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Latent class and finite mixture models for

multilev el data sets

J eroen K V ermunt D e p a rtm e n t o f M e th o d o lo g y a n d S ta tis tic s , T ilb u rg U n iv e rs ity , T ilb u rg ,
T h e N e th e rla n d s

An extension of latent class (LC) and finite mixture models is described for the analysis of hierarchical data
sets. As is typ ical in multilev el analysis, the dep endence betw een low er-lev el units w ithin hig her-lev el units is
dealt w ith by assuming that certain model p arameters differ randomly across hig her-lev el observ ations. O ne
of the sp ecial cases is an LC model in w hich g roup -lev el differences in the log it of belong ing to a p articular
LC are cap tured w ith continuous random effects. O ther v ariants are obtained by including random effects in
the model for the resp onse v ariables rather than for the LCs. T he v ariant that receiv es most attention in this
article is an LC model w ith discrete random effects: hig her-lev el units are clustered based on the lik elihood
of their members belong ing to the v arious LCs. T his yields a model w ith mixture distributions at tw o lev els,
namely at the g roup and the subject lev el. T his model is illustrated w ith three rather different emp irical
examp les. T he ap p endix describes an adap ted v ersion of the exp ectation–maximiz ation alg orithm that
can be used for maximum lik elihood estimation, as w ell as p rov iding setup s for estimating the multilev el
LC model w ith g enerally av ailable softw are.

1 In tr o d u c tio n

Latent class (LC) analysis is becoming an increasing ly p op ular tool for building diag nos-
tic classifications and determining the sensitiv ity and sp ecificity of diag nostic measures,1

for determining the ag reement betw een raters,2 and for reg ression modelling w ith mul-
tip le discrete outcome v ariables.3 ,4 O ther more exp loratory ap p lication typ es include
scaling ,5–7 clustering ,8–10 and nonp arametric random-effects modelling .11–13 LC analy-
sis belong s to the family of latent v ariable methods: a discrete unobserv ed v ariable w ith
K categ ories is assumed to exist, w hich affects the, usually multip le, resp onses of sub-
jects. E ach subject is assumed to belong to one of these K LCs. S tatisticians often refer to
the methods discussed in this article using the more technical term finite mixture models
and reserv e the term LC analysis for the situation in w hich all resp onse v ariables are
categ orical.8,9 H ere, the tw o terms w ill be used interchang eably.

In medical research, data sets that show a hierarchical or multilev el structure are
often encountered.12,14 ,15 E xamp les are data on p atients w ho are nested w ithin centres,
resp ondents nested w ithin reg ions, children nested w ithin families and rep eated mea-
sures nested w ithin subjects. Also w hen ap p lying LC analysis, the data at hand may
show this typ e of nesting , w hich has to be tak en into account w hen modelling the data.
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34 JK Vermunt

Table 1 Four-fold classification of multilevel latent variable models

S ubject-level (level 2 ) G roup -level (level 3 ) latent variable(s)

latent variable(s)

D iscrete C ontinuous

D iscrete I. M ultilevel mix ture L C II. M ultilevel random-effects L C
C ontinuous III. M ultilevel mix ture IR T /FA IV . M ultilevel random-effects IR T /FA

This article presents an extension of LC analysis that can be used to deal with such
multilevel data structures. As demonstrated by Vermunt,4,16 this can be achieved by
introducing either discrete or continuous random effects in the model of interest; that
is, by introducing one or more discrete or continuous latent variables at the higher level
of the hierarchy.

It should be noted that this multilevel LC model is actually a model for three-level
data since the LC model itself is already a two-level model, that is, a model for multiple
responses per subject. The presented extension of the LC model can therefore be seen
as a special case of a more general family of latent variable or random-effects models
for three-level data sets, which are generalized linear models containing discrete and/or
continuous random effects (or latent variables) at levels 2 and 3.12 These methods can
be classified using the four-fold classification presented in Table 1.

Model types I and II are LC or finite mixture models with either discrete or continuous
random effects at level 3, which are the models that will be discussed in more detail in
this article. Types III and IV are multilevel variants of continuous latent variable models
such as factor analysis (F A) and item response theory (IR T) models. Various special cases
of type IV have been presented in the literature.17–21 The very interesting model type
III – a continuous latent variable model with a discrete mixture at level 3 – is explored
in more detail in an accompanying article.22 This full framework is implemented in the
user-friendly Latent GOLD computer program for latent variable modelling23 and thus
readily available for any interested researcher. In addition to these four special cases,
hybrid variants can be defined combining discrete and continuous latent variables at
both levels of the hierarchy.24

The next section introduces LC analysis for nonhierarchical data. Subseq uently, the
multilevel extension of the LC model, which involves including random effects in certain
parts of the model of interest, is discussed. The approach is illustrated with various
empirical examples. In the appendix technical details on parameter estimation by max-
imum likelihood (ML), as well as syntax files for running the empirical examples with
generally available software, are provided.

2 LC and finite mixture models

Let yit denote the response of subject i on the tth response variable, and the corresponding
vector of responses by yi. These multiple responses may be different measures or symp-
toms of the same disease, ratings of different raters, repeated measures on the same
individuals in a longitudinal study or other types of multiple observations. The number
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LC and finite mixture models 35

of observations on a subject is denoted by T, 1 ≤ t ≤ T. In applications in which the
number of observations may vary across subjects, this number is denoted by Ti instead
of T.

The basic idea of an LC or finite mixture model is that subjects belong to one of K LCs
and that the multiple responses of a subject are generated by class-specific densities
or probabilities.9 The underlying discrete latent variable will be denoted by xi and a
particular value (a particular LC) by k, 1 ≤ xi = k ≤ K. The basic formula of an LC or
finite mixture model is the following

f (yi) =

K∑

k=1

P(xi = k)f (yi|xi = k)

=

K∑

k=1

P(xi = k)f (yi; ϑk) (1)

The density corresponding to the responses of subject i, f (yi), is assumed to be a mixture
of class-specific densities f (yi; ϑk), where the mixture probabilities P(xi = k) serve as
weights and ϑk are the parameters defining the class-specific densities. The choice of
the specific form for f (yi; ϑk) depends of the scale type of the response variables. W ith
continuous responses, one may, for example, define the class-specific densities to be
multivariate normal.9,10

An additional assumption that is often made is that the T responses are conditionally
independent of one another given class membership of subject i, which is sometimes
referred to as the local independence assumption.5,6 This implies that

f (yi; ϑk) =

T∏

t=1

f (yit; ϑ tk) (2)

where ϑ tk are the parameters defining the distribution of response variable t in LC k.
As was indicated above, in certain applications, T may be replaced by Ti to allow for
different numbers of responses per subject. Combining these two basic Equations (1)
and (2) yields

f (yi) =

K∑

k=1

P(xi = k)

T∏

t=1

f (yit|xi = k)

=

K∑

k=1

P(xi = k)

T∏

t=1

f (yit; ϑ tk)

Note that the local independence assumption, which may be (partially) relaxed,25 is
typical for any type of latent variable and two-level regression model, and thus not
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36 JK Vermunt

specific for LC analysis. This assumption not only simplifies the form of the class-specific
densities to univariate densities, such as Poisson for counts, (single trial) multinomial
for discrete responses and univariate normal for continuous responses, but may also be
required for identification. More specifically, with dichotomous and nominal responses,
multiple locally independent response variables are needed in order to be able to identify
the parameters of an LC model. In contrast, with counts and continuous variables,
a single response per subject suffices, though, of course, more interesting models may
be built with multiple responses, in which case the local independence assumption is
not required for identification.

In these examples, solely local independence and single response variable models
will be dealt with, which means that the class-specific densities are univariate dis-
tributions, where the exact form depends on the scale type of the response variable
concerned. Note that it is also possible to deal with mixed scale types, in which case
different types of densities are combined in the same model.8 In the examples, three
types of densities, Poisson, univariate normal and (single trial) multinomial, are used
yielding

f (yit; θtk) =
θtk

yit

yit!
exp(−θtk)

f (yit; µtk, σ 2
tk) =

1
√

2πσ 2
tk

exp

{

−
1

2

(yit − µtk)2

σ 2
tk

}

f (yit; π tk) =

M
∏

m=1

(πtkm)δitm

respectively, where δitm = 1 if yit = m and 0 otherwise and M is the number of categories
in the multinomial case. The model parameters for response variable t and LC k are the
mean θtk in the Poisson model, the mean µtk and variance σ 2

tk
in univariate normal model,

and the probabilities πtkm associated with the M categories – which can be collected in
the vector π tk – in the multinomial model. In the normal model, it is rather common to
restrict σ 2

tk
to be equal across LCs (σ 2

tk
= σ 2

t ), which amounts to assuming homoscedastic
errors. Note that in the dichotomous case (M = 2) the multinomial model simplifies to
a Bernoulli model.

An important extension of the simple LC and finite mixture models described above
is obtained by including predictors in the model for the LCs3,26 and/or for the response
variables.3,11–13 This involves specifying a multinomial logistic regression models for xi

or a regression model from the generalized linear modelling (GLM) family for yit, where
for ordinal categorical response variables, an ordinal regression model may be used.
Other extensions and variants include models with multiple discrete latent variables,7

models with local dependencies25 and models that contain continuous latent variables
in addition to the discrete latent variable.27,28

© 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Universiteit van Tilburg on April 1, 2008 http://smm.sagepub.comDownloaded from 



LC and finite mixture models 37

3 Multilevel extension

For the description of the multilevel LC model, the notation introduced in the pre-
vious section has to be expanded somewhat. The nested data structure implies that
subjects belong to one of J groups, where a particular group is referred to by the
index j, 1 ≤ j ≤ J, and the number of subjects in group j by nj. The group variable
will be denoted by G. A particular response variable, the vector of T response variables
and the class membership of subject i in group j are now denoted by yjit, yji and xji,

respectively.
Multilevel analysis implies that the parameters of the model of interest are allowed

to differ across groups. The same applies for the multilevel variant of the LC model. In
the fixed effects approach, a multilevel LC model takes on the form of a multiple-group
LC model

f (yji|G = j) =

K
∑

k=1

P(xji = k|G = j)

T
∏

t=1

f (yjit|G = j)

=

K
∑

k=1

P(xji = k|G = j)

T
∏

t=1

f (yjit; ϑ jtk)

that is, a model in which each group has its own set of class membership probabilities
and ϑ parameters. It will be clear that such a model cannot be estimated in a typical
multilevel application, in which there are more than a few groups – say 50 or more – and
in which the number of subjects per group is rather small – say 30 or less.

Typical for multilevel analysis is that the group differences are dealt with by
means of random instead of fixed effects.14,15,29,30 A multilevel LC model is thus
obtained by introducing one or more group-level continuous random effects –
continuous latent variables – in the model to account for the fact that some of the
LC model parameters differ across groups. An alternative is to introduce a group-level
discrete latent variable in the model, where parameters are allowed to differ across
LCs of groups.16 This rather fl exible approach is similar to nonparametric random-
effects modelling.11–13 It should be noted that it is even possible to combine the
two approaches, that is, to account for differences in some of the model parame-
ters using continuous random effects and in some other parameters using the discrete
approach.

There are too many possible model specifications of a multilevel LC model to discuss
them all in detail. What is clear is that the model described by Vermunt4,16 in which
the P(xji = k|G = j) parameters are allowed to differ across groups is the most impor-
tant one. This model assumes that observations within groups are correlated because
group members tend to belong to the same LC. The model is obtained by defining a
random effects multinomial logistic regression model for class membership, using either
a continuous or a discrete specification of the random effects. Vermunt4,16 proposed
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38 JK Vermunt

a model in which the parameters defining the class-specific densities for the response
variables do not vary across groups (ϑ jtk = ϑ tk) and in which

log
P(xji = k|G = j)

P(xji = 1|G = j)
= γk + τk · uj

for 2 ≤ k ≤ K, where uj is a normally distributed random effect or latent variable with
a mean equal to 0 and a variance equal to 1 and τk are factor loadings. Note that
this specification yields a random-effects multinomial logit model for class membership
that is similar to the restricted random-effects multinomial logit model – containing
one instead of K − 1 random effects – proposed by Hedeker31 for observed categorical
responses.

The current article focuses on the discrete approach with group-level latent classes.
The main extension compared to the work by Vermunt16 is that it is not only applied
to categorical response variables as in the traditional LC model but also to continuous
variables and counts. The basic idea of the discrete approach is that groups belong to one
of L group-level LCs or mixture components, where wj denotes the class membership
of group j and � is used to refer to a particular group-level LC, 1 ≤ wj = � ≤ L. The
multilevel LC model can now be defined as follows:

f (yji|wj = �) = f (yji; ϑ�)

=

K
∑

k=1

P(xji = k|wj = �)

T
∏

t=1

f (yjit|xji = k, wj = �)

=

K
∑

k=1

P(xji = k|wj = �)

T
∏

t=1

f (yjit; ϑ tk�) (3)

As can be seen, LCs of groups may differ in the probability that their members belong
to LC k and in the parameters defining the densities for the response variables.

The element in the model specification that is still missing is the connection between
subjects belonging to the same group, that is,

f (yj) =

L
∑

�=1

P(wj = �)

nj
∏

i=1

f (yji; ϑ�) (4)

As can be seen, the density for the full response vector of group j, f (yj), is obtained

with the additional assumption that its nj members’ responses are independent of one
another conditional on group class membership and by subsequently marginalizing over
the LCs for groups. In the case of continuous random effects, the summation over the
group-level mixture components is replaced by an integration over the random effects,
and it is assumed that observations within groups are independent of one another given
these group-level random effects.12

© 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Universiteit van Tilburg on April 1, 2008 http://smm.sagepub.comDownloaded from 



LC and finite mixture models 39

It should be noted that the multilevel LC model is actually a model for three-level data
sets, that is, for multiple level-1 observations (responses) within level-2 units (subjects)
and multiple level-2 units within level-3 units (groups). This means that the model can
also be used to deal with other types of three-level data than multiple responses nested
within subjects nested within groups. One of the examples discussed in the next section
deals with multiple prescriptions of doctors working in different hospitals. Another
example deals with longitudinal data in which level-2 units represent time points and
level-3 units represent subjects. The fact that this is a three-level random-effects model
shows that it could easily be generalized to a larger number of levels using the same logic
as was used to go from two to three levels.

Vermunt13,16 focussed on two restricted special cases of the general model described
in Equations (3) and (4), namely:

• a model in which subject-level class membership probabilities differ across group-
level classes but in which the parameters defining the class-specific conditional
distributions for the response variables do not vary across group-level classes
(ϑ tk� = ϑ tk)

• a model in which a GLM regression model is defined for the response variables
yjit with additive effects of xji and wj – for example, ηjit = β0t + β1k + β2�, where
ηjit is the linear predictor of the GLM concerned for yjit – but in which subject-
level class membership probabilities do not differ across group-level classes [P(xji =
k|wj = �) = P(xji = k)] .

In the former specification, the LCs at the lower-level capture all the association
between the responses within lower-level units, whereas the higher-level classes capture
the association between subjects within groups. This is, in fact, a two-level variant of
a standard LC model. The latter specification is more similar to a standard three-level
regression model: the higher-level classes capture the common variation of all responses
within a group and the lower-level classes the common residual variation within subjects,
yielding the well known variance decomposition between levels of the hierarchy. This
difference shows that the former specification is more interesting if the main focus is
on identifying meaningful lower-level classes taking into account the multilevel data
structure, whereas the latter specification is more meaningful when the finite mixture
model is used as a nonparametric three-level random effects regression model. In the
applications discussed below, the author would focus on the former specification. For
more information on the latter specification, see Vermunt.13

As was shown by Vermunt,4,13,16 ML estimates of the model parameters of the mul-
tilevel LC model can be obtained by means of the expectation-maximization (EM)
algorithm.32 This, however, requires a special implementation of the expectation (E)
step of the EM algorithm in which the relevant posteriors are computed in an efficient
way by making use of the conditional independence assumptions implied by the multi-
level LC model. This version of the EM algorithm which is described in the appendix, as
well as a Newton–Raphson algorithm with analytic first-order derivatives, and numerical
second-order derivatives, is implemented in the Latent GOLD software package.23 Some
versions of the multilevel LC model can be estimated with the GLLAMM software30

and with Mplus.33 More specifically, GLLAMM can estimate LC models with discrete
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40 JK Vermunt

random effects in the model for the response variable, and Mplus can estimate LC models
with continuous group-level random effects in the model for the subject-level classes. As
an alternative to ML estimation, one may adopt a Bayesian Markov chain Monte Carlo
(MCMC) estimation approach, for example, using the WinBugs software,34 in which it
is not difficult to program the multilevel LC model (see the appendix). Bayesian estima-
tion of mixture models is, however, complicated by the fact that the arbitrary ordering
of the classes may change during the MCMC chain, which is usually referred to as the
label-switching problem.35,36 This problem is even harder to deal with when there are
multiple mixture distributions like in the multilevel LC model described in this article.

4 Examples

In this section, three rather different types of applications of the multilevel LC model
are presented. The first application uses a typical three-level data set: prescriptions of
antibiotics are nested within doctors which are themselves nested within hospitals. The
second application is a more standard cluster analysis application in which multiple
continuous responses (indicators) are used to classify subjects: there are six measures
of intelligence of children which are nested within families. In the last application,
lower-level LCs capture the time-specific differences and higher-level classes the stable
differences between individuals in a count response variable that is measured at multiple
time points. For parameter estimation, the Latent GOLD software23 is used (see the
appendix for model syntax files).

4.1 P rescription of antib iotics:

The data set used for the first example is described in detail by Y an and by Rabe-
Hesketh and Skrondal.30,37 The outcome variable ‘abuse’ is the classification of 855
antibiotics prescriptions of 134 doctors in two Chinese counties as 1) correct use;
2) abuse of one antibiotic; 3) abuse of several antibiotics in the treatment of children
with acute respiratory tract infection. The purpose of the LC analysis is to identify
clusters of doctors with similar prescription behaviour. Doctors belong to 36 hospitals,
which are the higher-level units. In the multilevel LC model, this nesting is taken into
account by allowing hospitals to belong to higher-level classes that differ in the pro-
portion of doctors with a particular prescription behaviour. In a second phase of the
analysis, the effect of the doctor’s education and the dummy for hospital’s participating
in a WHO programme that was initiated as a response to the misuse of antibiotics, were
investigated.

Table 2 presents the log-likelihood (LL) value, the Bayesian information criterion
(BIC), and the number of parameters (Npar) for the estimated models. In the com-
putation of BIC, I use the number of subjects (doctors) as the sample size; that is,

B IC = −2LL + Np ar log N, with N =
∑J

j=1 nj. As can be seen, the model with two

hospital-level classes (L = 2) and three doctor-level classes (K = 3) performs best accord-
ing to the BIC. The same model would be selected using the less well-known AIC(3)
criterion that is obtained by replacing the constant log N in the BIC formula by the
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LC and finite mixture models 41

Table 2 Fit measures for the models estimated
w ith the antibiotics data set

L K LL B IC N par

1 1 −9 1 4 .3 1 8 38 .3 2
1 2 −8 7 2.4 1 7 6 9 .3 5
1 3 −8 6 5 .1 1 7 6 9 .3 8
1 4 −8 5 9 .4 1 7 7 2.7 1 1
2 2 −8 5 9 .6 1 7 5 3.5 7
2 3 −8 4 6 .7 1 7 4 7 .3 1 1
2 4 −8 4 1 .6 1 7 5 6 .6 1 5
3 2 −8 5 9 .6 1 7 6 3.3 9
3 3 −8 4 4 .3 1 7 5 7 .1 1 4
3 4 −8 37 .3 1 7 6 7 .6 1 9

value 3 and that has recently been suggested as possible model selection measure in the
context of mixture modelling.38

Table 3 presents the parameter estimates for this best fitting model. The lower part of
this table reports the abuse probabilities for each of the doctor-level classes. Compared
with the other two classes, doctors in class 1 have the highest probability of no abuse,
and in the case of abuse they are more likely to be abusing ‘only’ one antibiotic. Class
3 has the highest probability of abuse of several antibiotics, whereas doctors in class 2
have the highest probability of abusing one antibiotic.

The upper part of Table 3 indicates that 50% of the hospitals belong to higher-level
LC 1 and the other 50% to class 2. These two hospital-level classes have very different
distributions of doctors among doctor-level classes. Almost all doctors belonging to the
first hospital class belong to the low abuse doctor class, whereas almost all doctors in the
other hospital class are in the middle and high abuse classes. Overall, we can conclude
that there are large differences in the abuse of antibiotics between hospitals and doctors.

Then two covariates were introduced in the model. It was assumed that doctor’s
education measured in six ordinal categories affects the probability of being in one of
the doctor-level classes and that the dichotomous hospital-level variable for being in
the WHO programme affects the probability of belonging to one of the hospital-level
classes. This gives a model with LL = −830.4 and Npar = 14, which indicates that
at least one of the effects is significant. Two separate Wald tests yield values equal to

Table 3 H ospital-class [P (wj = �)], doctor-class conditional on hospital
class [P (xji = k |wj = �)] and doctor-class-specific response probabilities
(πtkm ) obtained w ith the model w ith L = 2 and K = 3 estimated w ith the
antibiotics data set

P (wj = �) k = 1 (low ) k = 2 (middle) k = 3 (hig h)

� = 1 (low ) 0 .5 0 0 .9 1 0 .0 1 0 .0 8
� = 2 (hig h) 0 .5 0 0 .0 6 0 .33 0 .6 1

Abuse = 1 0 .39 0 .1 1 0 .29
Abuse = 2 0 .5 6 0 .6 4 0 .21
Abuse = 3 0 .0 5 0 .25 0 .5 0
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16.33 (df = 2; P < .001) and 7.94 (df = 1; P = 0.005) for education and WHO pro-
gramme, respectively, showing that both effects are significant. The definition of both
the higher- and lower-level classes changed somewhat, but the substantive conclusion
is that higher educated doctors are (much) more likely to be in the low-abuse class,
whereas lower educated doctors are more likely to be in the high-abuse class. WHO
hospitals are much more likely to be in hospital-level class containing a large pro-
portion doctors in the low-abuse class, which means that the programme seems to be
effective.

The same model was also estimated with three doctor and two hospital classes (with-
out covariates) with Winbugs using Dirichlet priors with parameters equal to 1 for the
multilevel LC model probabilities (see model setup in the appendix). The obtained
Bayesian parameter estimates and standard errors were very close to the ML esti-
mates. To deal with the label-switching problem, the parameters were estimated using
500 samples from a part of the MCMC chain in which label switching did not seem
to occur. Note that the label-switching problem also complicates convergence checks
based on running multiple chains since the classes may have a different order in each
chains.

4.2 Intelligence test
The data for this example was collected by Van Peet39 and used by Hox29 to illustrate

multilevel FA. Six continuous measures supposed to be connected to intelligence – word
list, cards, figures, progressive matrices, name animals and name occupations – are
available for 269 children belonging to 49 families. For 82 children, there is partially
missing information, but these observations can be retained using standard ML method-
ology with missing data. The six intelligence measures are used to cluster the children
into intelligence classes and it is investigated whether (classes of) families differ in the dis-
tribution of children over these ‘intelligence’ clusters. The differences between families
can be attributed to genetic and/or common environment effects.

Preliminary analysis showed that simple univariate normal within-class distributions
can be assumed for the six response variables with equal residual variances across classes.
More specifically, inspection or pairwise residuals showed that there is no need to allow
for within-class correlations across responses, and comparison of models with equal
and unequal variances showed that it is correct to assume that residual variances are
homogeneous across classes.

Table 4 provides the fit measures for the estimated multilevel LC models, where the
specification was that family-level classes affect child-level classes and child-level classes
affect the responses. As can be seen, a model with four child-level classes and three
family-level classes performed best according to the BIC. As in the previous application
the AIC(3) criterion selects the same model as the best one.

Table 5 provides the parameters obtained with this model (the within-class variances
for the six indicators which do not appear in this table equal 28.3, 30.6, 26.1, 29.9, 26.1
and 26.5, respectively). The lower part of this table shows that the class-specific means
of the six intelligence indicators are nicely ordered across child-level classes 1–3. These
can therefore be labelled as high middle and low. Children in class 4 show a somewhat
mixed pattern: they perform better than the middle class on cards and figures, better
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Table 4 Fit measures for the models estimated
with the intelligence data set

L K LL BIC Npar

1 1 −4237.7 8542.5 12
1 2 −4148.8 8403.9 19
1 3 −4127.2 8399.8 26
1 4 −4113.2 8411.0 33
1 5 −4104.2 8432.2 40
2 2 −4130.2 8377.9 21
2 3 −4108.4 8379.0 29
2 4 −4086.8 8380.6 37
2 5 −4075.2 8402.2 45
3 2 −4129.7 8388.0 23
3 3 −4097.6 8374.2 32
3 4 −4072.2 8373.7 41
3 5 −4060.3 8400.3 50
4 2 −4129.6 8399.1 25
4 3 −4096.0 8387.9 35
4 4 −4069.7 8391.3 45
4 5 −4052.2 8412.1 55

than the low class on word list and matrices and worse than the low class on animals
and occupations.

The upper part of Table 5 shows that in the family-level class 3, almost all children
belong to the the mixed child-level class. Children from families belonging to family-level
class 1 are more likely to be in the high intelligence class and children from family-level
class 2 are more often in the middle and low intelligence classes. These results show
that there is a very strong family effect on the performance of children on these six
intelligence subtests.

One child-level covariate (gender) was available and was used it as a predictor of
the child’s likelihood of being in one of the intelligence clusters. Its effect turned out
to be significant (LL = −4063.9, Npar = 44). The logit coefficients indicate that boys
are more likely than girls to be in class 1 and that girls are more likely to be in class 4
than boys.

Table 5 Family -class probabilities [P (wj = �)], child-class probabilities conditional on family
class [P (xji = k |wj = �)] and the child-class-specific normal means (µtk ) obtained with the
model with L = 3 and K = 4 estimated with the intelligence data set

P (wj = �) k = 1 (high) k = 2 (middle) k = 3 (low) k = 4 (mixed)

� = 1 0.56 0.74 0.25 0.00 0.02
� = 2 0.32 0.17 0.59 0.24 0.01
� = 3 0.12 0.07 0.01 0.03 0.90

W ordlist 31.9 29.4 25.4 26.2
Cards 36.0 30.0 22.5 34.0
Figures 29.0 26.1 22.2 27.2
Matrices 34.0 29.9 26.8 28.8
Animals 30.5 28.4 24.1 21.5
O ccupations 29.1 28.5 25.5 23.0
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4.3 Repeated measures epilepsy data
For the third empirical example, the longitudinal epilepsy data set from Thall and

Vail40 coming from a randomized trial that was setup to determine the effect of a new
treatment of epilepsy was used. The outcome variable is the number of epileptic seizures
during the two weeks before each of the four clinic visits. The number of patients is 59.
The mixture model is used as a tool for dealing with overdispersed count data. More
specifically, at each of the occasions, patients can be in one of K LCs that differ with
respect to the mean of the Poisson distribution. The measurements at the four occasions
are connected by a discrete latent variable at the subject level. The substantive question
of interest is, of course, whether there is evidence that the new treatment is effective.

Table 6 presents the BIC values for the various models estimated with the epilepsy
data set. We again use the specification in which higher-level classes affect lower-level
classes and lower-level classes affect the responses. According to BIC, L = 2 and K = 5
is the best model for this data set, which means that there are five time-specific latent
states and two permanent latent states. In this application, BIC and AIC(3) do not point
at the same model: according to AIC(3), the number of permanent classes should be
three instead of two.

The parameter estimates for the model with L = 2 and K = 5 reported in Table 7 show
that there are huge differences in the average number of seizures among the five time-
specific LCs: the Poisson means range from 0.3 to 75.3. The upper part of the table shows
that the two time-constant classes consisting of 69 and 31 patients show clear difference
in their likelihood of being in one of the time-specific classes: the first higher-level class
is much more likely to belong to the two small number of seizure classes and the second
to the three large number of seizure classes. The model with L = 3 and K = 5 yields
very similar results: the definition of the time-specific classes does not change, whereas
the three permanent classes can be ordered from low to high.

As a next step, it was investigated whether treatment has an effect on the logit
of belonging to the healthier higher-level class and whether the distribution of the

Table 6 Fit measures for the models estimated
with the epilepsy data set

L K LL BIC Npar

1 1 −1641.9 3289.2 1
1 2 −945.2 1906.8 3
1 3 −771.2 1569.6 5
1 4 −741.2 1520.5 7
1 5 −725.7 1500.6 9
1 6 −723.3 1506.7 11
2 2 −914.0 1855.2 5
2 3 −724.1 1491.8 8
2 4 −685.2 1430.4 11
2 5 −670.8 1418.1 14
2 6 −667.9 1428.6 17
3 2 −911.6 1861.4 7
3 3 −716.3 1492.7 11
3 4 −671.3 1424.6 15
3 5 −658.8 1421.4 19
3 6 −654.0 1433.6 23
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Table 7 Time-constant class probabilities [P (wj = �)], time-varying class probabilities
conditional on time-constant class [P (xji = k |wj = �)] and time-varying class P oisson
means (θk ) obtained with the model with L = 2 and K = 5 estimated with the epilepsy
data set

P (wj = �) k = 1 k = 2 k = 3 k = 4 k = 5

� = 1 (low) 0.69 0.15 0.81 0.03 0.00 0.00
� = 2 (high) 0.31 0.03 0.02 0.56 0.32 0.07

Seiz ures 0.3 3.8 10.7 23.7 75.3

lower-level classes changed over time. Neither treatment nor time turned out to have
a significant effect: LL = −670.6, Npar = 15 and L = −667.9, Npar = 26.

5 Discussion

This article presented an extension of LC and finite mixture models for dealing with
multilevel data sets. The variant that received most attention is a model in which higher-
level units are clustered based on the (prior) class membership probabilities of their
members. Although, the approach was originally proposed by Vermunt16 for LC models
with categorical response variables, it was shown that the methodology can also be used
in context of finite mixture models for continuous response variables and counts.

The modelling approach was illustrated with three applications, a typical three-level
application, a clustering application and a repeated measures clinical trial. In each of
these three examples, it turned out that there was a need to take into account the
hierarchical nature of the data set when defining an LC model. Also from a substantive
point of view, the multilevel LC model turned out to have a clear added value compared
with the standard LC model. In the first example, classes of hospital which contain
doctors with very different prescription behaviours were found. Hospitals participating
in a WHO programme performed much better than hospitals that did not participate
in this programme. The second example showed a very strong family effect on the
performance of children on six intelligence tests, with one family cluster containing
children with a mixed intelligence level. The last example illustrated the modelling of
longitudinal count data using the multilevel LC model. From a substantive point of view,
the results were, however, somewhat atypical: there was no evidence at all for a treatment
effect, and there was no evidence that class membership probabilities changed during
the observation period.

As far as the discrete versus continuous specification for the latent variables at levels
2 and 3 is concerned, it can be observed that especially in the analysis of the intelligence
data set the discrete approach turned out to be extremely valuable from a substantive
point of view. Interesting and easy to explain patterns were encountered that would
never have been detected using a model with continuous latent variables. In the other two
applications, the discrete latent variables turned out to be either ordered or dichotomous,
which implies that similar substantive conclusions would have been reached using models
with continuous latent variables. The only advantage of the discrete specification was
that it does not require making strong assumptions about the distributions of the latent
variables.
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Various interesting extensions of the multilevel LC model are possible. The most
straightforward one would be an extension to data sets with additional levels in the hier-
archy. There are no practical or theoretical obstacles for such an extension: as shown by
Vermunt,13 the upward–downward variant of the EM algorithm can easily be extended
to any number of levels.

Another extension to be mentioned is the possibility of using continuous latent vari-
ables in addition to classes at the lower level. This yields mixed variants of well-known
latent variable models such as item response models and FA. Within a multilevel context
with discrete random effects at the higher level, one obtains a very interesting latent
variable model with mixture distributions at both the subject and the group level, each
of which would capture a different type of unobserved heterogeneity.

Appendix

Implementation of th e E step of th e EM algorith m
By treating the wj and xji variables as missing or unobserved, parameter estimation

by ML can be solved by means of the EM algorithm.32 Because of the extremely high
dimensionality of the missing data problem, in the implementation of the E step similar
trick as in the Baum–Welch algorithm for hidden Markov modelling was used.41 It should
be noted that the model defined in Equations (3) and (4) contains 1 + nj unobserved
variables with a total of L · Knj categories. This implies, for example, that with nj = 8
and K = L = 4, a model with 262 144 entries in the joint distribution of the discrete
variables with missing values is dealt with. It will be clear that this can not be solved with
a standard EM algorithm. In the graphical or Bayesian belief network modelling field,
the multilevel LC model would be recognized as a single-connected network or polytree,
for which marginal probabilities for subsets of variables can be obtained by propagation
algorithms.42 Both the forward–backward algorithm for hidden Markov models and the
upward–downward algorithm discussed below are propagation algorithms.

Rather than repeating all the well-known details on the EM algorithm for the estima-
tion of finite mixture models which can be found in, for example, McLachlan and Peel,9

the specific aspects associated with the estimation of the multilevel LC model described
in Equations (3) and (4) will be concentrated on. The expected value of the complete
data LL function for this model has the following form:

E[log LC(ϑ)] =

J∑

j=1

L∑

�=1

ŵj� log P(wj = �)

+

J∑

j=1

L∑

�=1

nj∑

i=1

K∑

k=1

ŵj�̂xjik|� log P(xji = k|wj = �)

+

J∑

j=1

L∑

�=1

nj∑

i=1

K∑

k=1

ŵj�̂xjik|� log f (yji|ϑk�)
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where ŵj� = P(wj = �|yj; ϑ) and x̂jik|� = P(xji = k|wj = �, yj; ϑ) denote the posterior

probability that group j belongs to class � and that subject i belongs to class k given that
the group belongs to class �, conditional on the observed data and the current parameter
estimates. Calculation of the expected value of the complete data LL – which is the E step
of the EM algorithm – thus involves computing these two sets of posterior probabilities.
Note that ŵj� · x̂jik|� = P(wj = �, xji = k|yj; ϑ).

Crucial in the implementation of the E step of the EM algorithm is that one can make
use of the fact that lower-level observations are independent of one another given the
higher-level (group) class memberships. More specifically, we make use of the fact that

x̂jik|� = P(xji = k|wj = �, yj; ϑ) = P(xji = k|wj = �, yji; ϑ)

that is, that given class membership of the group (wj), class membership of a subject
(xji) is independent of the observed data of other subjects in the group concerned.

In order to simplify the formulas for ŵj� and x̂jik|�, let

hjik|� = P(xji = k|wj = �)f (yji|xji = k, wj = �)

= P(xji = k|wj = �)f (yji|ϑk�)

and

gji|� =

K∑

k=1

hjik|�

The relevant terms are obtained as follows:

ŵj� =
P(wj = �)

∏nj

i=1 gji|�∑L
�=1 P(wj = �)

∏nj

i=1 gji|�

x̂jik|� =
hjik|�

gji|�

As can be seen, for each group j, we first compute hjik|� for each �, i and k combination
and collapse these over k to obtain gji|�, which amounts to marginalizing over the lower-
level discrete latent variables. Combining the gji|� for all i gives the posterior for the

higher-level LC variable. Analogous to the forward–backward algorithm, Vermunt16

refers to these steps as the upward steps. The downward step involves the computation
of x̂jik|� and the bivariate joint posterior of wj and xji, the (product) term that enters in
the expected complete data LL; that is,

P(wj = �, xji = k|yj; ϑ) = ŵj� · x̂jik|�

In M step of the EM algorithm, standard complete data methods can be used for finding
estimates of the unknown model parameters that maximize (or increase) the expected
complete data LL.
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Latent GOLD 4.5 syntax for examples

The models discussed in this article can be defined using the Latent GOLD point and
click graphical user interface. In the newest version Latent GOLD 4.5,43 it is also possible
to define models using a syntax language, which makes the model structure much more
transparent. More specifically, the model definition consists of a series of regression
equations for the latent and the response variables, as well as of the specification of
the settings for the (residual) variances and covariances. Before defining the regression
equations, one has to specify the technical and output options and the id variables, as
well as the names and scale types of the latent, dependent and independent variables
that play a role in the model. Scale types are denoted with keywords such as nominal,
ordinal, continuous, numeric, poisson and binomial.

In the first example, a long file with a single nominal dependent variable Abuse, was
used. The records of a doctor are linked by a case-id variable and the records of a hospital
by a group-id.HospitalClass andDoctorClass are discrete latent variables at the
hospital and doctor level. The model definition consists of three regression equations:
HospitalClass <- 1;

DoctorClass <- 1 + HospitalClass;

Abuse <- 1 + DoctorClass;

Here, ‘1’ is used to define the constant in the regression equation concerned. The model
with the predictors WHO and Education is defined as follows
HospitalClass <- 1 + WHO;

DoctorClass <- 1 + HospitalClass + Education;

Abuse <- 1 + DoctorClass;

As was indicated in the text, HospitalClassmay also be used as a predictor in the
model for the response variable Abuse rather than in the model for the DoctorClass:
HospitalClass <- 1;

DoctorClass <- 1;

Abuse <- 1 + DoctorClass + HospitalClass;

This yields a more standard 3-level regression model with discrete level-2 and level-3
random effects in the model for the response variable.

In the second example, a standard rectangular data file containing the six continuous
response variables in separate columns was used. A group-id connects the records of
children belonging to the same family. The multilevel LC model is specified as follows:
FamilyClass <- 1;

ChildClass <- 1 + FamilyClass;

WordList <- 1 + ChildClass;

Cards <- 1 + ChildClass;

Figures <- 1 + ChildClass;

Matrices <- 1 + ChildClass;

Animals <- 1 + ChildClass;

Occupations <- 1 + ChildClass;

WordList;

Cards;

Figures;
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Matrices;

Animals;

Occupations;

Note that the last six lines define the structure for the residual variances. Although in
this example a specification with homoscedastic residuals was used, it is straightforward
to define models with heteroscedastic errors. For example, if the error variances are
allowed to depend on FamilyClass, then ‘Wordlist;’ is replaced by ‘WordList
| FamilyClass;’, etc. Similarly, it could be indicated that residual variances differ
across child-level LCs.

The setup for the third example is similar to the one for the first example, with the
only difference that no id variable is needed at the lower level since there is only one
response per time point (T = 1).

Winbugs model definition
For the prescription of antibiotics example, the model was also estimated using the

MCMC approach implemented in Winbugs 1.4. The model definition for a model with
L and K classes is as follows:
for (jit in 1:855) {abuse[jit] ˜ dcat(piy[x[docid[jit]],])}

for (ji in 1:134) {x[ji] ˜ dcat(pix[w[hospid[ji]],])}

for (j in 1:36) {w[j] ˜ dcat(piw[])}

for (k in 1:K) {piy[k,1:3] ˜ ddirch(prior[1:3])}

for (l in 1:L) {pix[l,1:K] ˜ ddirch(prior[1:K])}

piw[1:L] ˜ ddirch(prior[1:L])

In the data file, one defines the number of doctor- and hospital-level LCs (L and K), the
value of the response variable (abuse) and the doctor-id (docid) for each prescription,
the hospital-id (hosid) for each doctor and the hyper-parameters of the Dirichlet priors
(each entry was set equal to 1, which amounts to using diffuse priors). In addition, one
may wish to specify initial values for the model parameters (piy, pix and piw).
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