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LATENT CLASS FACTOR AND
CLUSTER MODELS, BI-PLOTS, AND
RELATED GRAPHICAL DISPLAYS

Jay Magidson*
Jeroen K. Vermunt†

We propose an alternative method of conducting exploratory latent
class analysis that utilizes latent class factor models, and compare
it to the more traditional approach based on latent class cluster
models. We show that when formulated in terms of R mutually inde-
pendent, dichotomous latent factors, the LC factor model has the
same number of distinct parameters as an LC cluster model with
R11 clusters. Analyses over several data sets suggest that LC fac-
tor models typically fit data better and provide results that are eas-
ier to interpret than the corresponding LC cluster models. We also
introduce a new graphical “bi-plot” display for LC factor models
and compare it to similar plots used in correspondence analysis and
to a barycentric coordinate display for LC cluster models. New
results on identification of LC models are also presented. We con-
clude by describing various model extensions and an approach for
eliminating boundary solutions in identified and unidentified LC
models, which we have implemented in a new computer program.

1. INTRODUCTION

Latent class (LC) analysis is becoming one of the standard data analysis
tools in social, biomedical, and marketing research. While the traditional
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LC model was introduced by Lazarsfeld and Henry (1968) for dichoto-
mous variables and formalized and extended to nominal variables by Good-
man (1974a, 1974b), variants have been proposed for ordinal (Clogg 1988;
Uebersax 1993; Heinen 1996) and continuous indicators (Wolfe 1970;
McLachlan and Basford 1988; Fraley and Raftery 1998), as well as for
combinations of variables of different scale types (Lawrence and Krza-
nowski 1996; Moustaki 1996; Hunt and Jorgensen 1999; Vermunt and
Magidson 2001). This paper concentrates on exploratory LC analysis with
nominal and ordinal indicators.

In an exploratory LC analysis, the usual approach is to begin by
fitting a 1-class (independence) model to the data, followed by a two-
class model, a three-class model, etc., and continuing until a model is
found that provides an adequate fit (Goodman 1974a, 1974b; McCutch-
eon 1987). We refer to such models as LC cluster models since the T
nominal categories of the latent variable serve the same function as the T
clusters desired in cluster analysis (McLachlan and Basford 1988; Hunt
and Jorgensen 1999; Vermunt and Magidson 2001).

Van der Ark and Van der Heijden (1998) and Van der Heijden,
Gilula, and Van der Ark (1999) showed that exploratory LC analysis can
be used to determine the number of dimensions underlying the responses
on a set of nominal items. A LC model with three classes, for example,
can be seen as a two-dimensional model similar to a two-dimensional joint
correspondence analysis (JCA). However, within the context of LC analy-
sis, a more natural manner of specifying the existence of two underlying
dimensions for a set of items is to specify a model containing two latent
variables.

Goodman (1974b), Haberman (1979), and Hagenaars (1990, 1993)
proposed restricted 4-class LC models yielding confirmatory LC models
with two latent variables. Their approach is confirmatory since, as in con-
firmatory factor analysis, it requiresa priori knowledge on which items
are related to which latent variables. Inexploratorydata analysis settings,
we do not know beforehand which items load on the same latent variable.
Hence, in exploratory analyses with several latent variables, this approach
has limited practical applicability.

In this paper, we propose combining the exploratory model fitting
strategy of the traditional LC model with the possibility of increasing the
number of latent variables to study the dimensionality of a set of items.
Our alternative model-fitting sequence involves increasing the number of
latent variables (factors) rather than the number of classes (clusters). We
call the latter sequence the LC factor approach because of the natural anal-
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ogy to standard factor analysis. The basic LC factor model contains R
mutually independent, dichotomous latent variables. To exclude higher-
order interactions, logit models are specified on the response probabili-
ties. An interesting feature of the basic R-factor model is that it has exactly
the same number of parameters as an LC cluster model with T5 R11
clusters. In Section 2, we describe the two types of exploratory LC mod-
els using the log-linear formulation introduced by Haberman (1979).

Section 3 compares the use of LC cluster and factor models in sev-
eral examples and describes various graphical displays that facilitate the
interpretation of the results obtained from these models. In particular, we
consider some variations of the ternary diagram originally proposed by
Van der Ark and Van der Heijden (1998) for LC cluster models, and intro-
duce a new display (called a “bi-plot”) for LC factor models to represent
various kinds of information in a two-dimensional factor space. These
two graphs are compared to each other and to similar displays used in
correspondence analysis.

Section 4 describes some important extensions of the basic LC fac-
tor model, such as various model modifications needed for a more confir-
matory analysis and for the inclusion of covariates. In Section 5, we discuss
identification issues. The paper ends with some final remarks regarding
the applicability of these models.

2. TWO APPROACHES FOR EXPLORATORY LC ANALYSIS

In this section we describe and compare two competing alternative
approaches for exploratory LC analysis. The traditional approach uti-
lizes LC cluster models, while the alternative is based on LC factor
models. For the sake of simplicity of exposition, below we use the log-
linear formulation of LC models introduced by Haberman (1979).
In Appendix A, we give the alternative probability formulation of the
two types of LC models as well as the relationship between the two
formulations.

2+1+ The LC Cluster Model

For concreteness, consider four nominal variables denotedA, B, C, andD.
Let X represent a nominal latent variable with T categories. The log-linear
representation of the LC cluster model with T classes is

ln~Fijklt ! 5 l 1 lt
X 1 l i

A 1 l j
B 1 lk

C 1 l l
D 1 l it

AX 1 l jt
BX 1 lkt

CK 1 l lt
DX (1)
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where i 5 1,2, + + + , I; j 5 1,2, + + + , J; k 5 1,2, + + +K; l 5 1,2, + + +L; and t 5
1,2, + + + ,T.

For convenience in counting distinct parameters and without loss
of generality, we choose the following “dummy coding” restrictions to
identify the parameters:1

l1
X 5 l1

A 5 l1
B 5 l1

C 5 l1
D 5 0

l i1
AX 5 l j1

BX 5 lk1
CX 5 l l1

DX 5 0 for i 5 1,2, + + + , I; j 5 1,2, + + + , J;

k 5 1,2, + + + ,K; l 5 1,2, + + +L;

and l1t
AX 5 l1t

BX 5 l1t
CX 5 l1t

DX 5 0 for t 5 2,3, + + + ,T.

As can be seen, the LC model described in equation (1) has the
form of a log-linear model for the five-way frequency table cross-
classifying the four observed variables and the latent variable—that is,
the table with cell entries Fijklt . The assumed model contains one-variable
terms (“main effects”) associated with the latent variableX and the four
observed indicatorsA, B, C, andD, as well as all two-variable “inter-
action” terms that involveX which pertain to the association betweenX
and each of the observed indicators. The one-variable effects are included
because we do not wish to impose constraints on the univariate mar-
ginal distributions. The assumption that the observed responses toA, B,
C, andD are mutually independent givenX 5 t (“local independence”)
is imposed by the omission of all interaction terms pertaining to the
associations between the indicators. As shown in Appendix A, this set
of conditional independence assumptions can also be formulated in
another way, yielding the probability formulation for the LC model.

Note that for the one-class model, since T51, the model described
in equation (1) reduces to the usual log-linear model of mutual indepen-
dence between the four observed variables:

ln~Fijkl ! 5 l 1 l i
A 1 l j

B 1 lk
C 1 l l

D + (2)

More generally, for models with any number of variables, we will denote
the model of mutual independence as H0, and use it as a baseline to assess
the improvement in fit to the data of various LC models. The number of

1See Haberman (1979) for an alternative set of identifying restrictions based
on ANOVA effects coding.
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distinct parameters in the model of independence as described in equation
(2) is as follows:2

NPAR(indep)5 (I 2 1) 1 (J2 1) 1 (K 2 1) 1 (L 2 1)

Expressing the number of distinct parameters in the model described
in equation (1) as a function of NPAR(indep), yields:

NPAR(T) 5 (T 2 1) 1 NPAR(indep)3 [1 1 (T 2 1)]

5 (T 2 1) 1 NPAR(indep)3 T

The number of degrees of freedom (DF) associated with the test of
model fit is directly related to the number of distinct parameters in the
model tested.3

DF(T) 5 IJKL 2 NPAR(T)2 1

5 IJKL 2 [1 1 NPAR(indep)]3 T

Beginning with this baseline model (T51), each time the number of latent
classes (T) is incremented by 1 the number of distinct parameters increases
by 11 NPAR(indep), and, as a consequence, the degrees of freedom are
reduced by 11 NPAR(indep). The first additional parameter is the main
effect for the additional latent class, and the NPAR(indep) further param-
eters correspond to the effects of each observed (manifest) variable on
this additional latent class.

2+2+ The Latent Class Factor Model

Certain LC models can be interpreted in terms of two or more component
latent variables by treating those components as a joint variable (Good-
man 1974b; McCutcheon 1987; Hagenaars 1990). For example, a four-
category latent variableX 5 {1, 2, 3, 4} can be re-expressed in terms of
two dichotomous latent variablesV 5 {1, 2} and W 5 {1, 2} using the
following correspondence:

2By convention, we do not countl as a distinct parameter because of the
redundancy to the overall sample size, and we subtract 1 from the number of cells
when computing degrees of freedom.

3It is customary when one or more distinct parameters are unidentified or not
estimable (a boundary solution), to adjust the DF, increasing it by the number of such
unidentified or not estimable parameters.
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W5 1 W5 2
V 5 1 X 5 1 X 5 2
V 5 2 X 5 3 X 5 4

ThusX 5 1 corresponds withV 5 1 andW 5 1, X 5 2 with V 5 1 and
W5 2, X 5 3 with V 5 2 andW5 1, andX 5 4 with V 5 2 andW5 2.

The LC cluster model given in (1) with T5 4 classes can be
re-parameterized as anunrestrictedLC factor model with two dichoto-
mous latent variablesV andW as follows:

ln~Fijklrs ! 5 l 1 lr
V 1 ls

W 1 lrs
VW 1 l i

A 1 l j
B 1 lk

C 1 l l
D 1 l ir

AV 1 l jr
BV

1 lkr
CV 1 l lr

DV 1 l is
AW 1 l js

BW 1 lks
CW 1 l ls

DW 1 l irs
AVW1 l jrs

BVW

1 lkrs
CVW1 l lrs

DVW+ (3)

The correspondence between the two representations is that the one-
variable terms pertaining toX are now written asl2~r21!1s

X 5 lr
V 1 ls

W 1
lrs

VW, and the two-variable terms involvingX asl i,2~r21!1s
AX 5 l ir

AV 1 l is
AW1

l irs
AVW, l j,2~r21!1s

BX 5 l jr
BV 1 l js

BW 1 l jrs
BVW, etc. It is easy to verify that this

reparameterization does not alter thenumberof distinct parameters in the
model.

We define thebasic R-factor LC model as arestrictedfactor model
that containsR mutually independent, dichotomous latent variables, con-
taining parameters (“factor loadings”) that measure the association of each
latent variable on each indicator. Specifically, the basicR-factor model is
defined by placing two sets of restrictions on the unrestricted LC factor
model. The resulting two-factor LC model is a restricted form of the four-
class LC cluster model. Without these restrictions, the two-factor model
would be unconstrained and would be equivalent to a four-cluster model.

The first set of restrictions sets to zero each of the three-way and
higher-order interaction terms. For the basic two-factor model, we have
l irs

AVW5 l irs
BVW5 l irs

CVW5 l irs
DVW 5 0. After imposing these restrictions, the

two-variable terms in the basic two-factor model become

l i,2~r21!1s
AX 5 l ir

AV 1 l is
AW, l j,2~r21!1s

BX 5 l jr
BV 1 l js

BW, etc.

For variableA, l ir
AV represents the loading ofA on factor V and l is

AW

denotes the loading ofA on factorW, etc. By fixing the three-variable
terms to be equal to zero, we obtain a model that is conceptually simi-
lar to standard exploratory factor analysis: Each of the factors may have
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an effect on each indicator, but there are no higher-order interaction
terms. Constraints of this form are necessary to allow the four latent
classes to be expressed as a cross-tabulation of two latent variables and
thus are essential for distinguishing the LC factor model from the LC
cluster model.

The second set of restrictions imposes mutual independence
between the latent variables. For the two-factor model, this latter restric-
tion imposes independence in the two-way table^VW&. This restriction
makes the model more similar to standardexploratory factor analysis.
We relax this assumption in Section 4, when we presentconfirmatory
LC factor models.

Although the basic R-factor model is a special case of an LCclus-
ter model containing 2R classes, we show in Appendix A that because of
the restrictions of the type given above, the basic R-factor LC model is
actually comparable to an LC cluster model with only T5 R 1 1 clusters
in terms of parsimony. This large reduction in number of parameters will
be sufficient to achieve model identification in many situations. That is,
in practice, it will frequently be the case that the basic R-factor will be
identified when the LC cluster model with 2R classes is not.

Table 1 verifies the equivalence in number of parameters (and
the associated degrees of freedom) between the various identified LC
cluster models and the corresponding basic LC factor models in the case
of five dichotomous indicator variables. From this table we can also cal-
culate, for example, that the basic LC two-factor model requires 232
17 5 6 fewer parameters than the four-class LC cluster model. This

TABLE 1
Equivalency Relationship Between LC Cluster and Basic LC Factor Models

(Example with Five Dichotomous Variables)

LC Cluster Models Basic LC Factor Models

Number of
Latent Classes

Number of
Parameters DF

Number
of Factors

Number of
Parameters DF

1 5 26 0 5 26
2 11 20 1 11 20
3 17 14 2 17 14
4 23 8 3 23 8
5 29 2 4 29 2
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reduction corresponds to the five restrictionsl irs
AVW 5 l irs

BVW 5 l irs
CVW 5

l irs
DVW 5 l irs

EVW 5 0, plus the restriction thatV and W are independent.
(See Appendix A for a simple formula for calculating the number of
such restrictions in the more general case.)

We conclude this section by noting an important difference between
our LC factor model and the LC models with several latent variables pro-
posed by Goodman (1974b), Haberman (1979), McCutcheon (1987), and
Hagenaars (1990, 1993). The basic LC factor model described above
includes all factor loadings between the latent variables and the indica-
tors. This means that no assumptions need be made about which indica-
tors are related to which latent variables. This makes this LC factor model
better suited for exploratory data analysis than the LC models with sev-
eral latent variables described in the literature.

Thus far we have described two alternative approaches for explor-
atory LC analysis, one involving the fitting of LC cluster models, the other
fitting basic LC factor models. In the next section we consider some exam-
ples to illustrate and compare their performance on real data and introduce
graphical displays that facilitate the interpretation of the obtained results.

3. EXAMPLES AND GRAPHICAL DISPLAYS

Comparison of the two approaches for exploratory LC analysis across sev-
eral data sets found that the factor approach resulted in a more parsimoni-
ous and easier to interpret model almost every time. Since our selection of
data sets was not random, we do not present those results here. Rather, for
purposes of illustration, this section considers the analysis from two data
sets where a basic two-factor model fits the data. In the first example, the
comparable cluster model also provides an acceptable (but not as good)
fit to the data; in the second example, the comparable cluster model pro-
vides amuchworse fit, one that is not acceptable for these data.

This section also introduces graphical displays useful in displaying
results from LC cluster and factor models. Details on the computation of
the conditional probabilities appearing in the plots are given in Appendix B.

3+1+ Example1: 1982General Social Survey Data

Our first example, taken from McCutcheon (1987) and reanalyzed by Van
der Heijden, Gilula, and Van der Ark (1999) involves four categorical vari-
ables from the 1982 General Social Survey. Two items are evaluations of
surveys by white respondents and the other two are evaluations of these
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respondents by the interviewer (see Table 2). A summary of various LC
models fit to these data is given in Table 3.

Model H0 is the baseline model given in equation (2), which spec-
ifies mutual independence between all four variables. Model H0 is a one-
class LC model (a one-cluster model) which can also be interpreted as the
equivalent 0-factor LC model. Since L2 5 257.26 with DF5 29, this model
is rejected. Next, consider the two-class model (H1) that can be inter-
preted as either a two-cluster model or the equivalent one-factor model
where the factor is dichotomous. The L2 is now reduced to 79.34, a 69.1%

TABLE 2
Cross-Tabulation of Observed Variables for White Respondents

to the 1982 General Social Survey

(A) COOPERATION

(C)
PURPOSE

(D)
ACCURACY

(B)
UNDERSTANDING Interested Cooperative

Impatient0
Hostile

Good Mostly true Good 419 35 2
Fair, poor 71 25 5

Not true Good 270 25 4
Fair, poor 42 16 5

Depends Mostly true Good 23 4 1
Fair, poor 6 2 0

Not true Good 43 9 2
Fair, poor 9 3 2

Waste Mostly true Good 26 3 0
Fair, poor 1 2 0

Not true Good 85 23 6
Fair, poor 13 12 8

TABLE 3
Results from Various LC Models Fit to Data in Table 2

Model Model Description BIC L2 DF p-value
% Reduction

in L2(H0)

H0 1-class 51.6 257.26 29 2.03 10238 0
H1 2-class 276.7 79.34 22 2.13 1028 69.1
H2C 3-class 298.7 21.89 1512* 0.19 91.5
H2F basic 2-factor 2109.6 10.93 1512* 0.86 95.7
H3 4-class 272.0 6.04 813* 0.87 97.7
HR2F restricted 2-factor 2140.9 22.17 2211* 0.51 91.4
H1F3 1-factor (3 levels) 271.7 77.25 21 2.33 1028 70.0

*DF is increased by these boundary solutions.
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reduction from the baseline model, but too high to be acceptable with
DF 5 22.

Next, consider the two 15-DF models4—H2C, the 3-cluster model
and H2F, the basic 2-factor model. Each of these models provide an ade-
quate fit to the data, although the factor model fits better, the L2 being
half that of the comparable cluster model. For comparison, Table 3 also
provides results for the four-cluster model (H3). Among the first five mod-
els listed in Table 3, H2F is preferred according to the BIC criteria. The
last two models in Table 3 are extended models that will be discussed in
the next section.

Table 4 compares results obtained from the three-cluster Model
(H2C) with that from the basic 2-factor model (H2F). The cell entries in
the leftmost columns are “rescaled parameter estimates” suggested by
Van der Heijden, Gilula, and Van der Ark (1999), and represent the esti-
matedconditional probabilities of being a member of one of the three
clusters. The rightmost columns contain corresponding quantities for the
basic two-factor model, representing the estimated probabilities of being
at level 1 for each of the two factors.Unconditionalmembership prob-
abilities for the clusters and for level 1 of the factors are given in the
last row of the table.

Graphical displays of the conditional probabilities reported in
Table 4 are useful in comparing results between the two models. For
the three-cluster model H2, Van der Heijden, Gilula, and Van der Ark
(1999, fig. 4) present a ternary diagram for visualizing the results and
show the close relationship to two-dimensional plots produced by joint
correspondence analysis (JCA). A slightly modified graphic, referred to
here as a “barycentric coordinate” display is given in Figure 1 for the
three-cluster model H2C. The shaded triangle in Figure 1 with lines ema-
nating to the sides represents the overall sample, which is plotted at the

4For both models H2C and H2F, the maximum-likelihood solution contains
two boundary solutions and hence, by convention (see note 3) we increased the DF by
2. Adding the number of parameters estimated on the boundary to the number of degrees
of freedom is a convention in LC analysis (for instance, see McCutcheon 1987). In
our opinion, there is no good reason to do so, but it is outside the scope of this paper to
present alternative testing methods for situations in which boundary estimates occur.
For model H2C, McCutcheon (1987) reported an adjusted DF of 16, increasing the
usual DF by only 1 because the solution reported was not fully converged and con-
tained, therefore, only one boundary solution. The solution presented in Van der Heijden
et al. (1999) is the same solution as that presented here (containing two boundary
solutions), but they also misreport the DF to be 16 instead of 17.
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point corresponding to the unconditional membership probabilities for
the clusters.

A different display for LC factor-models called the “bi-plot”5 (Ver-
munt and Magidson, 2000) is given in Figure 2 for the two-factor model
H2F. For comparability to the barycentric coordinate plot where cluster 1
is assigned to the top vertex, we take factor 1 to be thevertical axis and

5In the context of correspondence analysis, the term “biplot” refers to a par-
ticular joint display of points representing both the rows and columns of a frequency
table (Greenacre 1993). On the other hand, Gower and Hand (1996) stress that the
“bi” in biplots arises from the fact that cases and variables are presented in the same
plots. In Vermunt and Magidson (2000), we chose the term “bi-plot” because of the
similarity of our plots to the plots used in correspondence analysis. However, despite
the fact that in most of our examples we depict only variable categories, it is also
possible to depict cases (or answer patterns) in our plots as we illustrated in our Fig-
ures 4, 6 and 8. For more detail about our plots, see Appendix B.

TABLE 4
Comparison of Results from the Three-Cluster Model with the Basic Two-Factor

Model Conditional Membership Probability of Being in Cluster j5 1,2,3
(for Model H2C) or Level 1 of Factor k5 1,2 (for Model H2F)

Model H2C Model H2F

Cluster 1 Cluster 2 Cluster 3
Factor1

(1)
Factor2

(1)

Indicators
PURPOSE

Good 0.72 0.25 0.03 0.83 0.71
Depends 0.38 0.17 0.45 0.65 0.28
Waste 0.24 0.02 0.73 0.59 0*

ACCURACY
Mostly true 0.73 0.26 0.01 0.83 0.83
Not true 0.50 0.15 0.35 0.71 0.28

UNDERSTAND
Good 0.76 0.08 0.16 0.89 0.53
Fair, poor 0* 0.77 0.23 0.28 0.71

COOPERATE
Interested 0.70 0.17 0.13 0.86 0.58
Cooperative 0.27 0.40 0.33 0.38 0.51
Impatient0hostile 0* 0.39 0.61 0* 0.35

Overall Probability 0.62 0.21 0.17 0.78 0.57

*Indicates a boundary solution.
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factor 2 the horizontal. By comparing these plots, we can see the large
degree of similarity between the models, the primary difference being the
relative positioning of COOPERATION5 Impatient0hostile and UNDER-
STANDING 5 Fair, poor.

Lines connecting the categories of a variable can make it easier
to see to which factor the variables are most related. For example, Fig-
ure 3 shows that separation between the categories of the two respon-
dent evaluation variables, PURPOSE and ACCURACY, occurs primarily
along Factor 2 (the horizontal axis in Figure 3) while for the two inter-
viewer evaluation variables, UNDERSTANDING and COOPERATION,
separation occurs primarily along Factor 1 (the vertical axis). This makes
clear that Factor 1 pertains primarily to the interviewer valuation while
Factor 2 pertains primarily to the respondent valuation. These two fac-
tors are not only distinct (i.e., the one-factor model H1 does not fit these
data) but according to model H2F, they are mutually independent.

 

 

FIGURE 1. Barycentric coordinate display of results reported in Table 4 for model
H2C.
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Since our models yield estimated membership probabilities for each
individual case, both displays can easily be extended to include points for
individual cases and covariate levels as well as any other desired group-
ings of the cases (see Appendix B). Our methodology is unified in the
sense that the same methods and models that yield our displays for LC
cluster models also yield the bi-plots for the LC factor models. Our bary-
centric coordinate display can be more easily extended in this manner
than the methods proposed by Van der Heijden, Gilula, and Van der Ark
(1999) with the ternary diagram. In our next example we will illustrate
the inclusion in our plots of cases by including specific cases with selected
response patterns. Then in Section 4, we show how the display ofall
response patterns can be used to identify a natural ordering between the
classes (when such an ordering exists), and we describe two different
approaches for overlaying covariate values (levels) onto the displays.

 

 

FIGURE 2. Bi-plot of results reported in Table 4 for model H2F.
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The bi-plots offer several advantages over the related plots pro-
duced in correspondence analysis (CA) even when the data justifies a two-
dimensional CA solution.6 That is because the 2-dimensional CA solution
is closely related to the 3-cluster solution (Gilula and Haberman 1986; De
Leeuw and Van der Heijden 1991) which we have found typically does
not fit the data as well as the 2-factor solution. As suggested in this paper,
the LC factor models generally provide simpler explanations of data than

6An extensive comparison between the LC cluster model and ( joint) corre-
spondence analysis is given by Van der Heijden, Gilula and Van der Ark (1999). They
showed that ( joint) correspondence analysis is very similar to what we labeled the LC
cluster model. More precisely, a two-dimensional joint correspondence analysis can
describe exactly the results—the estimated frequencies in all two-way tables—of a
three-cluster model.

 

FIGURE 3. Bi-plot for Model H2F with lines connecting categories of a variable.
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LC cluster models and the related canonical models used in CA and prin-
cipal components analysis.

Our LC factor model is more closely related to traditional factor
analysis than to CA. There are several advantages over traditional factor
analysis: (1) the variables can include different scale types—nominal, ordi-
nal, continuous and0or counts, (2) solutions are typically uniquely identi-
fied and interpretable without the need for a rotation—there is no rotational
indeterminacy, and (3) factor scores can be obtained for each case without
the need for additional assumptions. Like traditional factor analysis, LC
factor analysis can be used as a first step in a more confirmatory analysis.
Later in this paper (Section 4) we describe a more confirmatory analysis
of the data analyzed above.

3+2+ Example2: Rheumatoid Arthritis Data

Our second example consists of five dichotomous responses obtained from
a mail survey regarding various musculoskeletal symptoms (see Table 5).
Specifically, persons were asked whether they had any of the following
symptoms today: back pain, neck pain, joint pain, joint swelling, and joint
stiffness. For further details, see Wasmus, et al. (1989).

The traditional LC cluster approach, as applied by Kohlmann and
Formann (1997) to these data, rejects the one-, two-, and three-class mod-
els in favor of the four-class model, which provides an acceptable fit to
the data~L2 5 8.4 with 8 degrees of freedom;p 5 .39). The BIC statistic
also selects the four-class model as the one to be preferred among the LC
cluster models listed in Table 6.

The close relationship between the latent classclustermodel and
the canonical model (Gilula and Haberman 1986; De Leeuw and Van der
Heijden 1991) justifies a two-dimensional display such as that produced
in joint correspondence analysis (JCA) when the three-cluster model is
true (Van der Heijden, Gilula, and Van der Ark 1999). On the other hand,
when the three-class model must berejectedas not providing an adequate
fit to data, as in the present example, the two-dimensional JCA display
cannot provide a complete description of these data because a third dimen-
sion is also needed. However, as we show below, adifferent two-
dimensional display obtained from the LC factor modeldoesprovide a
complete description of these data.

Table 7 provides a closer look at the differences between the three-
and four-class solutions to these data. We see that for the most part, the
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four-class solution maintains classes 1 and 2 from the three-class solution
but splits class 3 into two separate clusters. One way to visualize the close
relationship between these two solutions is to combine classes 3 and 4 of
the four-class solution and compare the resulting barycentric coordinate
display (presented in Figure 5) with the original one from the three-

TABLE 5
Rheumatoid Arthritis Mail Survey Data

BACK NECK JOINT SWELL STIFF Frequency

No No No No No 3,634
No No No No Yes 73
No No No Yes No 87
No No No Yes Yes 10
No No Yes No No 440
No No Yes No Yes 89
No No Yes Yes No 106
No No Yes Yes Yes 75
No Yes No No No 295
No Yes No No Yes 25
No Yes No Yes No 15
No Yes No Yes Yes 5
No Yes Yes No No 137
No Yes Yes No Yes 42
No Yes Yes Yes No 35
No Yes Yes Yes Yes 39
Yes No No No No 489
Yes No No No Yes 37
Yes No No Yes No 23
Yes No No Yes Yes 7
Yes No Yes No No 255
Yes No Yes No Yes 116
Yes No Yes Yes No 71
Yes No Yes Yes Yes 65
Yes Yes No No No 306
Yes Yes No No Yes 48
Yes Yes No Yes No 16
Yes Yes No Yes Yes 11
Yes Yes Yes No No 229
Yes Yes Yes No Yes 162
Yes Yes Yes Yes No 44
Yes Yes Yes Yes Yes 176
TOTAL 7,162
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cluster model (Figure 4). As can be seen, these plots are almost identical,
adding visual support to our conclusion (based on inspection of Table 7)
that the primary difference between the two solutions is the splitting of
class 3 into separate clusters. However, these plots do not describe the
significant differences that exist between clusters 3 and 4 of the four-
cluster solution.

Results from fitting various basic factor models to these data are
also included in Table 6. In particular, we see that despite the fact that the

TABLE 6
Results from Various LC Models Fit to Data in Table 5

Model Hm Model Description BIC L2 DF p-value
% Reduction

in L2(H0)

H0 1-class 4592.8 4823.6 26 3.03 102101 0
H1 2-class 376.6 554.2 20 1.33 102104 88.5
H2C 3-class 38.2 162.4 14 2.33 10227 96.6
H2F Basic 2-factor 2110.5 13.7 14 0.5 99.7
H3C 4-class 262.6 8.4 8 0.4 99.8
H3F Basic 3-factor 285.1 3.7 812* 1.0 99.9

*DF is increased by these boundary solutions.

TABLE 7
Comparison of Results Obtained Under Models H2C and H3C Conditional

Membership Probabilities

Three-Class Solution (H2C) Four-Class Solution (H3C)

Variables Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 Class 4

BACK
No 0.94 0.32 0.37 0.93 0.31 0.60 0.09
Yes 0.06 0.68 0.63 0.07 0.69 0.40 0.91

NECK
No 0.96 0.48 0.50 0.96 0.44 0.77 0.15
Yes 0.04 0.52 0.50 0.04 0.56 0.23 0.85

JOINT
No 0.91 0.63 0.07 0.93 0.60 0.10 0.05
Yes 0.09 0.37 0.93 0.07 0.40 0.90 0.95

SWELL
No 0.97 0.96 0.49 0.98 0.96 0.55 0.44
Yes 0.03 0.04 0.51 0.02 0.04 0.45 0.56

STIFF
No 0.98 0.89 0.39 0.99 0.88 0.58 0.08
Yes 0.02 0.11 0.61 0.01 0.12 0.42 0.92

Overall probabilities 0.62 0.21 0.17 0.61 0.21 0.12 0.06
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three-cluster model H2C doesnotprovide an adequate fit to these data, the
comparable LC factor model H2F, which posits two dichotomous factors,
provides an excellent fit. Although the traditional exploratory approach
yields the four-class LC cluster model H3C, this model requires three
dimensions for a display of the results. On the other hand, the alternative
approach yields factor model H2F, which justifies a valid two-dimensional
display without the necessity of collapsing or otherwise reducing the vari-
ables in the model. The resulting bi-plot presented in Figure 6 shows that
JOINT, SWELL and STIFF are more strongly related to factor 1 (the arthri-
tis factor), and BACK and NECK to factor 2 (the pain factor).

In most cases where models suggest that at least two dimensions
are needed to provide an adequate fit to the data, it seems reasonable to
expect there to be two underlying factors and hence at least four different
classes to take into account both the “low” and “high” levels of each

 
 

FIGURE 4. Barycentric coordinate display for model H2C and four selected response
patterns.
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factor—i.e., (low, low), (high, low), (low, high), and (high, high). If this
speculation is true, it would explain why the factor approach typically
provides a better fit to real data. Closer inspection of the results of the
four-cluster model parameters reported in Table 7 shows that, actually,
the four-cluster model also suggests a two-dimensional solution: the four
clusters correspond to the (low, low), (high, low), (low, high), and (high,
high) combinations of the same two dimensions encountered in the two-
factor model.

Using BACK and NECK as proxies for factor 2 and the other vari-
ables for factor 1, we selected four response patterns as proxies for the
four classes. Table 8 compares the estimates of the expected frequency
counts obtained from models H2C, H3C, and H2F for these four selected
response patterns. We see that the three-class cluster model fails to pro-
vide a good estimate for respondents who reported having all five pain
symptoms—the (high, high) group.

FIGURE 5. Barycentric coordinate display for model H3C where clusters 3 and 4 are
combined.
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Overall, the expected frequencies estimated under the three-cluster
model differ significantly from the observed frequencies for seven of the
32 response patterns, while the other two models provide good estimates
for all response patterns. The four selected response patterns (or cases)
are plotted in Figures 4 and 6 using the symbols①, ②, ③, and④. The
symbol④ appears in reverse shading as❹ in Figure 4 to indicate the lack
of fit. Figure 6 shows that these four response patterns appear in the four
corners of the bi-plot, suggesting that they are in fact good indicators of
the (low, low) . . . (high, high) levels of the joint factor. Figure 4 on the
other hand shows that three clusters are inadequate to separate cases with
response patterns 3 and 4, and indicates that the estimate of the expected
count for response pattern 4 is poor.

FIGURE 6. Bi-plot for model H2F and four selected response patterns.
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TABLE 8
Comparison Between Models H2C, H3C, and H2F Observed Versus Expected Frequencies for Four Response Patterns

Frequency Counts

Expected

Response Pattern BACK NECK JOINT SWELL STIFF Observed H2C H3C H2F

1 No No No No No 3,634 3,621.4 3,633.8 3,630.2
2 Yes Yes No No No 306 304.5 304.8 307.6
3 No No Yes Yes Yes 75 65.4 70.8 73.0
4 Yes Yes Yes Yes Yes 176 112.0* 173.7 174.9

*Significantly different from observed.

2
4

3



4. SOME EXTENSIONS OF THE BASIC
LC FACTOR MODEL

In this section we consider some modifications and extensions of the basic
LC factor model that may be of interest in certain situations. First, although
in example 1 we treated the trichotomous variables COOPERATE (A)
and PURPOSE (C) as nominal, they can be treated as ordinal in several
different ways. The most straightforward approach is to assume the mid-
dle category to be equidistant from the others and modify the log-linear
model described in equation (3) by using the uniform scoresviA andvkC

viA 5 $0 if i 5 1, 0.5 if i 5 2, 1 if i 5 3}

vkC 5 $0 if k 5 1, 0.5 if k5 2, 1 if k 5 3}

for the categories of variablesA andC. Second, analogous to confirma-
tory factor analysis, we may wish to allow the two factorsV andW to
be correlated (with association parametergrs

VW) and restrict the vari-
ables COOPERATION (A) and UNDERSTANDING (B) to load only
on factor 1 and PURPOSE (C) and ACCURACY (D) to load only on
factor 2. The log-linear representation for a confirmatory model of this
type as compared with the basic two-factor model in Appendix A is as
follows:

grs
VW Þ 0;

l ir
AV 5 lr

AVviA ; lks
CW 5 ls

CWvkC ; where i, k 5 1,2,3; j, l, r, s5 1,2;

l is
AW 5 l js

BW 5 l jr
CV 5 lks

DV 5 0+

The results of fitting this restricted two-factor model (HR2F) are reported
in Table 3. These suggest that this model fits the data very well~L2 5
22.17, DF5 23;p5 .51). The corresponding bi-plot is shown in Figure 7.

Our examples thus far utilized only dichotomous factors. To extend
the factor model so that any factor may contain more than two ordered
levels, we assign equidistant numeric scores between 0 and 1 to the levels
of the factor. Clogg (1988) and Heinen (1996) used the same strategy for
defining LC models that are similar to certain latent trait models. The use
of fixed scores for the factor levels in the various two-way interaction
terms guarantees that each factor captures a single dimension. For factors
with more than two levels, we display in the bi-plot conditional means
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rather than conditional probabilities (see Appendix B). Note that if we
assign the score of 0 to the first level and 1 to the last level (or vice versa),
for dichotomous factors the conditional mean equals the conditional prob-
ability of being at level 2 (or level 1).

Finally, the extension to include covariates in a log-linear LC model
is straightforward. To illustrate the use of covariates and the extension to
a three-level factor, we will use the depression scale data for white respon-
dents from the problems of everyday life study (Pearlin and Johnson 1977)
as reported separately for males and females (Schaeffer 1988). Persons
who reported having the symptom during the previous week were coded
1, all others 0. The symptoms measured were lack of enthusiasm, low
energy, sleeping problems, poor appetite, and feeling hopeless.

GENDER was included in the model as anactivecovariate (see the
discussion in Appendix B on active versus inactive covariates). Note that

 

FIGURE 7. Bi-plot for model HR2Fwith lines connecting the categories of a variable.
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in the case of a single covariate, the log-linear LC model is identical
whether GENDER is treated as a covariate or as another indicator (Clogg
1981; Hagenaars 1990).

Table 9 shows the results from fitting various LC models to these
data. The traditional strategy required three classes as neither the 1- or
2-class models provided adequate solutions. We see again that the basic
two-factor model fits the data better than the comparable three-cluster
model. The results for the three-cluster solution are shown in Table 10 in
terms of conditional response probabilities. Notice that those probabili-
ties conditional on cluster 2 are ordered between the corresponding prob-
abilities conditional on clusters 1 and 3, a pattern that is consistent with
the depression scale being unidimensional, and suggests that we consider
fitting a three-level one-factor model to these data.

Table 10 shows that the three-level factor solution is very similar
to that given by the three-class solution. Both suggest that 10 percent of
the population are in the “depressed” group (cluster 3 in the cluster model
and level 3 in the factor model), and the rest are about equally distributed
among the “healthy” (cluster 1) and the “troubled” cluster 2. The three-
level model provides an acceptable fit to these data and contains only one
parameter more than the two-class model (see Table 9). Unlike the three-
class extension to the two-class model which requires seven additional
parameters, the three-level model provides an attractive alternative to the
three- (unordered) class model. The BIC suggests that the three-level one-
factor model should be preferred over all models including the basic two-
factor model.

In our experience with various data, increasing the number of lev-
els in a factor does often provide a significant improvement in fit. This is,

TABLE 9
Results from Various LC Models Fit to the Depression Data

Model Model Description BIC L2 DF p-value
% Reduction
in L2( H0)

H0 1-class 672.8 1097.1 57 2.33 102192 0
H1 2-class 2233.7 138.5 50 3.13 10210 87.4
H2C 3-class 2260.5 59.6 43 0.05 94.6
H2F Basic 2-factor 2274.6 45.5 4311* 0.37 95.9
H1F3 1-factor (3-levels) 2297.8 67.0 49 0.05 93.9

*DF is increased by these boundary solutions.
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however, not always the case. For example, with our first data set we found
that two distinct factors were required to provide an adequate fit to the
data. In that situation, increasing the number of levels from 2 to 3 in the
single-factor solution provides no benefit. Table 3 shows only a slight,
nonsignificant reduction in the L2 due to the inclusion of the additional
parameter—from 79.34 for the one-factor two-level solution to 77.25 for
the one-factor three-level solution. On the other hand, in the present exam-
ple, the addition of this single parameter causes a reduction of the L2 from
138.5 for the one-factor two-level solution to 67.0 under the one-factor
three-level model (see again Table 9).

An informative graph can provide an attractive alternative to a table
(such as Table 10) when the goal is to determine whether a natural order-
ing exists among a set of clusters. For example, a standard profile plot
will show immediately that the conditional probabilities associated with
cluster 2 always fall between the corresponding conditional probabilities
associated with clusters 1 and 3.

As an alternative to the profile plot, we will now examine the impli-
cations obtained from a barycentric coordinate display (Figure 8) of the

TABLE 10
Conditional Probabilities Estimated Under the Three-Cluster Model and the

One-Factor Three-Level Model

Three-Cluster Model One-Factor Three-level Model

Cluster 1 Cluster 2 Cluster 3 Level 1 Level 2 Level 3

Cluster Size 0.46 0.44 0.10 0.45 0.45 0.10
ENTHUS
Lack of enthusiasm 0.26 0.82 0.96 0.26 0.81 0.98
No 0.74 0.18 0.04 0.74 0.19 0.02
ENERGY
Low energy 0.03 0.63 0.95 0.03 0.61 0.99
No 0.97 0.37 0.05 0.97 0.39 0.01
SLEEP
Sleeping problem 0.10 0.37 0.78 0.09 0.38 0.79
No 0.90 0.63 0.22 0.91 0.62 0.21
APPETITE
Poor appetite 0.04 0.22 0.73 0.04 0.24 0.72
No 0.96 0.78 0.27 0.96 0.76 0.28
HOPELESS
Hopeless 0.03 0.10 0.67 0.02 0.13 0.61
No 0.97 0.90 0.33 0.98 0.87 0.39
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three-cluster solution, which includes a point for each observation (i.e.,
each observed response pattern). Note the obvious pattern that the points
appear primarily along the left and right sides of the triangle, not along
the base. This visual pattern can be interpreted as follows: Among per-
sons who are likely to be “troubled” (those with response patterns plotted
near the top vertex, associated with cluster 2), there is a substantial amount
of overlap with the other clusters. Some of these cases also have a sub-
stantial probability of belonging to the “healthy” cluster and some have a
substantial probability of belonging to the “depressed” cluster. However,
there is virtuallynooverlap between those likely to be “healthy” and those
likely to be “depressed” (the inner part of the base of the triangle contains
no points). This asymmetric pattern suggests that cluster 2 (“troubled”) is
the middle cluster.

In both the three-cluster model and the three-level one-factor model,
we find that GENDER has a significant relationship with the latent vari-
able, females being more likely to be in the depressed group. Figure 9
displays two one-dimensional plots resulting from the three-level factor
model (the bi-plot reduces to one dimension in the case of a single factor).
The top plot was obtained using GENDER as an active covariate. For
comparison, the plot at the bottom of Figure 9 was obtained using GEN-
DER as an inactive covariate (its effect is not included in the model).
Being “inactive” implies that if the “male” and “female” symbols were

FIGURE 8. Barycentric coordinate display of the 64 response patterns for males and
females based on the three-class model (H2c).
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removed from the latter, it would be equivalent to the plot that would be
obtained using a three-level model thatexcludesGENDER from the model
(see Appendix B). The lessor distance between the “male” and “female”
symbols in the latter plot (as compared with that displayed at the top of
Figure 9) reflects the reduced association between GENDER and the latent
variable, which is the result of the well-known attenuation phenomenon.
In general, inclusion of covariates in a model can provide useful descrip-
tive information on the latent variable(s). The decision to treat a covariate
as active or inactive is largely a matter of personal preference.

5. IDENTIFICATION ISSUES

In some situations, LC models may not be identified. Two well-documented
examples of LC models that are not identified without further constraints
are the unrestricted three-class model for four dichotomous items (Good-
man 1974a) and the unrestricted two- and three-class models for two poly-
tomous items (Gilula and Haberman 1986; De Leeuw and Van der Heijden
1991; Clogg 1995; Van der Ark, Van der Heijden and Sikkel 1999).

The formal method to check for identification of a LC model is by
means of the expected information matrix (Goodman 1974a, Formann

  

 

  

 

 

  

 

 

 

 

FIGURE 9. One-dimensional plots associated with the three-level factor model.
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1992).7 If all model parameters are identified, this information matrix will
be full rank; that is, all its eigenvalues will be larger than zero. On the
other hand, ifk model parameters are not identified,k eigenvalues will be
equal to zero. To get more insight in the identifiability of the LC factor
model, we determined the rank of the information matrix for various
hypothesized LC cluster and LC factor models.8 In particular, we studied
three situations in which there might be identification problems—that is,
tables of four and five dichotomous items, and of two polytomous items
with four and five categories. The results are reported in Table 11.

As can be seen, in all situations in which the LC cluster model with
R 1 1 clusters is identified, the LC factor model withR factors is also
identified. However, in two situations, we see that the LC factor model
hasfewerunidentified parameters than the corresponding LC cluster model
having the same number of distinct parameters. For example, we see that
while the three-cluster model for four dichotomous items isnot identified
(it has one unidentified parameter), the two-factor model is exactly iden-
tified and hence requires no identifying restrictions. Also, we see that while
the three-cluster model for a 43 5 table has six unidentified parameters,

7The expected information matrix is the negative of the expected value of the
matrix of second-order derivatives to all model parameters.

8As an extra check, we estimated the models of interest using the assumed
(constructed) population distributions as observed data. For models that are identi-
fied, the parameter estimates should perfectly reproduce the population parameters.
This result was obtained in all situations.

TABLE 11
Number of Unidentified Parameters in Various LC Cluster and Factor Models

Model 23 2 3 2 3 2 table 23 2 3 2 3 2 3 2 table 43 5 table

2 clusters01 factor 0 0 2
3 clusters 1 0 6
4 clusters * 0 *
5 clusters * 0 *
2 factors 0 0 4
3 factors * 0 *
4 factors * 0 *

*Situations that we did not consider because they are not very relevant.
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the two-factor model has only four. These results on identification show
that all models presented in the foregoing examples are identified.

Consider the classic 43 5 table given by Fisher (1940) classifying
schoolchildren according to their hair and eye colors (Table 12). Table 13
provides results from various LC models. Gilula and Haberman (1986)
showed that the one-component canonical model does not fit these data
but a two-component model does (L2 5 4.73 with DF5 2). They also
showed that this model is equivalent to the three-class LC model (H2C in
Table 13), with the same DF if we take into account the fact that there are
six unidentified parameters (see Table 11).9 From the test results reported
in Table 13, it can be seen that the basic two-factor model (H2F) is satu-
rated for these data (DF5 0), and hence provides a perfect fit (L2 5 0).

The bi-plot and barycentric coordinate displays obtained from the
three-class LC model and the basic two-factor LC model are not unique
since the posterior classification (membership) probabilities are depen-
dent upon the particular identifying restrictions used to identify the param-
eters (four distinct restrictions are needed for the basic two-factor model).
However, the specification of restrictions is typical of a confirmatory rather
than exploratory analysis. Rather than specifying restrictions (or using a
particular set of boundary or other nonunique parameter estimates) to
obtain a unique solution, one can alternatively apply some prior informa-
tion to the parameters. Table 13 provides the results of fitting the LC clus-
ter and factor models (H2C1 and H2F1), and Figures 10 and 11 present the

9We assume that six identifying restrictions are made to identify these param-
eters. These restrictions need not be the same as those used to identify the two-
component canonical model.

TABLE 12
Classification of School Children According to Eye and Hair Color

Hair Color

Eye Color Fair Red Medium Dark Black

Blue 326 38 241 110 3
Light 688 116 584 188 4
Medium 343 84 909 412 26
Dark 98 48 403 681 85
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associated displays that occur when a slight departure from noninforma-
tive Dirichlet prior distributions are assumed for the model probabilities.10

From the bi-plot (Figure 11), we see that factor 1, the more prom-
inent factor, is a “lightness-darkness” dimension. Factor 2 serves primar-
ily as a contrast of black hair and dark eyes with medium and red hair
color and lighter eye colors, (with fair and dark hair and blue eyes some-
where in between).

6. FINAL REMARKS

This paper presented a new method for performing exploratory LC analy-
sis. Rather than increasing the number of classes, we proposed increasing
the number of latent variables. We showed that because of the imposed
constraints, the basic LC factor model with R latent variables has the same
number of parameters as the LC cluster model withR11 classes. This is
an important result because it shows that in terms of parsimony, increas-
ing the number of factors is equivalent to increasing the number of clusters.

The examples showed that in most cases the LC factor model pro-
vides a more parsimonious and easier to interpret description of the data.
There is a simple explanation for this phenomenon. When applying a LC

10The influence of the priors is equivalent to adding one fictitious observation
for which the independence model holds to the data. As a result, the priors will smooth
the estimates slightly to the independence model. For more details on the use of priors
to prevent boundary solutions and to obtain identifiability, see Vermunt and Magidson
(2000).

TABLE 13
Results from Various LC Models Fit to Fisher Data

Model Model Description L2 DF* p-value
% Reduction

in L2(H0)

H0 1-class 1218.31 12 2.03 102253 0
H1 2-class 166.91 6 4.83 10235 86.3
H2C 3-class 4.73 2 .094 99.6
H2F Basic 2-factor 0.00 0 100.0
H2C1 3-class (alpha5 1) 4.73 2 .094 99.6
H2F1 Basic 2-factor (alpha5 1) 0.35 0 100.0

*DF is increased by the number of unidentified parameters (see Table 11).
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cluster model, it is not known how many dimensions the solution will
capture: A three-cluster model may describe either one or two dimen-
sions, while a four-cluster model may describe either one, two, or three
dimensions. When a three-cluster model describesone dimension, it is
very probable that a one-factor model with three or more levels will
describe the data almost as well (see the depression example in Sec-
tion 4). When a three-cluster model describestwo dimensions, it has the
disadvantage that it cannot capture all four basic combinations—(low, low),
(high, low), (low, high), and (high, high)—of the two latent dimensions.
Therefore, the two-factor model will fit better than the three-cluster model
in these cases. In situations in which the four-cluster model gives a two-
dimensional solution (as in the rheumatic arthritis data set where the four
clusters represent the four possible latent combinations), it can be expected

FIGURE 10. Barycentric coordinate display of results from model H2C(1) fit to Fisher
data.
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that a restricted four-cluster model (the two-factor model) will fit the data
almost as well (and may be better in terms of BIC orp-value).

The above explanation yields strong arguments for using the two
approaches in combination with one another, as we have been doing in the
examples. There are two things that can happen when switching from the
cluster to the factor model. First, the factor model may give a simpler
description of the data than the cluster model. This occurs when the three-
cluster solution is one-dimensional or when the four-cluster solution is
two-dimensional, both of which are situations where the LC cluster model
is overparametrized. Second, the factor model may give a better fit. We
saw that this occurs when the three-cluster model is two-dimensional.

FIGURE 11. Bi-plot of results from model H2F(1) fit to Fisher data.
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APPENDIX A: THE LC CLUSTER AND FACTOR MODELS
FORMULATED USING CONDITIONAL PROBABILITIES

In this paper we used Haberman’s (1979) log-linear formulation of the
LC model because that made it easy to explain the similarities and dif-
ferences between LC cluster and unrestricted LC factor models. How-
ever, in the case of the restricted two-factor model, a more general
formulation is required. This appendix describes these two types of LC
models using the more general probability formulation, and explains the
relationship between the two formulations.

An alternative expression for the LC cluster model described in
equation (1) is

pijklt 5 pt
X pit

A6X pjt
B6X pkt

C6X plt
D 6X ,

which is the formulation used by Goodman (1974a, 1974b) and Clogg
(1981, 1995). As was shown by several authors (see, for instance, Haber-
man 1979; Formann 1992; and Heinen 1996), there is a simple relation-
ship between the conditional response probabilities appearing in the above
equation and the log-linear parameters of equation (1), i.e.,

pit
A6X 5

Fi111t

F1111t

5
exp~l i

A 1 l it
AX!

(
i '51

I

exp~l i '
A 1 l i 't

AX!

+

Similar expressions apply to the other three indicators. The probability of
being in class t,pt

X , can, however, not be written in terms of the log-
linear parameterslt

X appearing in equation (1). These latent probabilities
can be obtained by

pt
X 5

F1111t

F11111

5
exp~gt

X!

(
t '51

T

exp~gt '
X!

,

where the symbolg is used to denote a log-linear parameter of the mar-
ginal distribution of the latent variable(s).
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The two-factor LC model can be written as

pijklrs 5 prs
VWpijklrs

ABCD6VW 5 prs
VWpirs

A6VWpjrs
B6VWpkrs

C6VWplrs
D6VW (4)

whereas, in the case of theunrestrictedmodel we have

prs
VW 5

F1111rs

F111111

5
exp~gr

V 1 gs
W 1 grs

VW!

(
r '51

R

(
s'51

S

exp~gr '
V 1 gs'

W 1 gr 's'
VW!

prst
A6VW 5

Fi111rs

F1111rs

5
exp~l i

A 1 l ir
AV 1 l is

AW 1 l irs
AVW!

(
i '51

I

exp~l i '
A 1 l i 'r

AV 1 l i 's
AW 1 l i 'rs

AVW!

, etc.,

while, for thebasictwo-factor model, the conditional response probabil-
ities in (4) are restricted by the following logit models

prs
VW 5

exp~gr
V 1 gs

W!

(
r '51

R

(
s'51

S

exp~gr '
V 1 gs'

W!

pirs
A6VW 5

exp~l i
A 1 l ir

AV 1 l is
AW!

(
i '51

I

exp~l i '
A 1 l i 'r

AV 1 l i 's
AW!

, etc.

Note that this latter formulation excludes the marginal association between
the latent variables, as well as the higher-order interaction terms.

The number of distinct parameters in the basic R-factor model is:

NPAR(basic R-factor)5 R 1 NPAR(indep)3 (11 R)

5 R 1 (R11) 3 NPAR(indep),

while the number of distinct parameters in the LC cluster model was shown
to be

NPAR(T-cluster)5 (T 2 1) 1 NPAR(indep) (11 (T 2 1))

5 ~T 2 1) 1 T 3 NPAR(indep) .
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Hence, it is seen that the degree of parsimony in the LC R-factor model is
the same as that of a cluster model with T5 R 1 1 classes.

As shown in this paper, theunrestrictedLC two-factor model is
equivalent to the LC cluster model with four classes. Hence the number of
restrictions that are placed by the basic two-factor model given above can
be computed as the difference between the number of distinct parameters
in the LC cluster model with T5 4 classes and the number in the basic LC
two-factor model. More generally, the number of restrictions placed by
the R-factor model can be computed as the difference between the num-
ber of distinct parameters in the LC cluster model with T5 2R classes and
the basic LC R-factor model as follows:

NRES5 NPAR(2R-cluster)2 NPAR(basic R-factor)

5 @2R 2 R 2 1] 3 [NPAR(indep)1 1].

APPENDIX B: FUNCTIONS OF CLASS-MEMBERSHIP
PROBABILITIES APPEARING IN THE PLOTS

The quantities depicted in the various plots presented in this paper are
functions of class-membership probabilities. This appendix explains how
these quantities are computed. For the types of LC models considered by
Van der Ark and Van der Heijden (1998) and Van der Heijden, Gilula, and
Van der Ark (1999), our measures coincide with the rescaled parameters
that they plotted, but for more general LC models this need not be the
case.

Let us take the basic two-factor model with four indicators described
in equations (3) and (4) as an example. The estimated probability of being
in level r of the first factorV given a person’s observed scores on the four
indicatorsA, B, C, andD is defined as

[prijkl
V 6ABCD 5

[pijklr 1

[pijkl11

+

Once the LC model of interest is estimated, these class-membership prob-
abilities can be computed for each individual in the sample or, equiva-
lently, for each observed response pattern.

A common quantity that we use to position each point in each of
our plots is the conditional probability of being at a certain level of a
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latent variable given a certain response to one or more items. In the bi-plot
associated with the LC factor model, we will, for instance, use the esti-
mated conditional probability of being at levelr of factorV given thatA5
i , denoted as[pri

V 6A. Note that the more these probabilities differ between
levels ofA, the strongerA is related to factorV.

The probabilities [pri
V 6A can be obtained by aggregating the esti-

mated class-membership probabilities[prijkl
V 6ABCD. There are, however, two

possible ways to perform the aggregation. Method 1 utilizes theobserved
cell probabilitiespijkl

ABCD as weights. This yields
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Alternatively, method 2 utilizes theestimatedcell probabilities as weights;
that is,
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Method 1 was used to obtain the plots presented in Figures 1–7 and
Figures 9–11. In Figures 4, 6, and 8 we also included the individual
response patterns, including those not observed in the sample.

In the case ofunrestrictedmodels, if the model provides a good fit
to the data, the estimated proportions should provide good approxima-
tions to the observed proportions so that both methods will yield very
similar plots. However, for certainrestrictedmodels, where the estimated
proportions satisfy the restrictions exactly but the observed proportions
do not, the alternative displays may contain clear discernible differences,
even when the model provides a good fit to the data.

For example, the restrictions for model HR2F imply that the basic
bi-plot should consist of two intersecting straight lines, one formed by
connecting the points corresponding to the categories of the variables
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(C) PURPOSE and (D) ACCURACY, and the second formed by connect-
ing the points corresponding to the categories of (A) COOPERATION
and (B) UNDERSTANDING. .

Figure 12 shows the resulting bi-plot for model HR2F when method
2 is used to compute the conditional probabilities. We see the two straight
lines with an acute angle between them suggesting positive correlation
between the latent variablesV andW (labeled Factor 1 and Factor 2 in
Figure 12).11 On the other hand, the plot obtained in Figure 7 showed

11In a companion paper (Magidson and Vermunt 2000), we show how to derive
the equations for the straight lines. Moreover, in it we demonstrate that the angle
between these lines has meaning—for example, to the extent to which this angle is
less than 908, the two latent variablesV andWexhibit positive correlation—and show
how the magnitude of the correlation can be determined from the plot.

 

FIGURE 12. Bi-plot for model HR2F obtained using aggregation method 2.
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only theapproximationof two straight lines since the observed propor-
tions for these data do not satisfy exactly the restrictions imposed by
the model.

In LC factor models with factors having more than two levels such
as Model H1F3,12 the results of which were displayed in Figure 9, we plot
the factor means

ZEi
V 6A 5 (

r51

R

[pri
V 6A{vrV ,

where R is the number of levels of factorV, andvrV denotes the fixed score
assigned to level r of factorV.

In the case of a LC cluster model, we would plot[pti
X6A , which is

the estimated conditional probability of being in a certain category of
the single latent variableX. Van der Ark and Van der Heijden (1998),
who called these quantitiesrescaled parameters, proposed computing
them as follows:
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It can easily be shown that in a standard LC model with a single latent
variable and no restrictions on the model probabilities, all three methods
yield the same results; that is,

[pti
X6A~1! 5 [pti

X6A~2! 5 [pti
X6A~3!+

The difference between our method and that of Van der Ark and
Van der Heijden is that we derive and plot quantities that are defined
for each individual in the sample—namely, the probability[prijkl

V 6ABCD. A
category-specific marginal conditional probability like[pri

V 6A is, there-
fore, just one of the several types of measures that can be depicted in
the same plot. Other possibilities are depicting the location of specific

12In the case of dichotomous latent variables, the relationship between the
expected value and the conditional probability provides a “true score regression” inter-
pretation of the lines plotted in Figure 12.
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response patterns (as in Figure 4 and Figure 6 of this paper),13 the mar-
ginal probabilities for a subset of observed variables (for instance,
[prij

V 6AB), or the marginal probabilities for categories of variables that are
not included in the LC model. We labeled the latter application the
inactive-covariate method (Vermunt and Magidson 2000) since it yields
information on the association of a covariate with each of the latent vari-
ables without including the covariate concerned in the LC model.14

To illustrate the inactive-covariate method, assume that there is a
variableE whose levels are indexed bym. The probability of being in
level r of latent variableV given thatE equalsm, [prm

V 6E , is obtained as
follows:
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Note that in this case we must use the observed cell probabilities as weights
(method 1) because we do not have estimated probabilities for the joint
distribution includingE.

Another important advantage of our way of computing the plotted
measures is that it can easily be extended to variables of other scale types,
such as continuous dependent or independent variables. This is something
that is used in the new computer program LatentGOLD (Vermunt and
Magidson 2000), which implements the graphical displays discussed in
this paper.

APPENDIX C: ESTIMATION OF THE LC CLUSTER AND
LC FACTOR MODELS

The standard estimation method for LC models is the maximum-likelihood
(ML) method under the assumption that the data come from a multi-

13It should be noted that Van der Heijden, Gilula, and Van der Ark (1999)
already mentioned the possibility of incorporating information on individual cases in
their ternary plots. They, however, did not explicitly discuss the relationship between
the individual posterior membership probabilities and the rescaled probabilities nor
the possibility of collapsing the individual posterior membership probabilities in ways
other than to form categories of individual variables.

14In correspondence analysis, it is quite common to plot levels of inactive
covariates. There they are calledpassive variables.
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nomial distribution. ML estimation of the model parameters of the LC
Factor model described in equation (4) involves finding the parameter
values that maximize the following likelihood function:

L @)
ijkl
S(

rs

pr
V ps

Wpirs
A6VWpjrs

B6VWpkrs
C6VWplrs

D6VWDNpijkl,

whereN denotes the sample size andpijkl
ABCD the proportion of the sample

belonging to the cell entry concerned. Maximization of the likelihood is a
quite standard task that can be performed with an EM or a Newton-
Raphson algorithm, or some combination of the two. Software packages
that can be used to obtain ML estimates of the parameters of LC factor
models are Newton (Haberman 1988), LEM (Vermunt 1997), and Latent-
GOLD (Vermunt and Magidson 2000).
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