defined, including the postulated restriction λ ab
AB G

2 0| = (Evers and
Namboodiri 1978).

In a completely analogous way, the appropriate restricted log-linear
models are defined for subtables XGBC and YGCD to get the esti-
mates for πbgxc

B GXC| and πcgyd
C GYD| in equation (13). Because measures “ear-

lier” than D are ignored in this analysis, to obtain the estimates for
πdgz

D GZ| , model {ZG, ZD, GD} is defined for subtable DGZ. Finally, the
whole procedure is analogously repeated for the dichotomous indica-
tors E through I, including the equal reliabilities restriction in equation
(12). All this results in an identified model, denoted in Table 2 as
model 2.

The introduction of the test-retest effects between the successive
indicators in the described manner costs 45 degrees of freedom com-
pared to model 1 but yields an enormous improvement in terms of L2

( , . , . , .L L1
2

2
2 5 54719 2 472 98 3 074 21− = − = ). When using L2 or BIC as

a descriptive measure of fit, there is no doubt that model 2 is the pre-
ferred model compared to model 1. Although with extremely sparse
tables one has to be very careful in drawing definitive conclusions on
the basis of these fit indexes, there is evidence that outcomes for the
comparisons of parsimonious models (here, 5,184 cells and about
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20,000 respondents compared to 5,061 degrees of freedom for model
2) of conditional L2 tests and comparisons of BIC indexes are gener-
ally more trustworthy (as test statistics) than noncomparative tests
(Haberman 1978:341; Raftery 1993, 1995; but see Weakliem 1999). It
seems safe to conclude that, as expected, not-ICE model 2 with the
described direct effects of the successive indicators on each other has
to be preferred above ICE model 1.6

Model 2 might be further restricted in agreement with the SIPP
interviewing scheme by assuming that the effects of the first answer
on the second, going backward in time during the reference period, are
the same for all four groups (the arrows indicated by “a” in Figure 5),
as are the effects of the second answer on the third (“b”) and of the
third answer on the fourth one (“c”). The test results of introducing
these extra restrictions are reported in model 3 of Table 2. Compared
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Figure 5: Survey of Income and Program Participation Interviewing Scheme for the
Four Rotation Groups in the Period From January Through April 1986



to model 2, model 3 has 30 more degrees of freedom, while L3
2

2 213 91= . .
In traditional terms, model 3 has to be rejected in favor of model 2. But
does L2 (even conditional L2) approximate the theoretical chi-square
distribution adequately, or is it “too big” and “too progressive” given
the extremely sparse table? According to BIC, model 3 should be cho-
sen. But BIC might be too conservative, favoring the more parsimoni-
ous model 3 over the less parsimonious model 2. Parametric boot-
strapping to determine the sampling distribution of L2 might provide
the answer but was not feasible with these models and data; it simply
takes too much (days of) computing time. Therefore, the parameter
estimates of models 2 and 3 were inspected and compared. Although it
might be due to sampling error, the parameter estimates of model 2 did
not at all suggest the “a,” “b,” “c,” restricted pattern in Figure 5. So it
was decided to accept model 2 as the final model. For some reasons,
perhaps related to the particulars of the fieldwork of the SIPP, the
direct influence of the first answer on the second, and so on, is not the
same for all four rotation groups.

Of course, one can never claim that model 2 is the correct model,
that is, the population model that generated the data. Other well-fitting
models may be found. For example, Bassi et al. (1995), analyzing the
same data set, decided on another “final” latent directed log-linear
model. We will briefly discuss this directed log-linear model to dem-
onstrate its flexibility. Bassi et al. followed a suggestion by Hubble
and Judkins (1987). With regard to the within-wave classification
errors, Bassi et al. assumed that during a particular interview (wave),
once the respondents give a wrong answer for a certain month, they
continue to report that incorrect answer for the following months,
going backward in the wave, with absolute certainty. With regard to
the between-wave classification errors, Bassi et al. (1995) assumed (as
above) the ICE mechanism. Hubble and Judkins’s suggestions lead to
a complex model with four variable interaction effects, in which the
answers for a particular month depend not only on the current true
state but also on the discrepancies between the past true and past
reported states. However, given the (partly) deterministic nature of the
response mechanism, many of the conditional response probabilities
are a priori fixed to zero or one, yielding a rather parsimonious model.
(The test outcomes were χ2 = 985,630.55, L2 = 3,094.50, df = 5,097,
BIC = –47,384.65.)
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In model 2, the estimates of the reliabilities as measured by the
direct effects of the latent variables on their indicators are very high.
Not surprisingly , the trichotomous indicators are more reliable than
the dichotomous ones, for example, for category E (employed), �λ11

WA

( � � � ) . ( � . )= = = = =λ λ λ σλ11 11 11 5 411 0 293XB YC ZD , while � ( � �λ λ λ11 11 11
WE XF YH= = =

� ) . ( � . )λ σλ11 3 4733 0 074ZI = = . The reliabilities for the not-in-the-labor-
force category (N) have more or less the same sizes and pattern:
� .λ 33 4 489WA = and � .λ 32 2 667WE = . The most unreliable category is cate-
gory U (unemployed): � . ( � . )λ σλ22 0 828 0 155WA = = and � .λ 22 0 804WE =
( � . )σλ = 0 066 . If the distributions of W and A are fixed at their marginal
distributions, the values found for �λ wa

WA imply that the conditional prob-
abilities of giving the correct answer for A given the true state of W are
almost perfect for categories E and N (π11 0 998A W| .= and π33 0 992A W| .= ,
respectively) but very bad for category U (π22 0 534A W| .= ). The reason
for the low reliability of category U might be that “being unemployed”
does not have the same clear meaning for the respondent as “being
employed” and “not being in the labor force”; additionally, to call one-
self unemployed is difficult because it is a labor market state that is
considered to be socially undesirable. In this respect, one might con-
sider defining models (as a reviewer suggested) in which one only
assigns errors to reporting of unemployment status.

As expected, the distorting (test-retest) effects of the previous
answer are consistently larger for the trichotomous than for the dichot-
omous indicators. For example, the direct effects of A on B for cate-
gory E and rotation group 1 are � . ( � . )|λ σλ111 3 895 0 492AB G = = , while the
effect of E on F is � . ( � . )|λ σλ111 1 860 0 193EF G = = . The effects for category
N of the trichotomous indicators A and B are about the same size as for
the category E, but the effects for category U are much smaller:
� . ( � . )|λ σλ221 1 219 0 243AB G = = . It appears that mentioning being employed
or not being in the labor force on B does influence the answer on A
strongly in the same direction, but that mentioning being unemployed
does not have such a large impact on A. This is in agreement with the
supposition that being unemployed is socially undesirable.

All these effects are very large. However, they have to be inter-
preted with care. Given the many extremely small expected cell fre-
quencies, the absolute sizes of the parameters depend very much on
the accuracy of the convergence criterion for the iterative estimating

Bassi et al. / ESTIMATING TRUE CHANGES 257



procedure. Even very small changes in the fifth or seventh decimal of
the estimated probabilities may change the log-linear parameter esti-
mates, for example, from 5.0 to 8.0. Therefore, we carefully checked
whether the tendencies described above were found for the other indi-
cators and rotation groups and in tables where the estimated probabili-
ties were rounded off to four decimals and where .0001 was added to
all probabilities. The tendencies reported above were consistently
found. Other things were less clear; for example, what did people who
are latently (truly) unemployed answer if they gave the wrong answer,
were employed, or were not in the labor force? The relevant parameter
estimates (e.g., �λ 21

WA , �λ 23
WA ) varied too much and were numerically

unstable, and therefore were omitted from the above discussion.
The consequences of the unreliabilities of the indicators and their

direct effects on each other for the estimates of the changes in the labor
market are shown in Table 3. The observed transition probabilities in
the first row of Table 3 for the first rotation group for the months Janu-
ary through February (B|A) are calculated by means of data that were
obtained within one and the same interview. For the second rotation
group (row 2), the data come from two different successive reference
periods. It is clearly seen that the stabilities (i.e., the conditional prob-
abilities of not changing one’s state) are larger according to rotation
group 1 than to group 2. The true stabilities X|W estimated on the basis
of model 2 are in between, at least for categories E (column EE) and N
(column NN).

What happens to category U is more complicated. Not surprisingly,
the observed and latent stabilities (column UU) of category U are
much smaller than the corresponding stabilities of categories E and N:
By definition, unemployed people are looking for a job and are eager
to lose their unemployment status. Also not unexpected is the fact that
the observed stability of category U is much larger in group 1 than in
group 2 and that the estimated latent stability of category U is much
less than the latent stabilities of categories E and N. But what may
seem surprising is that the estimated latent stability is not in between
the observed stabilities of groups 1 and 2. How does one explain this?
It is well-known from the literature that random measurement error in
combination with a skewed distribution will make the smallest, less
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frequently occurring categories look very volatile and prone to change,
much more than the bigger categories. This is true even when all cate-
gories in reality (truly, at the latent level) have the same amount of sta-
bility and are affected by the same (small) amount of random mea-
surement error (Maccoby 1956; Hagenaars 1993:52-55, 1994). Now,
according to model 2, the true (latent) distribution of employment sta-
tus is � .π1 0 5930W = , � .π2 0 0787W = , and � .π3 0 3283W = , with U being by
far the smallest category. Consequently, it must be expected that
because of measurement error alone, the observed changes for cate-
gory U will be large and much larger than for categories E and N. This
is confirmed by the observed transition probabilities in column UU for
group 1 and, especially, group 2 (and would have occurred for cate-
gory U—being the smallest—even if the stabilities and unrelia-
bilities had been the same as for categories E and N). Furthermore, it
must be expected that when one corrects for random measurement
error, as is (also) done in latent variable models, the latent stability of
the smallest category will be much larger than the observed stability, a
result that is found in the present study. So, the latent stability of cate-
gory U does not have a value in between the observed stabilities of
groups 1 and 2. And although the latent stability of category U is
smaller than the stabilities of categories E and N, the true (latent) dif-
ference between U on one hand and E and N on the other is much less
than suggested by the observed data.
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TABLE 3: Survey of Income and Program Participation Gross Flows (percentages)
(January 1986 [indicator A, latent variable W] to February 1986 [indicator B,
latent variable X])

EE EU EN UE UU UN NE NU NN

Observed group 1

pb a
B GA
1
|

98.29 1.16 0.55 17.44 77.95 4.62 0.63 1.45 97.83

Observed group 2

pb a
B GA

2
|

94.52 2.01 3.47 22.27 44.55 33.18 5.03 3.45 91.52

Latent W-X
�

|π xw
X W

97.19 2.17 0.64 6.29 86.48 7.23 2.99 1.37 95.64

NOTE: E = employed, U = unemployed, N = not in the labor force.



DISCUSSION

As this application illustrates, directed log-linear modeling with
latent variables provides an excellent and flexible tool for analyzing
data that are affected by random and systematic classification errors.
At the same time, it has become clear that there may be serious prob-
lems to overcome. Most of the problems discussed below have to do
with the nature of these models and with the potential sparseness of
the frequency tables. As was indicated above, sparse tables may cause
serious estimation and testing difficulties. Finally, attention will be
paid to the sometimes problematic nature and meaning of latent vari-
ables acting as gold standards.

The introduction of systematic classification errors may cause
extra identification problems that have to be solved. Especially when
each latent variable is measured by just one indicator, non- or hardly
identified models may be almost unavoidable. The remedy is clear:
more than one indicator for each latent variable, but these data may not
be available. Defining parsimonious models is then the next best solu-
tion, but only when such very restricted models are not completely un-
realistic. The only choice remaining, but still usually much better than
completely ignoring systematic measurement errors, is to set up mod-
els in which certain effects representing random and/or systematic
classification errors are given particular a priori values and to investi-
gate the consequences for the latent and manifest changes under study.

In the standard application of maximum likelihood estimation and
testing procedures for log-linear modeling, it is assumed (as here) that
the data follow a (product)multinomial sampling distribution, or, in
practical terms, that the data arise from simple random sampling or
stratified sampling with simple random sampling within the strata.
Other sampling schemes, such as cluster sampling, will not result in
(product)multinomial distributions, and the most likely sampling design
effect is an inflation of the test statistics. Such possible design effects
have not been taken into account for the SIPP data in the present study.

Even with extremely sparse data, the estimation results are often
surprisingly robust, at least for rather parsimonious models. Neverthe-
less, with sparse data one must check the robustness of the estimates
(as was done here on a modest scale) and not take it for granted. The use
of cross-validation (reserving part of the sample for cross-validation)
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is essential. It is also easy to consider the final parameter estimates as
population values and draw a few samples from them, not necessarily
to carry out a complete parametric bootstrapping procedure but,
rather, to determine which parameters obtain (very) different values.
For the same purposes, one might add (very) small constants to the cell
frequencies in an arbitrary manner (e.g., adding .001 to every cell fre-
quency) or in a (pseudo) Bayesian manner to stay away from the
boundary of the parameter space (Schafer 1997) and investigate the
influence on the parameter estimates. It is also very useful to add or
delete certain rather small effects and study the consequences for the
(other) parameter estimates. In this way, one discovers which results
(for this particular model) are robust and which should be treated with
care.

The biggest problem caused by sparse data is the testing and selec-
tion of models. Parametric bootstrapping procedures (Van der Heijden,
Hart, and Dessens 1997; Collins et al. 1993; Langeheine, Pannekoek,
and Van de Pol 1996) or fully Bayesian analyses (Rubin and Stern
1994; Gelman et al. 1995) may provide a solution to these problems.
However, these procedures may still be impractical for some problems
even with modern computing equipment; perhaps even more impor-
tant, we still do not know how these procedures behave in the case of
extremely sparse tables, such as those discussed in this article. In the
end, it is often necessary to base the final model selection largely on
descriptive measures of fit and on theoretical side information. The
need to test these models on new data is obvious.

A final discussion point worth mentioning is the status and mean-
ing of the latent variables, especially in longitudinal studies. What
does it mean when we say that in reality, the estimated proportion of
the employed in January is � .π1 0 5930W = , or when we interpret the last
row in Table 3 in terms of estimated true changes from January to Feb-
ruary? Of course, the model used to obtain these estimates has to be
valid. If that is true, the estimates of the latent parameters are the true
ones in the sense that they are the ones that would have been obtained
if the observed data had been free of misclassifications. The
misclassifications introduced here are partly systematic, involving the
direct effects of the answers (the indicators) on each other and partly
random, that is, ICE. It is the random portion that is actually the most
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difficult to interpret, and so the systematic portion will be further
ignored in this discussion.

In the early days of the development of latent class models, it was
recognized that there are three causes of observed changes (Lazarsfeld
1972; Kendall 1954; Wiggins 1955, 1973; Hagenaars 1990:181-83).
First, the observed changes may reflect real changes, that is, the
changes in the true score. Second, the observed scores mirror the acci-
dental changes people experience, that is, changes because of mood,
chance factors, accidental and temporary loss of job, and so on. Finally,
there are the proper measurement errors, accidental response errors
made by the respondents or the interviewers, processing errors, and so
on. (Lazarsfeld [1972] assigned a minor role to these ‘psychometric’
errors.) Now, it should be recognized that latent variable models cor-
rect not only for the proper measurement errors but also for the
observed true but accidental changes, and that the true, latent changes
are observed changes purified of both sources of random change.
Latent class analysis as such cannot make the difference between
somebody who is usually employed but at one point in time happens to
be erroneously recorded as unemployed and a person who is usually
employed but at one point in time happens to be without a job. Even if
the true labor market states had been observed without any response
error in the strict psychometric sense (but, as is often the case, a por-
tion of the true observed movements had a random character), apply-
ing the latent variable model would have led to latent turnover tables
that show more stability than the corresponding true observed tables.
Whether this is problematic depends on the purposes of the
investigation.

In this respect, the intended definition of true score becomes impor-
tant. A distinction can be made between the platonic true score and the
operational true score (Sutcliffe 1965a, 1965b; Lord and Novick
1968, sec. 2.9; Hagenaars 1990, sec. 4.4; Sobel 1994). In the platonic
true score model, it is assumed that there exists a real and actual true
score. Somebody is married or not, works or not, has a certain weight,
and so on. In the operational true score model, the true score is defined
as the score a person obtains on average in a series of independently
conducted experiments. Whether this distinction matters depends on
the purposes of the analysis. Here, it is argued that sometimes it does
matter. If one wants to measure the true underlying attitude of a person
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or, for example, a person’s weight, in the sense of the value that is not
affected by daily or even hourly random fluctuations in the true, pla-
tonic value, one is interested in the true score as the operational true
score (whether or not it is meaningful to assume that the platonic score
really exists). Because latent variable models correct for both random
errors and random behavior, they are appropriate to employ when the
interest lies in the operational true score. However, if one is interested
in the real number of people that is actually unemployed at a certain
moment in time (the platonic true score) regardless whether they are
“always” unemployed or typically employed but accidentally at this
moment unemployed, latent variable models will generally not be
appropriate because in principle the existing real number of unem-
ployed people will not be the same as the latent number of unem-
ployed people, and the amount of real changes that are occurring in
labor market will be underestimated by the latent changes. For an esti-
mation of the platonic score, a model including a gold standard is
needed; for the operational score, latent variable models are most
appropriate and, as seen in the present study, provide the researcher
with a flexible tool to correct for all kinds of classification errors.

NOTES

1. The term causal is used somewhat loosely to denote asymmetrical relationships between
variables. For more exact definitions of causality and some opposing views, see Rubin (1974),
Sobel (1995), Glymour et al. (1987), Pearl (1995), and Raftery (1998).

2. In principle, modified path models (or directed log-linear models) must be estimated in the
stepwise manner described here. Sometimes, however, it is possible to obtain the estimates for
the joint probabilities in the full table directly by specifying one (log-linear) model rather than a
sequence of submodels. This possibility has to do with the “collapsibility” of the log-linear
model(s) (Agresti 1990, sec. 5.4.2.) and whether the causal model satisfies the “Wermuth condi-
tion” and is a “moral graph” (Whittaker 1990, sec. 3.5; Pearl 1995).

3. Interpreting the conditional response probabilities in terms of probabilities of
misclassifications is most appropriate when the indicator directly depends on just one particular
latent variable and when there is a one-to-one correspondence between the categories of the indi-
cator and the latent variable (Sutcliffe 1965a, 1965b; Hagenaars 1990; Kuha and Skinner 1997).
See also the discussion below and note 5.

4. Depending on the (identifying) restrictions imposed, several of these models may be empiri-
cally indistinguishable from each other, since they yield the same estimated expected frequencies.

5. In the standard (linear) approach, reliability is defined as the proportion of the variance of
the indicator(s) that is explained by the latent variable (the true scores). When categorical vari-
ables are seen as realizations of underlying continuous variables, the same basic (standard) ap-
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proach essentially still applies, as ingeniously shown by Bartholomew and Schuessler (1991).
For truly categorical data, in addition to the two approaches mentioned in the main text, the ex-
plained variance definition of reliability might be used, but now with measures of qualitative
variance such as entropy or concentration. (For an overview of such measures, see Vermunt
[1997a:76].) To our knowledge, the properties of this latter approach have not been investigated.

6. An additional difficulty when comparing models 1 and 2 in Table 2 arises from the fact that

zero estimates occurred in the latent turnover tables (model 1 � � �
| | |π π π32 31 32 0

Y X Z Y Z Y= = = , model 2
� �

| |π π32 32 0
Y X Z Y= = [and � .

|π 31 0053
Z Y = ]). The models are identified, also without the zero estimates.

Furthermore, several different initial estimates and different algorithms were used, always with
the same results, including the zeroes. The zero estimates were not treated as restrictions in the
computation of the number of degrees of freedom but, rather, as estimated parameters.
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