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LOG-MULTIPLICATIVE
ASSOCIATION MODELS AS LATENT
VARIABLE MODELS FOR NOMINAL
AND/OR ORDINAL DATA
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Jeroen K. Vermuntt

Associations between multiple discrete measures are often due to
collapsing over other variables. When the variables collapsed over
are unobserved and continuous, log-multiplicative association
models, including log-linear models with linear-by-linear inter-
actions for ordinal categorical data and extensions of Good-
man’s (1979, 1985) RC(M ) association model for multiple nominal
and/or ordinal categorical variables, can be used to study the
relationship between the observed discrete variables and the un-
observed continuous ones, and to study the unobserved vari-
ables. The derivation and use of log-multiplicative association
models as latent variable models for discrete variables are pre-
sented in this paper. The models are based on graphical models
for discrete and continuous variables where the variables follow
a conditional Gaussian distribution. The models have many de-
sirable properties, including having schematic or graphical rep-
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resentations of the system of observed and unobserved variables,
the log-multiplicative models can be read from the graphs, and
estimates of the means, variances, and covariances of the latent
variables given values on the observed variables are a function
of the log-multiplicative model parameters. To illustrate some of
the advantageous aspects of these models, two examples are pre-
sented. In one example, responses to items from the General So-
cial Survey (Davis and Smith 1996) are modeled, and in the other
example, panel data from two groups (Coleman 1964) are
analyzed.

1. INTRODUCTION

Associations in multivariate categorical data are often due to collapsing
over other variables. For example, consider the following four items from
the 1994 General Social Survey (Davis and Smith 1996):

A, “Do you approve or disapprove of a married woman earning money in
business or industry if she has a husband capable of supporting her?”
(approve, disapprove).

A, “It is much better for everyone involved if the man is the achiever
outside the home and the woman takes care of the home and family.”
(strongly agree, agree, disagree, strongly disagree).

A; “Aman’s job is to earn money; a woman’s job is to look after the home
and family.” (strongly agree, agree, neither agree nor disagree, dis-
agree, strongly disagree).

A, “Itis not good if the man stays at home and cares for the children and
the woman goes out to work.” (strongly agree, agree, neither agree nor
disagree, disagree, strongly disagree).

We would expect associations to be present between the responses to these
items because all of the items appear to be indicators of a single contin-
uous variable—namely, attitude regarding the proper roles of wives and
husbands in terms of employment inside/outside the home.

As a second example, consider the Coleman (1964) panel data that
consist of responses made at two time points by boys and girls to two
items: their attitude toward (positive, negative) and their self-perception
of membership in (yes, no) the leading or popular crowd. These two ques-
tions may be indicators of the same (continuous) variable or they may be
indicators of different but correlated variables. It is also possible that there
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may be change over time and/or differences between boys and girls. The
underlying latent variable structure has implications for what associations
should be present in the observed data and the nature of these associations.

Log-linear models are very effective tools for determining what
associations are present in categorical data; however, they are less useful
for describing the nature of multiple observed associations. When the as-
sociations arise because we have collapsed over unobserved or not directly
measurable continuous variables, the description and interpretation of the
associations would be greatly facilitated if our models represented the ob-
served associations in terms of the unobserved or latent variables. The
models should also allow a researcher to study the underlying structural
relationships between the unobserved variables. Ideally, researchers should
be able to transform their specific theories and hypotheses about the rela-
tionships between the observed and unobserved variables into statistical
models, which in turn can be readily fit to observed data. We propose a
latent variable model that meets these requirements.

The latent variable models proposed here are based on graphical mod-
els for discrete and continuous variables (Lauritzen and Wermuth 1989; Wer-
muth and Lauritzen 1990; see also Edwards 1995; Lauritzen 1996; Whittaker
1990), and they belong to a family of “location models” for discrete and con-
tinuous variables (Olkin and Tate 1960; Afifi and Elashoff 1969; Krzanowski
1980, 1983, 1988). The models presented here differ from previously dis-
cussed cases in that the continuous variables are unobserved and we restrict
our attention to cases where the discrete (observed) variables are condi-
tionally independent given the continuous (latent) ones. The models im-
plied for the observed data are log-multiplicative association models.

In log-multiplicative association models, which are extensions of
log-linear models, dependencies between discrete variables are repre-
sented by multiplicative terms. Special cases of these models include many
well-known models for categorical data such as linear-by-linear inter-
action models, ordinal-by-nominal association models, the uniform asso-
ciation model for ordinal categorical variables, the RC(M) association
model for two variables, and many generalizations of the RC (M) associ-
ation model for three or more variables (e.g., Agresti 1984; Becker 1989;
Clogg 1982; Clogg and Shihadeh 1994; Goodman 1979, 1985).

A simple case of the models was discussed by Lauritzen and Wer-
muth (1989; Wermuth and Lauritzen 1990), who provided a latent contin-
uous variable interpretation of Goodman’s (1979) RC association model
for two items. Whittaker (1989) discusses the case of multiple, uncorre-
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lated latent variables for two and three observed variables. In this paper,
we consider more general graphical models for multiple correlated latent
variables for any number of observed variables. Additionally, we allow the
covariance matrix of the latent variables to differ over values of the ob-
served, discrete variables.

The models have many desirable properties, including having
schematic or graphical representations. The graphs are useful pictorial
representations of theories about phenomena, and the corresponding
log-multiplicative models can be read from the graph. In many cases,
estimates of the means, variances, and covariances of the latent vari-
ables are by-products of the estimation of the parameters of the log-
multiplicative model.

The remainder of this paper is structured as follows. In Section 2,
we present the basic ideas and approach for cases where each observed
(discrete) variable is related to only one latent (continuous) variable. In
Section 3, we extend the basic model to cases where the observed variables
may be related to multiple latent variables. The models discussed in Sec-
tions 2 and 3 are illustrated in Section 4, using data from the 1994 General
Social Survey (Davis and Smith 1996) and Coleman’s (1964) panel data
for the boys. In Section 5, we further generalize the latent variable model
by allowing the covariance matrix of the latent variables to differ over
levels of the observed discrete variables. In Section 6, we illustrate these
heterogeneous covariance models by analyzing Coleman’s (1964) data for
the girls, and doing a combined analysis of the boys and girls data. In
Section 7, we conclude with a discussion of additional possible general-
izations and areas for further study. Two appendixes are included. The first
describes how log-multiplicative models can be read from graphs repre-
senting the latent variable model, and the second describes the maximum-
likelihood estimation of the models by the unidimensional Newton method.

2. SINGLE LATENT VARIABLE PER INDICATOR

In this section, we present models where each observed discrete variable is
an indicator of only one latent variable. In Section 2.1, we derive the log-
multiplicative model for the graphical model where there is one continu-
ous latent variable, and in Section 2.2, we extend the model to cases where
there are two or more correlated latent variables. In Section 2.3, we discuss
identification constraints for the parameters of single indicator models and
their implications.
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2.1. The One Latent Variable Model

The example of the four items from the General Social Survey is a case
where we hypothesize that each item is an indicator of a single, common
latent variable; that is, we expect that a single indicator, one latent variable
model should fit the data. Such a model is presented in Figure 1, where the
discrete variables are represented by the squares and the continuous vari-
able by a circle. The absence of a line connecting two variables indicates
that the variables are conditionally independent given all the other vari-
ables, while the presence of a line connecting two variables, indicates that
the variables are dependent.

In the latent variable models proposed in this paper, the joint dis-
tribution of the discrete and continuous variables is assumed to be condi-
tional Gaussian (Lauritzen and Wermuth 1989; see also Edwards 1995;
Lauritzen 1996; Whittaker 1990). In a conditional Gaussian distribution,
the marginal distribution of the discrete variables is multinomial and the
conditional distribution of the continuous variables given the discrete ones
is multivariate normal where the mean and covariance matrix may differ
over levels of the discrete variables. For now, we assume that the covari-
ance matrix does not differ over levels of the discrete variables; however,
this restriction is relaxed in Section 5. In other words, differences between
cells of a cross-classification of observations is dealt with by allowing the
means of the continuous latent variables to differ between cells. Individual
differences within cells are captured by the within-cell variances of con-
tinuous variables.

FIGURE 1. Single indicator, one latent variable model for four observed variables.
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Let A={A|,...,A;} be asetof I discrete variables, and ® represent
the continuous variable. We denote a realization of the continuous variable
by 6 and an observation on the discrete variables by a = (a;;,),..., a,)
(i.e., a is a cell in the cross-classification of the I discrete variables). The
levels of discrete variable A; are indexed by j; where j; = 1,...,J;. The
probability that an observation falls into cell a is denoted by P(a). To
obtain the joint distribution of the discrete and continuous variables, we
take the product of the marginal distribution of the discrete variables, which
is multinomial, and the conditional distribution of the continuous vari-
ables, which is a conditional normal distribution; that is,

f(a,0) = P(a)f(6]a)
1 [ 1 (a—ﬂ(a)v]
exp _—

2 o?

= P(a) ey

2o

where f(6|a) is a normal distribution with mean w(a), which depends on
a, and variance o 2. Equation (1) is the moment form of a (homogeneous)
conditional Gaussian distribution.

Since the continuous variable 6 is unobserved, we do not have readily
available estimates of u(a) and o>. While the observed cell proportions
provide estimates of P(a), we want a model for P(a) that is implied by our
specific hypotheses regarding the relationships between the discrete vari-
ables and the continuous variable. The model for P(a) will contain inter-
actions between the discrete variables that result from having collapsed
over the continuous variable.

Rather than working with the moment form of the conditional Gauss-
ian distribution, it is more useful to work with the canonical form of the
distribution. The canonical form of the distribution can be obtained by
re-writing equation (1) as

1 2
f(a,0) = exp[log(P(a)) - 10g(W) _ 5(#(32) )
g
u(a) 1/ 62
T 020‘5<;ﬁ} )

We define

mm:ﬁ? 3)
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and

g(a) = log(P(a)) — log(N2mo?) — Lo2h(a)? , 4)

which are both functions of a. Substituting definitions (3) and (4) in equa-
tion (2) we obtain

1 2

) = exp| 66w+ o~ (%) ®
which is the canonical form of the conditional Gaussian distribution. In the
canonical form, the joint distribution factors into three components: a dis-
crete part g(a), which represents the discrete variables and the dependen-
cies among them after controlling for the continuous variables; a linear
part h(a)@, which represents the dependencies between the discrete vari-
ables and the continuous variable; and a quadratic part —(1/2)6%/o 2, which
represents the continuous variable after controlling for the discrete ones.
The model for the observed data is obtained by rewriting equation

(4) in terms of P(a),

P(a) = \2mo? exp[g(a) + %azh(a)z]. (6)

Equation (6) does not include 8, which is unobserved but depends only on
observed data. The hypothesis that the discrete variables are conditionally
independent given the continuous variable is incorporated into the model
through the parameterization we specify for g(a), and the hypothesis that
each of the discrete variables is directly related to the latent variable 6 is
incorporated through the parameterization we specify for A (a).

The function g(a) is set equal to the sum of effect terms as in log-
linear models.! Since the discrete variables are conditionally independent
given the continuous variable, g(a) equals the sum of marginal effect terms
for each of the discrete variables; that is,

1
g@) = A, (7)
i=1

where A;(;,) is the marginal or main effect term for level j; of variable A;.
This parameterization of g(a) is used throughout this paper, because in all

'If there were no continuous variables, we would have a log-linear model.
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of the models considered here, the discrete variables are independent of
each other given the continuous variable(s).

From equation (5), we see that h(a) is a coefficient for the strength
of the association between the discrete variables and continuous variable.
Since each discrete variable is directly related to the continuous variable,
we define h(a) as

1
h(a) = X vigj, ®)
i=1

where v;;,) is the category score or scale value for level j; of variable A;.
The category scale values may be estimated from the data or specified a
priori.

Replacing g(a) and /(a) in equation (6) by the parameterizations
given in (7) and (8) yields a log-multiplicative model for the observed
data; that is,

1 1 2
log(P(a)) = A+ D Ay + 2 o? (E Vi(h))
i i=1

=+ 2 NiGy + 07 2 2 Vi) Ve ®)

i k>i

where A is a normalizing constant and A}, = A, + (1/2)o v ). Since
the term (1/2)o v, is only indexed by j;, it gets “absorbed” into the
marginal effect term.

If there are only two discrete variables (i.e., I = 2), then equation (9)
reduces to the RC(1) association model (Goodman 1979, 198S5; see also
Clogg and Shihadeh 1994). For our General Social Survey example where
I =4 (i.e., Figure 1), we have

P(a) = A+ X, + Axy) + A3, + Al
+ W Vi TV iV + 02w, i\ Var;
1(j1) ¥2(j2) 1(j1) ¥3(j3) 1(jy) Y4(js)
2 2 2
T OV V3 T T2y Vs T T V() Vade) (10)

In equation (10) and the more general equation (9), we have multiplicative
terms with the same association parameter in each term (i.e., o?)and a
single set of category scores for each of the variables, which appear in the
different multiplicative terms.
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Equations (9) and (10) are log-multiplicative association models
with bivariate interactions between all pairs of the discrete variables. The
best fit that can be attained using equation (9) or (10) is given by the all
two-way interaction log-linear model (see Becker 1989). If an all two-way
interaction log-linear model fits a data set, then we are justified in consid-
ering models such as equation (9) or (10).

2.2. Multiple Latent Variables

The one latent variable model is a relatively simple model. In many data
sets, the observed variables may be indicators of different latent variables;
therefore we generalize the model to the case of multiple latent variables.
The derivation given in Section 2.1 is extended to obtain a more general
model for the observed data. The one latent variable model is a special case
of this more general model. In this section, we will examine two additional
special cases, including the most complex single indicator model.

Let ® = {®,...,0,} be a set of M continuous variables where
M =< [ and the (M X 1) vector @ = (0,,...,0y)" be a realization of the M
latent variables. The moment form of the joint distribution of the / discrete
and M latent variables is obtained by multiplying the marginal distribution
of the discrete variables, which is multinomial, and the conditional distri-
bution of the continuous variables, which is multivariate normal; that is,

f(a,0) = P(a)f(6]a)
= P(a)(2m) M2 [z|71?

X exp[—3(8 — p(a))'2"' (6 — p(a))] (1

where f(@|a) is a multivariate normal distribution with the (M X 1) mean
vector u(a), which is a function of a, and the (M X M) covariance matrix
3,. The canonical form is obtained from equation (11) by multiplying the
terms in the exponent and redefining parameters:

f(a,0) = P(a)(2m) " M/2|3|~1/2
X exp[—ip(a)S 'u(a) + p(a)S 10 — 10'3714]

= exp[g(a) + h(a)'6 — 10'=7'0] (12)
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where h(a) is the (M X 1) vector valued function
h(a) =3 'u(a), (13)

and
M 1 1
g(a) = log(P(a)) — LY log(27) — 2 log(|2]) — Eh(a)’Eh(a)- (14)

The model for the observed data is found by rewriting equation (14) in
terms of P(a),

P(a) = (2m)"2|2['/2 exp[g(a) + th(a)’ Sh(a)]. (15)

In the single indicator multiple latent variable model, to obtain a specific
model for the observed data, we must parameterize g(a), h(a), and 3.

An example of a multiple latent variable model that may fit the
Coleman panel data is shown in Figure 2. In this model, two items are
directly related to one latent variable, the other two items are directly re-
lated to a second latent variable, and the two latent variables are correlated.
Since the discrete variables (the items) are conditionally independent given
the two latent variables, g(a) has the same definition as in the one latent
variable model—i.e., equation (4).

The items (discrete variables) have been partitioned into two mu-
tually exclusive sets A; = {A,,...,A,} and A, ={A,,,...,A,;}. For the

FIGURE 2. Single indicator, two correlated latent variable model for four observed
variables.
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Coleman data, r =2 and I = 4. Since the variables in .4, are directly related
to @, the first element of the (2 X 1) vector h(a) contains coefficients that
relate the variables in A, and ©,. Likewise, the second element of the h(a)
contains coefficients that relate the variables in 4, and ®,. Thus we pa-
rameterize h(a) as

,
2 Vigin

i=1
l b

2 Vi(ji)2

i=r+1

h(a) = (16)

where v;(;,) is the category score or scale value for level j; of discrete
variable A; for latent variable ©,,.

Any hypotheses that we have about the relationship between the
latent variables are incorporated into the model by the parameterization we
specify for %. To complete our model, we define % as

3= (U” U”). 17)

012 02

Replacing g(a), h(a), and ¥ in equation (15) by their definitions in equa-
tions (4), (16), and (17) gives us the model for the observed data,

I r—1 r
log(P(a)) = A+ > Xi(;,) + ony <E > Vi Vk(jm)
i=1

i=1k=i+1

I—1 1
+0'22( 2 2 Vi(j,->2Vk(jk)2>

i=r+lk=i+l1

r 1
+0’12< 2 Vi(j,-)IVk(jk)2>a (18)

i=lk=r+1

where

A= Xio + (/2o viy ifA; € A,
i(ji) '\i(j,-) + (1/2)0’22 Viz(j,-)2 lfA, (S AZ.
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For the Coleman data where / = 4 and r = 2 (i.e., Figure 2), the
specific log-multiplicative model based on equation (18) is

P(a) = A+ Xj(j) + A5y + A3y + gy
T onvigo Ve T 02Va)2Va)2
T onviGnVigo2 T oG Va2
T 002V, V302 T T2V Va2 (19)

From equation (19), we can see more clearly that the model contains
multiplicative terms for all bivariate associations and there is a single set
of scale values for each variable. Unlike the one latent variable model,
equation (9), where there is a single association parameter for each of
the multiplicative terms, in equations (18) and (19) there are three dif-
ferent association parameters for the multiplicative terms: o, 0,,, and
o1,. When the discrete variables within a set are related because they are
all indicators of the same latent variable, the association parameter is the
variance. When discrete variables from the two different sets are related
because the corresponding latent variables are related, the association
parameter is the covariance between the latent variables.

In the most complex, single factor per indicator model, each dis-
crete variable is an indicator of (i.e., directly related to) a different latent
variable and all the latent variables are correlated. For I = 4, the graph of
this model is given in Figure 3. With this structure, M = [ and

FIGURE 3. The most complex single indicator model for four variables.
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Vit
h(a) =
Vit

The definition of g(a) remains the same—i.e., equation (4)—and %, is now
an (/ X I') matrix of variances and covariances between the latent vari-
ables. Using these definitions, the model for the observed data is

log(P(a)) = A+ X Xy + > kE TikVi( )i Vk(jok (20)
i i k>
where Aj(;) = Ay + (1/2) 0y v 5 )i

Equation (20) is a multivariate generalization of the RC(1) associ-
ation model, which for three variables is equivalent to models discussed by
Clogg (1982; see also Agresti 1984). If category scores are known, then
equation (20) is a log-linear model with linear-by-linear interaction terms
for each pair of the observed variables (i.e., o X;( j.)i Xk ()« Where the x’s
are known scores). If scores for some variables are known but not for
others, then equation (20) includes some ordinal-by-nominal interaction
terms (C.g., Tix V[(ji)ixk(jk)k).

If no partial association between a pair of discrete variables exists,
then the corresponding covariance can be set to zero, which sets the inter-
action term for the pair of variables equal to zero. But if partial associa-
tions between all pairs of variables are present, then it is possible to obtain
simpler models by imposing certain restrictions on the model parameters.
The models that have fewer latent variables—for example, equations (9)
and (18)—can be thought of as special cases of the most complex single
indicator model, equation (20), where equality restrictions have been im-
posed on the association parameters (i.e., covariances) across the multi-
plicative terms.

All of the single indicator per latent variable models include bivar-
iate interactions between pairs of discrete variables; therefore, a log-linear
model that provides a baseline fit (best fit) for the latent variable, log-
multiplicative models always exists. Log-linear models are useful in that
they indicate whether particular latent variable models may be appropri-
ate. The use of log-linear models in conjunction with the graphical/latent
variable, log-multiplicative models is illustrated in the analyses presented
in Sections 4 and 6.

When each discrete variable is an indicator of a different latent vari-
able (i.e., equation 20), we can only estimate the covariances between the
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latent variables. We cannot estimate the variances because they are ab-
sorbed into the marginal effect terms (i.e., A,y = A;(j,) + (1/2) 0y v7j,)i)-
There is no way to tease apart the term A, ;) from the terms involving the
variances. However, in simpler models such as (9) and (18), we can esti-
mate the variances and the covariances. Given estimates of variances and
covariances and using the fact that u(a) = 3h(a) (see equation 13), we can
estimate the conditional means of the latent variables, u(a).

2.3. Identification Constraints

Identification constraints are required to estimate the parameters of the
log-multiplicative models. The choice of constraints sets the scale of the
conditional means of the latent variables. Adding conditions beyond those
needed for identification correspond to more restrictive latent variable
models.

For all log-multiplicative models, location constraints are required
for the marginal effect terms, A7 ;,), and for the scale values, v;( . These
may be setting one value equal to zero (e.g., V1), = 0), or setting the sum
equal to zero (e.g., 2, ¥i(j,m = 0). We use zero sum constraints in the
examples presented in Sections 4 and 6.

One additional constraint is required for each latent variable. While
the variance of each latent variable could be set to a constant (e.g.,
O, = 1 for all m), for reasons that become clear below, it is advanta-
geous to set the scale of the category scores for one discrete variable
that is directly related to the latent variable. For example, if A; and 0,
are directly related, then Ejl V,2( jyym = 1. The rule adopted here (assum-
ing I > 2) is that a scaling condition is imposed on the scale values of
one observed variable per latent variable. For the one common latent
variable model, equation (9), the scale values of one variable need to be
scaled, and for the two correlated latent variable model in equation (18),
the scale values of one variable in .4, and one variable in 4, need to be
scaled. For model (20), we take this rule to the limit and impose scaling
constraints on the scale values for each of the discrete variables.

The category scale values provide two types of information about
how the mean of a latent variable differs over levels of an observed vari-
able. This can be seen by expressing the scale values as v;( j.ym = @im Vi(jiym
where w;,, = (3, ¥ijym)"/* and 3, v/3,)» = 1. The w;,,’s can be interpreted
as measures of the overall (relative) strength of the relationship between
variable A; and latent variable ®,,, and the v/, s represent category
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specific information about this relationship. For identification purposes, if
we impose the scaling condition on the scale values of, for example, A,
where A is an indicator of ®, (i.e., Zjl Vlz(jl)l =1), then fori # 1, the w;;’s
are free to vary and the variance of © is an estimated parameter. Imposing
a scaling condition on the scale values of more than one variable per latent
variable is arestriction. This restriction can be interpreted as placing equal-
ity restrictions on the overall strength of the relationship between the ob-
served variables and the latent variables (i.e., the w;,,’s).

We can now show that the case of I = 3 is special. The single indi-
cator latent variable model for three observed variables implies the fol-
lowing log-multiplicative model

log(P(a)) = A + Af(j,) + A3 + Al(n) T 2 2 011 Vi1 VaGion-

i k>i
21)

Suppose that for identification, the condition X; »{(;) = 1 is imposed.
Since we can represent the scale values for the other two variables as
Va(j)1 = W2V, and V3,1 = w3V3(;,)1, model (21) is empirically in-
distinguishable from model (20), which is seen by setting o, = w,07,
013 = w307, and 0,3 = w, w307 . This equivalence provides an alterna-
tive interpretation for the partial association model for three variables dis-
cussed by Clogg (1982; see also Agresti 1984).

3. MULTIPLE LATENT VARIABLES PER INDICATOR

Observed variables may be directly related to more than one latent vari-
able. Adding this complexity to the models does not require the derivation
of a more complex model. We use the same general model derived in Sec-
tion 2.2 (i.e., equation 15), but specify a more complex parameterization
for h(a). Unlike the single indicator models where there is a single set of
scale values for each discrete variable, in the multiple indicator models, a
discrete variable may have multiple sets of scale values.

The major difficulty in using log-multiplicative models as multiple
indicator models is determining the necessary and sufficient constraints
needed to uniquely identify the parameters of the log-multiplicative mod-
els. For all models, the identification constraints described in Section 2.3
(i.e., location constraints on the marginal effect terms and the scale values
and a scaling constraint on the category scores of one observed variable
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per latent variable) are needed. The additional identification constraints (if
any) depend on the complexity of the model.

Since the number of possible multiple indicator models is far too
large to consider here, we derive the log-multiplicative models for three of
the four models that are used in the examples presented in Sections 4 and
6,2 and show how to determine the identification constraints for these mod-
els. In the first two examples, the latent variables are uncorrelated, and in
the third example, the latent variables are correlated.

3.1. Uncorrelated Latent Variables

Consider the General Social Survey data where all the items appear to be
indicators of one latent variable (i.e., attitude). If the single indicator, one
latent variable does not fit, then one possibility is that there is extra pair-
specific association that is not accounted for by the common latent vari-
able. To model pair-specific association, we can introduce additional latent
variables for pairs of discrete variables. For example, suppose that in ad-
dition to being indicators of the latent attitude variable @, items A, and A,
are directly related to ©®, (a pair specific variable), which is uncorrelated
with ©,. In this case, 3 equals a (2 X 2) diagonal matrix, and h(a) is
parameterized as

4
2 Vit

h(a) = i=1

Vigo2 T Va2

Using this parameterization of h(a), the parameterization g(a) in equation
(7) and a diagonal 3, in our general model, equation (15), gives us the
log-multiplicative model

log(P(a)) = A+ X i) + 011 2 2 Vi1 VaGion + 0 V12 Vaie
i i k>i

(22)

In addition to the identification constraints needed for the com-

mon part of the model, the scale values for each discrete variable related
to the pair-specific latent variable must have a scaling condition im-

2The fourth model, which has a heterogeneous covariance matrix, is discussed
in Section 6.2.
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posed on them (i.e., 2, vi(j)2 = X, V3(j»2 = 1). To see this, replace
Vi(j)2 With v, )2 = cvy(;,)» where ¢ is a constant. The value of the term
02 V1(j,)2V2(j,)2 in equation (22) remains the same; that is,

— * * *
O2V1(j)2V2(j)2 = 022Y1(5)2V2(),)2

where 0';2 = 0'22/C2 and V;(jz)Z = CVa(j,)2-

Extra association may also be due to multiple uncorrelated latent
variables to which each discrete variable is directly related. This would
give us

2 Vitin
h(a) = : . (23)

Z Vitiom
t

Since the latent variables are uncorrelated, 3 equals a diagonal matrix and
the log-multiplicative model is

log(P(a)) = A + E XiGo + 20 20 2 OumVitiymVeGm- (24)

i k>i m

To identify the parameters in equation (24), we need to use only the iden-
tification constraints given in Section 2.3 (assuming / > 2).

3.2. Correlated Latent Variables

Often in the social sciences, latent variables are correlated; therefore, we
consider the situation where each of / observed variables is directly related
to each of M latent variables (M > 1), and the latent variables are corre-
lated. In this case, the parameterization of h(a) is given in equation (23).
Assuming that all of the latent variables are correlated and using equation
(15) gives us the log-multiplicative model

log(P(a)) = A+ 2 Xijy + 22 D OnnVitim VkGom

i k>im

+ 222 2 Tnm' Vi(jymVi(ym' s (25)

i k>im om'>m
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where A is a normalizing constant and A}, = A, + (1/2)3,, X
zm' Tom' Vi(jymVi(j)m' - Since the sum (1/2) Em Zm’ Tom' Vi(jymVi(ym' is
only indexed by j;, it gets “absorbed” into the marginal effect term. Equa-
tion (25) is the most complex multiple indicator model possible, and as
shown below, it has more parameters than can be estimated from data.

To show what constraints are needed for equation (25), as well as
other multiple indicator models, let N; equal the (J; X M) matrix whose
columns contain the scale values for the categories of variable A;; that is,
N; = (¥i1,...,¥iy) wWhere v;, equals the (J; X 1) vector of scale values
v;(jym-If A;is conditionally independent of latent variable ©,,, then all the
scale values relating A; and latent variable ©,, equal zero and the corre-
sponding column of N; contains zeros (i.e., #;,, = 0). The interaction term
for levels j; and j; of variables A; and A, equals the (j;, j;) element of the
matrix product N; ZN; where %, is the covariance matrix of the latent vari-
ables. For each cell in the cross-classification of the discrete variables, the
interaction terms in the model equal the appropriate elements from the
matrices in the set

{N; N | <k} (26)

Determining the additional constraints needed to identify a model consists
of determining whether transformations of the N;’s and ¥ exist that have
no effect on the value of the elements of the matrix products in (26).

For model (25), none of the columns of the N;’s equals 0. Given any
(M X M) nonsingular matrix T, we can always set N = N; T for all i and
3* =T ST ! without changing the values of any of the elements of the
matrix products in (26). Given this indeterminacy (and for convenience),
we can arbitrarily set all covariances equal to zero and estimate the M
variances. This leads us back to the uncorrelated latent variable model in
equation (24).

If at least one observed variable is not an indicator of a latent vari-
able, then restrictions exist on the set of possible parameters. For example,
consider the case of four variables and two latent variables where A, and
A, are indicators of ®, and @,, respectively, and A, and A3 are indicators
of both ®, and ©,. The graph for this model is given in Figure 4 and h(a)
is set equal to

h(a) (Vuml + oo t V3<j3)1>
a) = .
Va(j2 T Va2 T Va2
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FIGURE 4. Multiple indicator, two correlated latent variable model for four observed
variables.

The log-multiplicative model for this case is given in equation (35) in
Appendix A. For the log-multiplicative model, the matrices of scale
values equal N; = (#,,0), N, = (v51,¥2), N3 = (¥3;,73;) and N, =
(0,74;). The covariance o, cannot be arbitrarily set equal to zero, be-
cause N, 3N} = (0,71, v4,). Setting o, = 0 implies that there is no
(partial) association between A; and A,4. After imposing location and
scaling conditions, we only need one additional constraint: one variance
needs to be set equal to a constant.

When the latent variables are correlated, it can be especially diffi-
cult to determine the identification constraints; therefore, we suggest em-
pirically verifying them. Given a set of conditions on the parameters that
are believed to be needed for identification, fit the model with fewer con-
ditions. We suggest starting by only imposing those conditions given in
Section 2.3, which are known to be required for identification. Succes-
sively add conditions on the parameters. If a condition is only needed for
identification, then the fit statistics for the model will be exactly the same
as the model fit without all of the identification conditions. If a condition
on the parameters is a restriction, then the model will not fit the data as
well.? Once it has been determined that none of the conditions is a restric-
tion, the model with these conditions imposed should be refit several times

3In Appendix B, where maximum-likelihood estimation of log-multiplicative
models is presented, we discuss a second method for checking whether a condition
imposed on the scale values is a restriction.
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with random starting values. If the conditions are sufficient for identifica-
tion, then the parameter estimates will be exactly the same. However, if the
conditions imposed are not sufficient, different parameter estimates will
likely be obtained, in which case, additional conditions are needed on the
parameters to identify a unique solution.

4. EXAMPLES OF SINGLE AND MULTIPLE
INDICATOR MODELS

Two example analyses are given here that illustrate the graphical/latent
variable models presented in Sections 2 and 3. The models are used here in
both an exploratory and a confirmatory fashion.

The log-multiplicative models fit to data in this section and in
Section 6 were fit using the unidimensional Newton method described in
Appendix A, which was implemented in an experimental version of ¢£m
(Vermunt 1997).

4.1. General Social Survey Data

For this example, we analyze the (2 X 4 X 5 X 5) cross-classification of
899 responses from the 1994 General Social Survey (Davis and Smith
1996) to the four items listed in Section 1. Statistics for the models fit to the
data are reported in Table 1. Since the data contain many zeros, to assess
model goodness-of-fit, we report dissimilarity indices (D) in addition to
likelihood ratio statistics (G?). For model comparisons (most of which are
not nested), we use the BIC statistic to take into account goodness-of-fit,
sample size, and model complexity.

As baseline models, the independence and all two-way interaction
log-linear models were fit to the data. The all two-way model fits the data
(G* =117.93, df = 136, p = .87); however, it is complex and estimating
the parameters is problematic due to zeros in the observed bivariate mar-
gins. While the items appear to measure the same attitude, Model (c), the
single indicator one latent variable model (i.e., equation 10), is unsatisfac-
tory. The two uncorrelated latent variable model (Model d) where each
item is an indicator of both latent variables (i.e., equation 24), fits the data;
however, this model is complex and difficult to interpret.

Given that all the items appear to be indicators of the same attitude,
we considered models with one common latent variable and additional
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102 ANDERSON AND VERMUNT

uncorrelated latent variables to represent associations between pairs of
items not captured by the common variable. Model (e), which has six extra
latent variables, fits the data; therefore, we sought simpler models by suc-
cessively deleting pair-specific latent variables, Models (f)—(j). We also
fit the one common latent variable model plus one uncorrelated variable
for a pair of items, Models (j)—(0). Since Model (j) has the smallest BIC
statistic, fits the data reasonably well,* and its interpretation is similar to
Models (c) and (i), we report the results from Model (j).

Model (j) has one common latent variable and a second uncorre-
lated variable that accounts for extra A3 A, association. Table 2 contains
the estimated association parameters and their standard errors, as well as
®;; computed for each item. The common latent variable is an attitude
variable pertaining to the proper roles of wives and husbands in terms of
employment inside /outside the home. From the ®;,’s, items A5 and A, are
most strongly related to the common latent variable, followed by items A4
and A,. The conditional mean of the common latent variable is propor-
tional to the sum of the scale values corresponding to a given response
pattern (see equation 13). The order of category scores for the common
latent variable corresponds to the order of the response options, except for
item A4 where the scale values for “strongly agree” and “agree” are nearly
equal but out of order (i.e., 74,11 = —.135 and 4,5, = —.145). The
greater the agreement with a statement, the greater the value on the con-
ditional mean of the latent variable.

Relative to the common latent variable, the variable for the extra
A3 A4 association accounts for inconsistent extreme responses ‘‘strongly
agree” to item A3 but “strongly disagree” to item A4, and overly consistent
responses for the more moderate responses. These inconsistencies and con-
sistencies may be due in part to the location of the items on the survey and
to the wording of item A,4. Item A, immediately follows A3, while A; and
A, are from two different sections of the survey. Item A, differs from the
other items in that the traditional roles of husbands and wives are reversed
and children are explicitly mentioned.

4.2. Coleman Panel Data: The Boys

The Coleman (1964) panel data, which are reported in Table 3, consist of
responses made at two time points by 3398 boys and 3260 girls to two

“There are two large standardized residuals; however, these were cells where
the observed count equals 1 and the fitted values are between .01 and .02.
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104 ANDERSON AND VERMUNT

TABLE 3
Panel Data Where A, and B, Refer to the Attitude and Membership Items
at Time Point *

Boys Girls
B* A® B, A, Count Fitted Stdresid Count Fitted Std resid
2 2 2 2 458 454.83 .15 484 470.58 .62
2 2 2 1 140 151.39 -.93 93 102.49 —-.94
2 2 1 2 110 121.46 —1.04 107 103.71 32
2 2 1 1 49 51.68 -.37 32 29.74 41
2 1 2 2 171 167.63 .26 112 113.49 —-.14
2 1 2 1 182 177.15 .36 110 112.44 —-.23
2 1 1 2 56 57.22 —.16 30 32.93 -.51
2 1 1 1 87 77.30 1.10 46 42.96 .46
1 2 2 2 184 171.87 .93 129 146.76 —-1.47
1 2 2 1 75 73.13 22 40 42.09 —-.32
1 2 1 2 531 534.85 —-.17 768 766.94 .04
1 2 1 1 281 290.89 —-.58 321 289.60 1.85
1 1 2 2 85 80.97 45 74 74.00 .00
1 1 2 | 97 109.38 —1.18 75 60.80 1.82
1 1 1 2 338 322.09 .89 303 320.66 -.99
1 1 | | 554 556.17 —.09 536 550.80 —.63

Source: Coleman (1964).

*Fitted values and standardized residuals are from Model (f) in Table 6 (i.e., graph in
Figure 5 with heterogeneous % and 78,12,,6j)-

“For items B, and B,, j = 1 for “no” and j = 2 for “yes.”

bFor items A, and A,, j = 1 for “negative” and j = 2 for “positive.”

items: their attitude toward (positive, negative) and their self-perception
of membership in (yes, no) the leading or popular crowd. The data for the
boys have been analyzed extensively (e.g., Agresti 1997; Andersen 1988;
Goodman 1978; Langeheine 1988; Whittaker 1990), while the data for the
girls has not. We analyze the boys in this section, and in Section 6, we
model the girls data.

The fit statistics for models estimated for the boys data are re-
ported in the left side of Table 4. We find that the independence log-
linear model fails to fit (G? = 1421.68, df = 11, p < .001), but the all
two-way interaction log-linear model provides a good fit for the boys
(G? =1.21,df = 5, p = .94). Given that the all two-way model fits well,
we consider log-multiplicative models. The simplest model with one com-
mon latent variable (i.e., equation 10) fails to fit (G* = 243.59, df = 7,
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p < .001). We next estimate a multiple indicator, two correlated latent
variable model with the following characteristics: attitude at time one,
A, is related to one latent variable; membership at time two, B, is re-
lated to a second latent variable; and the remaining two variables, A,
and B, are allowed to be related to both latent variables (i.e., equation
A.1 in Appendix A, and Figure 4 where A; and A4 correspond to B, and
B, respectively). For identification, the category scores for A, and B,
are scaled and o, = 1. This model, Model (d) in Table 4, has the same
fit and degrees of freedom as the all two-way interaction log-linear model;
however, the log-multiplicative model provides us with information re-
garding the structure underlying the data. The estimated scale values for
the boys data from Model (d) are given in Table 5.

The scale values in Table 5 suggest that the two attitude items are
indicators of the same latent variable, “attitude,” and the two membership
items are indicators of a second correlated latent variable, “membership
perception,” (i.e., Figure 2, where A3 and A4 correspond to B, and B,).
Model (e), the corresponding single indicator, two correlated latent vari-
able model (i.e., equation 19), fits the data nearly as well as the multiple
indicator, two correlated latent variable model (G* =1.21,df =6, p = .98).
Also suggested by the estimates in Table 5 is that the strength of the rela-
tionship between the observed and latent variables may be equal for all
items. Imposing this restriction, Model (f) which is Model (e) with the
restriction that >, V,-z(/-‘_),,, = 1 for all four items, yields G* = 5.43, df = 8,
and p = .71. Lastly, to check whether o, = 0, we estimate the uncorrelated
latent variable version of Model (f); however this model, Model (g), fails
to fit (G* =97.52,df =9, p < .001).

TABLE 5
Estimated Parameters from the Multiple
Indicator, Two Correlated Latent Variable Model*

Dijon Pigjn2
A, +.707 .000
A, +789 +.009
B, +.102 + 865
B, .000 +.707

Note: ) = .520, (AT|2 =.076, and 0, = 1.00.
*Model (d) in Table 4, fit to the boys’ data.
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Our final model for the boys data, Model (f), is a linear-by-linear
interaction model with restrictions across the association parameters. The
estimated variances (and standard errors>) equal &, = .580(.037) for at-
titude and d,, = 1.231(.043) for membership, and the covariance equals
61, = .123(.013). Given the identification constraints and restrictions on
the scale values, the category scores for the two levels of each variable
equal —.707 for j = 1 (i.e., “negative” or “no”) and .707 for j = 2 (i.e.,
“positive” or “yes”).

5. MODELS WITH HETEROGENEOUS
COVARIANCE MATRICES

In the models considered so far, 3 has been restricted to be constant or
homogeneous across levels of the discrete variables. We further generalize
the models by allowing %, to differ over cells of the cross-classification of
the discrete variables. To make this generalization, we replace 3 in the
joint distribution by (a). Using the canonical form given in equation
(12), we obtain

f(a,0) = exp[g(a) + h(a)'d — ;6'Z(a)"'0], (27)
where
h(a) = 3(a) 'u(a), (28)

and
M 1
g(a) = log(P(a)) — B} log(27) — > log(|=(a)])

~ > h(@)Z@ha) 29)

(see Lauritzen and Wermuth 1989; Edwards 1995; Lauritzen 1996; Whit-
taker 1990). The model for observed data is obtained by rewriting equation
(29) in terms of P(a),

P(a) = (2m)"?[%(a)|"? exp[g(a) + th(a) Z(a)h(a)]. (30)

5The estimated standard errors from multidimensional Newton-Raphson and
from the jackknife of the unidimensional Newton procedure are equal to within =.0001.
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Much of what is true for the homogeneous models is also true for
heterogeneous models. Hypotheses about the relationship between ob-
served variables given the latent variables is incorporated through the pa-
rameterization of g(a), hypotheses about the relationship between the
observed and latent variables are incorporated into the models through
h(a), and hypotheses about the relationship between the latent variables
are incorporated through 3(a). The identification constraints given in
Section 2.3 are still required. Whether additional constraints are required
depends on how the covariance matrix differs over a. Furthermore, the
log-multiplicative models for heterogeneous models can be read from
graphs (see Appendix A).

What is different between homogeneous and heterogeneous models
is that we must specify how the covariance matrix differs over a. Hetero-
geneous models may include extra terms relative to homogeneous models
due to |3 (a)|'? in equation (30). For homogeneous models, |3(a)|'/? =
|=|'/? and it is absorbed into the constant A. In heterogeneous models,
depending on how the covariance matrix differs over cells of the table,
|3 (a)|'/? may be absorbed into other terms in the log-multiplicative model
or may require the addition of extra parameters. For example, if the co-
variance matrix differs over the categories of just one observed variable,
then |3(a)|'/? is absorbed into the marginal effect term for that variable.
As another example, if the covariance matrix is different for a single cell in
the table, then there is one value of |3(a)|'/? for the single cell and another
value of |3 (a)|'/? for the rest of the table. Only one element of 3(a) needs
to differ and the single cell will be fit perfectly. In such cases, a parameter
needs to be included in the log-multiplicative model such that the cell is fit
perfectly (e.g., 78, where the indicator 6, = 1 if a is the cell with the
different covariance matrix, and 0 otherwise).

For graphical/latent variable models with homogeneous and het-
erogeneous covariance matrices, there is always a log-linear model that
provides a baseline (best fit) for a log-multiplicative model.® With homo-
geneous covariance matrices, only bivariate associations are implied for
the observed (discrete) variables, and the best fit that could be achieved by
a log-multiplicative model is given by some log-linear model with two-

5Given enough latent variables, the log-multiplicative model derived from a
graphical model will be equivalent to some log-linear model, which implies that a
graphical representation of any log-linear model can always be found provided that one
is willing to assume the existence of underlying continuous variables.
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way interactions. With heterogeneous covariance matrices, three- or higher-
way interactions may be present depending on how 3 (a) differs over a.

Since there are many possible ways in which the covariance matrix
could differ over levels of the discrete variables, we proceed with an ex-
ample that requires heterogeneous covariance matrices.

6. THE COLEMAN PANEL DATA REVISITED

In Section 6.1, we analyze the Coleman (1964) data for the girls, and in
Section 6.2, we analyze the boys and girls data together with gender as a
fifth variable.

6.1. Girls Data

For the girls data, we repeat the same analyses performed on the boys data
in Section 4.2. It is reasonable to expect that the same structural model
should fit both the girls and boys data; however, the simplest latent vari-
able model that fits the girls data is Model (d), the two correlated, multiple
indicator model given in Figure 4. Models (e) and (f), the latter of which
was the best one for the boys data, fail to fit the girls data;’” however, the
lack-of-fit appears to be due to one cell. The response pattern A; = “neg-
ative,” B = “no,” A, = “positive,” and B, = “yes”—i.e., the (1,1,2,2)
cell—has a relatively large residual.

For the girls, the covariance matrix for the (1,1,2,2) cell may not
equal the one for all the other response patterns. If so, then as discussed in
Section 5, we could add a single parameter, 7, to fit the cell perfectly.
Refitting all the models adding the term 78,,,,—where 8,5, = 1 for cell
(1,1,2,2) and 0 otherwise—greatly improves the fit of Models (d), (¢), and
(f) for the girls data.® Of the models that include the extra term, the best
model for the girls data is Model (f).

It would be desirable to compare the boys and girls conditional
mean values on the attitude and membership perception (latent) variables;

"We could argue that Model (f) is the best, because taking sample size and
model complexity into account the most parsimonious model is Model (f). The BIC
statistics for Models (d), (e), and (f) equal —31.75, —31.41, and —41.42, respectively.
Furthermore, Model (f) fits well based on the dissimilarity index for models (d), (e)
and (f), which equal .016, .021, and .026, respectively.

8 BIC statistics for Models (d), (e), and (f) with the 7 parameter equal —27.92,
—35.23, and —46.89, respectively, and the dissimilarity indices equal .013, .014, and
.016, respectively. These statistics again point to Model (f) as the best.
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however, to make such comparisons regarding the mean values, gender
must be included as an observed variable in the model. An additional rea-
son to include gender in the model is to test whether Zyoys = 2 giris- The
estimates of elements of 3 for the girls are slightly larger than those for
the boys. The estimates (and standard errors) for the girls are 7y gins =
.760(.040), 673 gins = 1.586(.052), and 7, gins = -138(.014), whereas
for the boys, they are @ poys = -580(.037), G722, boys = 1.231(.043), and
&IZ,boys = 123(013)

6.2. Combined Analysis

Given the results from separately estimating models for the boys and girls,
we expect that A; and A, are related to an unobserved attitude variable, B,
and B, are related to an unobserved membership perception variable, and
scale restrictions can be imposed on the scale values forA;,A,, By, and B,.
We would like to test whether the means of the unobserved variables differ
for boys and girls and whether ¥ differs. This underlying model is shown
in Figure 5.

To derive the most general log-multiplicative model for the figure,
we define g(a) as

g(a) = A+ Aq,5) + Auyi) T As) T A T Ay (€2))

where A is a constant, and A, (), Aa,(j)s AB,(j)s AB,(j)» aNd Agj) are mar-
ginal effect terms for the observed variables. For simplicity, we have

Vagn

Attitude

Membership

FIGURE 5. Graph corresponding to log-multiplicative Models (c-f) in Table 6 fit to
the Coleman panel with gender as the fifth variable.
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dropped the subscripts on the j indices. We parameterize h(a) as

Va,in T Va,iin T Vein
h(a) = ( . (32)
V(2 T VB2 T VG2

The first row in equation (32) equals the sum of the scale values for the
unobserved attitude variable and the second row equals the sum of the
scale values for the unobserved membership variable. Lastly, we specify a
heterogeneous covariance matrix:

J11G6(j) 012G())

T12G6(j) 922G())

where this matrix is different for j = 1 (boys) and 2 (girls). For the homo-
geneous models, we set %(;) = 2. Replacing g(a), h(a), and %(a) in
equation (30) by their parameterizations in equations (31), (32), and (33),
respectively, yields

log(P(a)) = A+ Aa,(j) + Aa,(i) + Ag(py T Ay + A6
+ Yo16() VA, T VA, 1+ 302260 VB, ()2 + VB2 ]
+ onei Va1 Vaon + vainVeon t Ya,in Vel
+ 026()[VB,()2VB2(j32 + VBi(92VG (2 F VBy()2VG(i)2]
+ o Va1 VG2 T Va1 VB2 T Vas()1 VB G)2
T Va,(in Va2 T VainVeiinz T VayiniVe2
+ Vs (2vein t Ve(h2veils (34)

where A5(j) = Ag(j) + 1og(1Z6|2) + (1/2) 2ot So—t Ty X
VG(jmVG(j)m'- While this log-multiplicative model is quite complex, its
interpretation is relatively simple and greatly facilitated by Figure 5. The
model can be read from its graph using the method outlined in Appendix A.

Based on the previous results, we set V4, ()1, ¥a,(j)1» ¥8,(j)2> and
Vg, (;)2 €qual to =.7071 rather than estimating them. Thus the only scale
values estimated are those for gender, vgj),. Other than location con-
straints on the marginal effects and the scale values for gender, no addi-
tional identification constraints are required on the parameters in either the
homogeneous or heterogeneous versions of equation (34).
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The fit statistics for models with gender as a fifth observed vari-
able are reported in Table 6. While the all two-way interaction log-linear
model is the baseline model for the homogeneous version of equation (34),
the log-linear model with all three-way interactions that involve gender
(A,A,G,A\B,G,A\B,G,A,B,G,A,B,G,B,B,G), is the baseline model for
the heterogeneous version of equation (34). Since the all two-way inter-
action log-linear model, Model (a) in Table 6, fails to fit, the homogeneous
latent variable model, Model (c), should also fail. Not only does the ho-
mogeneous model fail to fit, but so does the homogeneous model with an
extra parameter for the (1,1,2,2) cell for the girls—i.e., 78,122, g(;) Wwhere
81122, ginis = 1 for the (1,1,2,2) cell for the girls, and 0 otherwise.

Since the log-linear model with the three-way interactions, Model
(b), fits the data, we try a heterogeneous model where the covariance ma-
trix differs for boys and girls. The heterogeneous model nearly fits the data
(G*=30.39,df = 18, p = .03), and when 78,26, is added to the model,
the model clearly fits (G =19.47, df =17, p = .30). Model (f) is the most
parsimonious model that fits the data, so we select it as our final model.

The estimated parameters for Model (f) are given in Table 7. The
estimated covariance matrices for the boys and girls are similar to those
from the models estimated separately for the boys and girls. Given the
scale values and estimated covariance matrices, we compute estimates of
the mean values on the latent attitude and membership variables for the
cells of the cross-classification of the observed variables using w(a) =
3. (a)h(a) (see equation 28). Since there are only two levels of the vari-
ablesA(, A,, B}, and B, and their scale values are equal, there are only five
unique values of the means for the boys and five for the girls. Cells that
have the same number of positive responses and yes’s have the same mean—
for example, the conditional mean for the cell (2,2,2,1) is the same as the
mean for (1,2,2,2). The estimated conditional means for attitude and mem-
bership perception are plotted in Figure 6 against the numbers O through 4,
which equal the number of positive responses and yes’s. Separate curves
are given for boys and girls.

From Figure 6, we see that for response patterns with more negative
responses and no’s, the boys means are larger than the girls means, while
for response patterns with more positive responses and yes’s, the girls
means are larger than the boys. In both figures, the slopes for the girls are
larger than those for the boys. The slopes of the lines for boys and girls
differ, because iboys * igms. If iboys = igir]s, then the lines for boys and
girls would be parallel and any difference between them would be due to
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TABLE 7
Estimated Parameters from Model (f) in Table 6 Fit to the Panel Data
with Gender as a Variable

Value(s) Value(s)

Parameter j=1 j=2 Parameter j=1 j=2
A 4.796 AG(j) 276 —.276
A —.134 134 Ag,(j) 291 —.291
Ads()) —.185 185 A, () 118 —.118
VGij —.125 125 VG2 .060 —.060
T11,boys .578 U]l.girls 757
022, boys 1.228 022, girls 1.583
UlZ,boys 123 UIZ.girls 138

T 462

Note: Due to restrictions on the scale values for variables A, A,, B, and B,, the scale
values va ()1, Va,(j)1» Vo, (j)2> and vy, ;)2 equal —.707 for j = 1 and .707 for j = 2.

the scale values for gender. The positive covariance between attitude and
membership is reflected by the fact that the higher a child’s perception of
being a member of the leading crowd, the more positive his or her attitude
is toward the leading crowd (and vice versa).

7. DISCUSSION

Log-multiplicative models provide a powerful and flexible approach to
studying the relationships between nominal and/or ordinal variables in

51 51
o, Girls
o 31 Girls ; 34
© %)
=3 O Boys
.t: 17 Boys o 17
Q
o =
‘,:—1' é’-l"
© - 3 -3
Q ()
= =
_5 T T T T T M _5 T T T
0 1 2 3 4 0 1 2 3 4
Number j=1 Number j=1

FIGURE 6. Plot of estimated attitude (a) and membership (b) means for boys (circles)
and girls (dots) using scale values and estimated covariance matrix from
Model (f) in Table 6 fit to the data from Coleman (1964).
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terms of unobserved, continuous variables. The approach presented here
provides a logical way to incorporate substantive knowledge about a phe-
nomenon into models for studying associations between multiple discrete
variables. In the examples presented, we show how to use the models in
both an exploratory and confirmatory fashion, how to study group differ-
ences in terms of underlying variables, and how to obtain measurements
for individuals on the latent variables. Measurement of individuals’ values
on the latent variables is a byproduct of the estimation of the parameters of
log-multiplicative models. Additional possibilities include adding individ-
ual level covariates to the models (Anderson and B6ckenholt 2000) and
imposing inequality restrictions on the category scale values (Ritov and
Gilula 1991; Vermunt 1998).

With the conditional Gaussian assumption, the marginal distribu-
tion of the continuous variables is a mixture of multivariate normals. This
differs from traditional factor analytic and item response theory models
where the marginal distribution of latent variables is typically assumed to
be multivariate normal. In the traditional models, the conditional distribu-
tion within a cell is a mixture of multivariate normals. The models pro-
posed here are alternatives to the more traditional factor analytic models.
In some cases, the proposed models may be more appropriate or at least as
appropriate as traditional models. Which is better is both a theoretical and
an empirical question whose answer depends on the particular phenom-
enon being studied. A full discussion of the relationships between the la-
tent variable models proposed here and more traditional models is beyond
the scope of this paper. Thus, areas for future work include studying the
relationship between the log-multiplicative models and traditional factor
analytic and item response theory models, and further exploration of the
use of log-multiplicative models to estimate individuals’ values on latent
variables.

APPENDIX A: READING MODELS FROM GRAPHS

Reading log-multiplicative models from graphs is essentially the same for
both homogeneous and heterogeneous models. For all models, marginal
effect terms are always included for each discrete variable, as well as a
constant to ensure that the fitted values sum up to the observed total. In the
graphs, the lines connecting the observed and latent variables have been
labeled by the corresponding scale values. The interaction terms in the
log-multiplicative models equal half the sum of the products of pairs of
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scale values and the covariance between latent variables from all directed
paths between observed variables. There are two types of paths in the
graphs: paths from a discrete variable back to itself and paths from one
discrete variable to another. Both types of paths may involve either one
latent variable or a pair of latent variables.

To illustrate, consider the multiple latent variables per indicator
model depicted in Figure 4. The log-multiplicative model for this graph is

log(P(a)) = A+ Af(;,) + A3, + A3y + Al
+ oy [Vl(j|)1 V2t F V1G01 V3001 T V200 V3(j3)l]
+ on[Vai2 V302 t Va(m2Vatn2 T Va(s2Va0a2)
+ onlvigo g T Vi Vagn2 T ViGo VaGs2
T V201 V30302 V20 1Va002 T V301V205)2

+ V3001402 ) (35)

where Ay = Ay + (1/2) 2w Zont O Vi(jym Vi jym' -

With respect to paths from a variable back to itself, when the path
goes through a single latent variable, this results in terms such as
(1/2)01,v{(j,)1 - This term comes from the directed path A; — ©; > A;.
The covariance of a variable with itself is the variance, so we multiply
(1/2)vi jp1 by the variance of ©,. Paths from a variable back to itself that
involve a pair of latent variables are found only in multiple factors per
indicator models. For example, the directed paths A, - 0, —» 0, > A,
and A, - 0, = 0, = A, result in the term (1/2)012v2(j,)1V2(j,)2 T+
(1/2)012v2(,)2V2(jy)1 = T12V2(j,)1 V2(j,)2- In homogeneous models, terms
that arise from paths from a variable back to itself are absorbed into the mar-
ginal effects; however, in heterogeneous models, they are not necessarily
absorbed (an example of this is given in Section 6.2).

The second type of path, which connects two different discrete vari-
ables, may involve either one latent variable or a pair of correlated latent vari-
ables. In the former case, the association parameter is the variance of the
latent variable, and in the later, the association parameter is the covariance.
For example, the term oy, v(,)1V2(j,)1 results from the directed paths
A >0, >AandA, - 0, > A,. The term 0y, V()1 V2(j,)2 Tesults from
the directed paths A} > ©; > 0, > A,and A, > 0, 5 0, 5 A;.
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As discussed in Section 5, some heterogeneous models may include
extra terms due to |%(a)|/? in equation (30).

APPENDIX B: MAXIMUM-LIKELIHOOD ESTIMATION

The maximum-likelihood estimation of the parameters of the log-
multiplicative models presented in this paper is described here. The start-
ing point is the most general, homogeneous latent variable model, which
was given in equation (25). All other (homogeneous) latent variable mod-
els can be derived from this model by imposing fixed-value restrictions
on some parameters—for instance, by fixing particular sets of category
scores to zero, particular variances to one, or particular covariances
to zero. The heterogeneous models can be estimated by the same proce-
dure described here. The only difference is that some of the maximum-
likelihood equations differ slightly.

Assuming either a multinomial or Poisson sampling scheme, the
likelihood equations for the parameters A%y, Tpms T, AN Vi(jym,
which equal zero at the maximum value of the likelihood function, are

dlog L
22 = S [n(a) - P(a)]

ONiiy  a

dlogL

9 = 222 Vi(iymVk(jm [n(a) - P(a)],
Tmm a i k>i

dlogL

=2 D Vitjom Vo [n(a) — P(a)],

aamm’ a i k#i

dlog L
s 22> T Vi jom [n(a) = P(a)],

ayi(ji)m alj k#i m’

respectively. Here, n(a) denotes an observed cell entry, >, indicates the
summation over all cells, and Ea, j, indicates the summation over the cells
in which variable A; has the value g, ;..

Asimple algorithm to solve these maximum-likelihood equations is
the unidimensional Newton algorithm. This procedure is implemented in
an experimental version of the program €em (Vermunt 1997). We have
found that this iterative method, which has also been used by others to
obtain ML estimates of log-multiplicative models (for instance, see Good-
man 1979; Clogg 1982; Becker 1989), works well for the models dis-
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cussed in this paper. The method involves updating one parameter at a time
fixing the other parameters at their current value. A unidimensional New-
ton update of a particular parameter, say v, at the  th iteration cycle is of
the form

dlog L/dy
9% log L/3%y’

.y(r) — A1)

where the derivatives are evaluated at the current values of all model pa-
rameters. The relevant second-order derivatives for the parameters appear-
ing in equation (25) are

d%logL
* = —zP(a),
32X a
d%logL
2 = _222 [Vi(j[)m Vk(_jk)m]zP(a),
9 Timm a i k>i
d%logL
2 = _222 [Vi(j,-)m Vk(_,'k)m']zp(a),
d Trm’ a i k+i
d%logL
a2 = _222 [o-mm'Vk(j,\)m']zP(a).
O Vi(jm alj, k#ime

The location and scaling constraints, which are necessary for identifica-
tion, can be imposed at each iteration cycle after updating a particular set
of A or v parameters.

As mentioned in Section 2.3, we sometimes might want to impose
a scaling condition on a particular set of the » parameters that is not nec-
essary for identification. Suppose that the scaling of the mth set of category
scores for variable A, is a model restriction. In such a situation, we have to
work with Lagrange terms to obtain the restricted ML solution. The La-
grange likelihood equations for the v;;,, parameters, which equal zero at
the saddle point of the Lagrange likelihood function, are

dlogL

+ ﬁiml + 2Vi(j,)m ﬁim2'
aVi(j,-)m

Here, B;,1 and B;,,, are the Lagrange parameters corresponding to the lo-
cation and scaling restrictions (i.e., 2 ¥;(j)» = 0 and > V,-Z(A,-,_),,, =1).
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Only a slight modification of the unidimensional Newton method is
needed with these types of restrictions. Setting the Lagrange likelihood
equations for the v;(.),,’s equal to zero, we can compute B, and B, by
a simple linear regression. This can be seen by rewriting the resulting
equations as

dlogL
- =B Tt 2Vf(ji)mBim2' (36)
Wi jym

The provisional values for 8, and 3;,, can be obtained by regressing the
term on the left-hand side of equation (36) on 2v;( ;). After obtaining
new Lagrange terms, the »’s are updated and subsequently centered and
rescaled. A nice feature of the Lagrange terms is that they converge to
zero if the corresponding location or scaling constraint is necessary for
identification. In the models presented in this paper, this is always the case
for the location constraints but not always for the scaling conditions.

Since the log-likelihood function of log-multiplicative models is
not concave, there may be local maxima. Therefore, models should be
estimated multiple times using different sets of random starting values to
prevent reporting a local solution.

Contrary to multidimensional Newton methods, the above simple
estimation method does not provide standard errors or covariances of the
parameter estimates as a by-product. Asymptotic standard errors and co-
variances of parameter estimates can be obtained by means of jackknifing,
which is a method that has been used by a number of authors for this
purpose in the context of log-multiplicative models (e.g., Anderson and
Bockenholt 2000; Clogg and Shihadeh 1994; Eliason 1995).
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