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A GENERAL CLASS OF
NONPARAMETRIC MODELS FOR
ORDINAL CATEGORICAL DATA

Jeroen K. Vermunt*

This paper presents a general class of models for ordinal categor-
ical data that can be specified by means of linear and/or log-linear
equality and/or inequality restrictions on the (conditional) proba-
bilities of a multiway contingency table. Some special cases are
models with ordered local odds ratios, models with ordered cumu-
lative response probabilities, order-restricted row association and
column association models, and models for stochastically ordered
marginal distributions. A simple unidimensional Newton algo-
rithm is proposed for obtaining the restricted maximum-likelihood
estimates. In situations in which there is some kind of missing data,
this algorithm can be implemented in the M step of an EM algo-
rithm. Computation of p-values of testing statistics is performed by
means of parametric bootstrapping.

1. INTRODUCTION

Although the variables and the relationships that are studied in the social
sciences are often of an ordinal nature, truly ordinal models are rarely
used. Researchers confronted with ordinal data generally use nominal, in-
terval, or quasi-ordinal methods. When using nominal analyses methods,
such as standard hierarchical log-linear models, the ordinal variables are
treated as nominal variables, which means that the information on the or-
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der of their categories is ignored. Interval analyses are based on assigning
scores to the categories of the ordinal variables, as in linear-by-linear as-
sociation models (Goodman 1979; Haberman 1979). The assumption of
known category scores implies that the ordinal variables are actually treated
as interval level variables. And finally, quasi-ordinal analyses involve es-
timating category scores for the ordinal variables, such as in log bi-linear
association and correspondence models (Goodman 1979, 1986; Clogg 1982;
Gilula and Haberman 1988; Clogg and Shihadeh 1994). Although the lat-
ter type of methods yields easily interpretable results when the estimated
scores have the assumed order, there is no guarantee that the estimated
ordering of the categories will be the expected one.

This paper follows a different modeling strategy for ordinal cat-
egorical variables. A nonparametric approach is presented which is based
on imposing linear or log-linear inequality restrictions on (conditional)
probabilities. This approach is truly ordinal in the sense that the estimated
probabilities satisfy the specified order restrictions without the necessity
of assuming the variables to be measured on interval level. Although not
very well-known among social scientists, linear and log-linear inequality
restrictions have been advocated by several authors for the specification of
relationships between ordinal categorical variables (Grove 1980; Agresti
and Chuang 1986; Agresti, Chuang, and Kezouh 1987; Dykstra and Lemke
1988; Robertson, Wright, and Dykstra 1988; Croon 1990, 1991; Ritov and
Gilula 1993; Agresti and Coull 1996; Evans, Gilula, Guttman, and Swartz
1997; Hoijtink and Molenaar 1997).

The general form in which the inequality restrictions are presented
in this paper makes it possible to formulate nonparametric variants of log-
linear models for cell probabilities, of logit models, and of linear models
for cumulative and mean responses. It is also shown that the combination
of inequality restrictions with equality restrictions makes it possible to
specify hybrid models having both parametric and nonparametric features.
An example is a row association model with ordered row scores.

Estimation of the order-restricted probabilities is performed by
means of maximum likelihood using the method of activated constraints.
A simple unidimensional Newton procedure for solving the corresponding
Lagrange likelihood equations is presented. It is also demonstrated that the
same procedure can be used in conjunction with the EM algorithm, which
makes it possible to apply the proposed inequality restrictions in situations
in which some of the variables are partially or completely missing (latent).
In addition, attention is paid to likelihood-ratio tests based on asymptotic
distribution functions and bootstrapping.
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First, a small empirical example is presented to illustrate the differ-
ences between parametric and nonparametric analyses of ordinal categor-
ical data. Then, the general class of restrictions yielding the ordinal models
of interest is described. Next, attention is paid to maximum likelihood
estimation with and without missing data and to model testing. And finally,
the use of the proposed ordinal models is exemplified by means of a num-
ber of empirical examples.

2. AN EXAMPLE

This section illustrates the possible benefits of using nonparametric mod-
els for ordinal data by means of a small example. The example concerns
the analysis of the two-way cross-classification reported in Table 1. This
table, which is taken from Clogg’s 1982 paper on ordinal log-linear mod-
els, describes the relationship between number of siblings (S) and happi-
ness (H ). The original table is a three-way cross-classification of the ordinal
variables years of schooling, number of siblings, and happiness. For this
example, the original table is collapsed over education yielding the 5-by-3
table formed by S and H, in which S serves as row variable and H as
column variable.

The use of parametric or nonparametric ordinal approaches to the
analysis of categorical data makes, of course, sense only if there is some
reason to assume that the relationship between the variables of interest is
of an ordinal nature. Let us assume that we want to test whether there is a
positive relationship between number of siblings and happiness, or, worded
differently, whether individuals having more siblings are happier than in-
dividuals having fewer siblings.

TABLE 1
Cross-Classification of Number of Siblings and Happiness: Observed Frequencies

Happiness (H)

Number of Siblings

(8) Not Too Happy Pretty Happy Very Happy
0-1 99 155 19

2-3 153 238 43

4-5 115 163 40

6-7 63 133 32

8 + 99 118 47

Source: From Clogg (1982), table 2.
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One way of defining such a positive relationship is on the basis of
the cumulative conditional responses on happiness given the number of
siblings that a person has. In that case, we treat happiness as the dependent
variable and number of siblings as the independent. Let 7, denote the
conditional probability that H = h given that § = 5. In addition, let Fj,
denote the cumulative conditional probability that H < h given that S = s,
which is defined as

h
Fhls = 2 Tpls
p=1

A positive relationship between S and H implies that
Fh|x2Fh|s+l > (1)

or that the cumulative conditional probability that H = h decreases or re-
mains equal as S increases. We may also say that the cumulative probabil-
ities are monotonically nonincreasing. Note that even if this assumption
holds for the population, as a result of sampling error, this may not hold for
the data. Table 2 reports the cumulative conditional probabilities calcu-
lated from the observed cell entries reported in Table 1. As can be seen,
there are several order violations in the data.

Another way of defining a positive relationship is on the basis of the
local odds ratios. Let 7, denote the probability that H = h and S = s. In
addition, let 6, denote a local odds ratio, which is defined as

_ TshTs+1h+1
Hxh -

T sh+1T s+ 1h

TABLE 2
Cross-Classification of Number of Siblings and Happiness:
Observed and Estimated Cumulative Probabilities

Happiness (H)

Number of Siblings

(S) Not Too Happy Pretty Happy Very Happy
0-1 0.363/0.363 0.930/0.930 1.000/1.000
2-3 0.353/0.356 0.901/0.912 1.000/1.000
4-5 0.362/0.356 0.874/0.873 1.000/1.000
6-7 0.276/0.329 0.860/0.870 1.000/1.000

8 + 0.375/0.329 0.822/0.809 1.000/1.000
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TABLE 3
Cross-Classification of Number of Siblings and Happiness:
Observed and Estimated Odds Ratios

Happiness (H)
Number of Siblings
(S) Not Too Happy/Pretty Happy ~ Pretty Happy/Very Happy
0-1/2-3 0.994/1.000 1.474/1.471
2-3/4-5 0.911/1.000 1.358/1.308
4-5/6-1 1.489/1.023 0.980/1.125
6-7/8 + 0.565/1.000 1.655/1.327

Using this measure, a positive relationship involves
6p=1, 2

or that each local odds ratio in the two-way table is larger than or equal to
1. As can be seen from Table 3, the pattern of observed odds ratios is not in
agreement with the definition of a positive relationship since some of them
are smaller than 1.

The fact that the data are not fully in agreement with the assumption
of an ordinal relationship may be the result of sampling error. One way of
testing whether the observed order violations are the result of sampling
error is by using some kind of parametric model to impose restrictions on
the cumulative conditional probabilities or the local odds ratios.

Table 4 reports the test results for the estimated parametric models.
As can be seen, the independence model does not fit the data (L3, =
26.27,df =8, p <.01), which indicates that there is an association between
H and S. The next model (A.2) is a logit model for the cumulative response
probabilities—that is,

In—%E— =g, +8, .

It should be noted that this parametric model fulfils the conditions spec-
ified in equation (1) only if B; = B;+;. The model could be character-
ized as ordinal-nominal because it treats the dependent variable as ordinal
and the independent as nominal. The cumulative logit model does not fit
the data:
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TABLE 4
Test Results for the Four Examples
Model L? value df® p value®
A. Ordinal association models
1. Independence 26.27 8 .00
2. Cumulative logit 18.52 4 .00
3. Row-column association 7.33 3 .06
4. Row association 17.52 4 .00
5. Column association 8.36 6 21
6. Uniform association 20.21 7 .01
7. Nonincreasing Fj, 5.50 0+2 .10
8. Nonnegative log 6y, 8.32 0+3 .04
9. Ordered row-column association 8.36 3+1 .08
10. Ordered row association 18.60 4+1 .00
11. Ordered column association 8.84 6+ 1 22
B. Ordinal regression models
1. No three-variable interaction 24.88 24 41
2. Only effectof S 53.42 30 .01
3. Only effect of E 39.62 32 17
4. 1 + uniform associations 54.58 36 .02
5. 1 + order-restricted local odds ratios 35.30 24 + 6 .23
C. Marginal models with missing data
1. Marginal homogeneity 22.36 3 .00
2. Nondecreasing marginals 3.17 0+1 .07
3. Linearly changing marginals 13.73 2 .00
D. Ordinal latent class models
1. Unrestricted four-class model 15.11 24 92
2. Uniform associations 115.79 48 .00
3. Column associations 105.86 42 .00
4. Nonincreasing cumulative probabilities 15.55 24 +2 .96
5. Nonnegative local log odds ratios 39.20 24 + 16 .34

2The reported number of degrees of freedom for the order-restricted models is the df of

the model without constraints plus the number of activated constraints.

®The p values of the models with inequality constraints are estimated on the basis of 1000
bootstrap samples. The standard errors of these estimates are less than .01 for p =< .11 and p = .89,

and at most .02 for other p values.

L3, = 18.52,df = 4,p = .00. Apparently, its underlying assumption of
proportional odds does not hold for this data set. In addition, the esti-
mated B,’s are out of order, which also means that the assumption of

monotonically nonincreasing Fj;’s is not satisfied.
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A parametric model that can be used to restrict local odds ratios is
the row-column (RC) association model (Goodman 1979; Clogg 1982)
which is defined by

Inmg, =u+ud+ull +vivf

Here, v and v} are unknown “scores” for the levels of S and H. The RC
model satisfies the conditions described in equation (2) if »{ < v$,, and
v < vfl, —that is, if the row and column scores are monotonically non-
decreasing. Because the RC model does not restrict the row and column
scores to be ordered, it can be labeled as nominal-nominal, or quasi ordi-
nal. The RC model fits the data quite well: L3 ; = 7.33,df = 3,p = .06.
There is a problem however: both the row and the columns scores are out
of order. More precisely, the order of the scores for rows 3 and 4 and for
columns 1 and 2 is incorrect.

One way to prevent the occurrence of solutions that are out of order
is to assign a priori scores to the levels of S and H. Note that this amounts
to assuming that the variable concerned is of interval measurement level.
Although for simplicity of exposition here I will work only with equal-
interval scores, any set of scores that is in agreement with the assumed
order may be used. Three restricted variants of the above RC model can be
obtained, depending on whether we use a priori (equal-interval) scores for
the column variable (H ), the row variable (S), or both. The resulting mod-
els can be classified as row (R), column (C), and uniform (U) association,
respectively. They can also be labeled as nominal-interval, interval-nominal,
and interval-interval.

The test results reported in Table 4 show that the R model does not
fit the data (L3 4, = 17.52,df = 4,p < .01), which indicates that H may not
be treated as an interval level variable. In addition, the estimated scores for
S are not ordered: the score for row 4 is slightly higher than for row 5. The
C model fits very well (L s = 8.36,df = 6, p = .21), but again the category
scores, in this case for H = 1 and H = 2, have an incorrect order. The
uniform association model (Model A.6) does not fit the data at all (L3 ¢ =
20.21,df =7, p = .01), which indicates that the assumption that H and S are
interval level variables is too strong. Nevertheless, the uniform associa-
tion parameter is significant and has the “expected” positive sign.

The above parametric ordinal approach illustrates that on the one
hand the specified models make too strong assumptions, such as propor-
tional odds or constant local odds ratios. On the other hand, they may not
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be restrictive enough in the sense that they do not force the solution to be
ordered in one of the ways defined above. This is the main reason for
proposing a nonparametric approach for the kinds of problems we are deal-
ing with here.

The next two models reported in Table 4 are nonparametric. More
precisely, Model A.7 is defined by the inequality restrictions described in
equation (1) and Model A.8 by the restrictions described in equation (2).
The model obtained by imposing inequality restrictions on the cumulative
conditional probabilities fits quite well: L3 ; = 5.50, p =~ .10. The fit of the
model restricting the local odds ratios to be at least 1 is somewhat worse:
Lig =8.32,p~ .04

The estimated cumulative probabilities for Model A.7 and the esti-
mated odds ratios for Model A.8 are reported in Tables 2 and 3, respec-
tively. These “parameter” estimates show very well the nature of an order-
restricted maximum likelihood (ML) solution: as long as an order restriction
is not violated, nothing happens, but if an order is violated, the correspond-
ing estimate gets a boundary value. In the current situation, this involves
equating adjacent cumulative conditional probabilities or equating local
odds ratios to 1. It should be noted that although such a procedure seems to
be simple to implement, it cannot always be determined from that data
which restrictions have to be imposed. This can be seen from the ML
solution for Model A.8, which contains 3 odds ratios equal to 1, while in
the observed table there were 4 odds ratios smaller than 1.

A disadvantage of using the nonparametric approach is that there
are no real parameters to report. The interpretation of the results has to be
based on the fit statistics and on the estimated values of the probabilities or
the functions of probabilities for which order restrictions were specified:
in the above examples, these were the cumulative probabilities and the
local odds ratios. To deal with this problem, we will also present models
that combine parametric and nonparametric features, such as row associ-
ation models with order-restricted row scores.

Another disadvantage of using nonparametric models is that esti-
mation and testing are much more complicated than they are for paramet-
ric models. One of the objectives of this paper is to show that a quite
general class of nonparametric models can be estimated with a very simple

'As is explained in Section 5, the p-values for the order-restricted models are
estimated by means of bootstrapping. The reported p-values are point estimates based
on 1000 bootstrap samples. The number of degrees of freedom is not defined in models
with inequality constraints.
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algorithm. In addition, the availability of fast computers makes it feasible
to have goodness-of-fit testing and computation of standard errors of the
relevant measures, such as local odds ratios and cumulative probabilities
using computationally intensive resampling methods.

3. A GENERAL CLASS OF (IN)EQUALITY RESTRICTIONS

This section discusses linear and log-linear restrictions on (conditional)
probabilities that can be used for specifying ordinal models for categorical
data. Although the specification of ordinal models is based on imposing
inequality constraints, we also discuss equality constraints of the same
form. This is because of didactic reasons—equality constraints are some-
what easier to understand and most inequality constraints are variants or
extensions of the simpler equality constraints—and because in some sit-
uations it may be relevant to combine the two types of restrictions. For
each of the four types of constraints—linear equalities, linear inequalities,
log-linear equalities, and log-linear inequalities—a number of possible
applications is presented.

Let n;; denote an observed cell count in an [-by-J table, where i
serves as an index for the (possibly composite, possibly degenerate) inde-
pendent variable X and j for the (possibly composite) dependent variable
Y. For example, Y might be a bivariate random vector (Y;, Y>), in which
casej = (j,,Jj,) would index the possible level combinations of ¥; and ¥5.
In situations in which no distinction is made between dependent and in-
dependent variables, X has only one level, which makes the index i redun-
dant. The conditional probability that Y = j given that X = i is denoted by
jli-

3.1. Linear Equality Restrictions

The first type of restrictions are linear equality restrictions on the (condi-
tional) probabilities 7;;. The pth restriction of this form is defined by

> Zip i~ €1 =0 . 3)
ij
As can be seen, a linear combination of 7;;’s defined by the z,;;,’s minus

some constant ¢y, is postulated to be equal to zero. In most situations, c,,
will be 0. It should be noted that we have in fact a linear model for (con-
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ditional) probabilities that is well-known from the GSK framework (Grizzle,
Starmer, and Koch 1969).

These linear equality restrictions can be used to test several types of
assumptions on the relationships between categorical variables. Some ex-
amples are independence, equal means, conditional independence, mar-
ginal homogeneity, equal marginal means, and symmetry.

Suppose that we are studying the relationship between two categor-
ical variables A and B, with category indexes a and b, respectively. Using
the above linear equality restrictions, independence between A and B can
be specified as

Talb — Talp+1 = 0 .

Let F,), denote that (cumulative) probability that A < a, given B = b:
F,» = X,=1 7. An alternative formulation of the independence as-
sumption is in terms of these cumulative probabilities:

a a
Falb_FaHﬂ—l = 2 7Tplb_ 2 77-p[b+l =0.
p=1 p=1

Although working with cumulative probabilities seems to be unnecessar-
ily complicated, it will prove very useful in the context of inequality
restrictions.

Aless restrictive assumption than independence, which makes sense
only if A is an interval level variable, is that the mean of A is the same for
each category of B. Using v as category scores for A, such an assumption
can be formulated as

A_ A — A _ A —
Kb Mb+1 = E Va Talb 2 Vg Talb+1 = 0 )
a a

where i is the mean of A for B = b.

The generalization of the independence assumption to a multivari-
ate context yields the conditional independence assumption. Suppose that
A and B are independent of one another within the levels of a third variable
C with index c. Such a conditional independence model can be specified as

Talbc — Malb+1c — 0.

Of course, as in the bivariate case, we may also specify this hypothesis
using the cumulative probabilities F,;.
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Rather than testing assumptions on the level of conditional proba-
bilities as in the above examples, it is also possible to formulate hypoth-
eses that have to be specified in the form of linear restrictions on the joint
probability distribution of a set of categorical variables. An example is the
marginal homogeneity assumption for a two-way square table formed by
the variables A and B, which can be defined as:

Wa._ﬂ.azzwab_zwba=0 .
b b

Here, 7, denotes the probability that A = a and B = b, and a dot indicates
that the corresponding probability is obtained by summation over the sub-
script concerned. For instance, 7, = X, Tqp.
Let F, denote the cumulative marginal probability that A = a:
F, = X751 2, Tp. In a similar way, we can define the cumulative mar-
ginal probability that B = b, F ;. The marginal homogeneity model can
also be specified in the form of constraints on these cumulative marginal
probabilities—that is,
a a
Fa._F.a= E - Tpp —

p=1

> =0 . 4)
b

p=1

Another marginal hypothesis, which may be relevant in situations in which
A and B are interval level categorical variables, is the assumption of equal
marginal means for A and B (for an example, see Haber and Brown 1986).
This is obtained by

pt =t =3 > i, — > > vEm, =0, 5)
a b a b

where the v’s denote category scores assigned to the levels of A and B.

Another interesting model for squared tables is the well-known sym-
metry model. Using linear equality restrictions, such a model can be spec-
ified as

Tab — Tpa = 0. (6)

It should be noted that the independence, conditional independence, and
symmetry models can also be formulated as log-linear models. The other
examples of linear restrictions cannot be specified as standard log-linear
models.
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3.2. Linear Inequality Restrictions

The linear inequality restrictions of interest are of the form
D 22T~ €20 =0 . (7
i

Here, the z,;, are used to define the gth linear combination of probabilities
;. This linear combination minus a constant (c,,) is assumed to be at
least 0. Restrictions of this form can be used to specify ordered variants of
the equality restrictions discussed above, such as ordered conditional dis-
tributions, ordered conditional means, and ordered marginal distributions.
Rather than assuming independence between A and B, it is possible
to postulate a positive relationship. This can be specified in the form of
monotonically nonincreasing cumulative conditional probabilities

a a
Fa|b—Fa|b+l = Eﬂp“,—Zﬂ'p“,HZO . (8)
p=1 p=1

It should be noted that this formulation of a positive relationship, which
has been used by several authors (for instance, see Grove 1980; Croon
1990; Evans et al. 1997), yields an asymmetrical ordinal hypothesis. The
same type of assumption but with B dependent yields a different model. In
other words, stochastically ordered F,|,’s do not imply stochastically or-
dered Fy,’s.

Linear inequalities can also be used to specify hypotheses about the
conditional relationship between A and B, given an individual’s score on a
third variable C. Suppose that A and B are positively related given C = c.
This can be specified as follows:

a a
FaIbC_Fa|b+lc= Ewp!bc_ 7Tp|b+l(‘20 ’
p=1 =1

p

in other words, in the form of monotonically nonincreasing cumulative
probabilities. If C is also ordinal, we may also wish to assume that

a a
Falbc - Fa)bc+l = 2 7Tp|bc - z Tp|be+1 =0.
p=1 p=1



NONPARAMETRIC MODELS FOR ORDINAL DATA 199

This model, in which the cumulative distribution of A is assumed to be
stochastically ordered in two directions, was described by Robertson,
Wright, and Dykstra (1988:32-33).

An ordinal variant of the marginal homogeneity model (see equa-
tion 4) is obtained by assuming that the cumulative marginal probabilities
for A (F,.) are at least as large as those of B (F,):

a a

F,—F,= 2277,,,,— 2277,,,,20 .
p=1b p=1b
This model of stochastically ordered cumulative marginal distributions
was described by Robertson, Wright, and Dykstra (1988:290-92). In a
similar way, we could formulate order-restricted variants of the equal mar-
ginal means model described in equation (5) and the symmetry model
described in equation (6) by replacing the “=" sign by a “=" sign.

3.3. Log-Linear Equality Restrictions
The rth log-linear equality restriction on the probabilities 7r;; is defined as

2 23ijr In Tjii — C3r = 0 ’ (9)
7

where the z3;, define the rth linear combination of logs of cell probabili-
ties, which minus a constant (c3,) is postulated to be equal to zero. Re-
strictions of this form can be used to specify any kind of log-linear model,
such as independence, row association, linear-by-linear association, con-
ditional independence, and no-three-variable interaction models. In addi-
tion, the term c3, makes it possible to impose fixed-value restrictions on
the log-linear parameters. It should be noted that this is actually the or-
thogonal complement notation of the standard log-linear model. Such a
reformulation is also used by Lang and Agresti (1994) and Bergsma (1997)
for specifying extended log-linear models. This orthogonal complement
formulation is very appealing in many situations because, as is demon-
strated below, assumptions about relationships between variables are spec-
ified directly in terms of restrictions on (local) odds ratios.

Let 6, denote a local odds ratio in the two-way table formed by the
variables A and B. It is defined as
TapTa+1b+1

Oab = .
Tab+1Ta+1b
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In an independence model, it is assumed that each 6,,, equals 1, or, equiv-
alently, that each In 8,, equals zero. Using the above log-linear equality
restrictions, such a model can be specified as

In6y =Inmy, —Inmy —Inmepy, +Inmg e =0 .

In a similar way, other types of nonsaturated log-linear models can be
defined for the same two-way table. A row association model, for example,
assumes that the local odds ratios are independent of the columns. This can
be specified as

In6,, —In6y =Inmy, —2Inmy —Inmeyy, + 2In7aq 4,

+Inmepir —INTeh1p42=0 . (10)

Note that this is a standard row association model with equal-interval scores
for the levels of the column variable. However, it is also possible to use
other scoring schemes for the column variable. The general row associa-
tion model specified in the form of log-linear restrictions on 6,, (and on
7Tab) is

In eab In 9a17+ 1

vho — v A 0 (
where v2 denotes the score assigned to level b of B. As can be seen, the
logs of local odds ratio are weighted by the inverse of the distance between
the corresponding column scores. In a similar way, it is possible to specify
column association models and linear-by-linear association with any type
of category scoring.
To illustrate the use of the constant cs,, it is also possible to test the
assumption that the local odds ratios are equal to a specific value. By

N0y, —c=Inmy —Inmgy —Inmeip Iy —c=0

we obtain a uniform association model in which the local odds ratios are
fixed to be equal to exp(c).

As in the case of linear restrictions, it is also possible to constrain the
relationships between more than two variables. For instance, restrictions of
independence, row association, column association, linear-by-linear asso-
ciation, and fixed uniform association could be applied conditionally on C.
Such restricted conditional association models can be specified by replac-
ing 74 bY 7 4pc OF T 4| in the corresponding log-linear restrictions.
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Another interesting assumption in a three-way table is the no-three-
variable interaction model, which implies that the local odds ratios are
independent of the third variable. This can be specified as follows:

In eab]c —In 0ab|c+1 =In Tabe — In Tab+1c — In Ta+1bc + In Ta+1b+1c
—In7aperr N Topiicrr T INTap1per

+In et ip41041=0 .

Here, 6, denotes a conditional local odds ratio for variables A and B
within level ¢ of variable C. The specification of log-linear models using
these types of contrasts of log odds ratios can easily be generalized to
higher-way tables.

3.4. Log-Linear Inequality Restrictions

The fourth and last type of restriction presented here are log-linear inequal-
ity restrictions. The sth restriction of this form is

> zagsInm —cay =0 . (12)

Log-linear inequality restrictions can be used to specify ordinal variants of
the log-linear models discussed above. We may, for instance, define mod-
els with a positive bivariate relationship in the form of nonnegative local
log odds ratios, row or column association models with monotonically
nondecreasing scores, or models assuming a bivariate association to be
stronger for one group than for another.

With the linear inequality restrictions, a postulated positive rela-
tionship between two ordinal variables was defined in the form of nonin-
creasing cumulative conditional probabilities (see equation 8). A natural
definition of a positive relationship between A and B in log-linear terms is
that all local odds ratios are at least 1 (Dykstra and Lemke 1988). This
yields the following set of log-linear inequality restrictions on the 6,,,’s or
the 7, ’s:

In Bab =In Tap — ln’lra,,+l - ln’ﬂ'a+1b + ln7Ta+1b+1 =0 . (13)

It should be noted that, contrary to the definition in terms of cumulative
conditional probabilities, this definition of a positive relationship is a sym-
metric one since reversing A and B yields the same model.
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A positive association could also be specified by means of a row
association model with monotonically nondecreasing row scores (see
Agresti, Chuang, and Kezouh 1987). Such a model, which assumes that
the column variable is an interval level variable and that the row variable
is ordinal, can be specified by combining the restriction of column inde-
pendent local odds ratios (equation 10) with the restriction of nonnegative
local log odds ratios (equation 13). The more general order-restricted row
association proposed by Agresti, Chuang, and Kezouh (1987) is obtained
by using equation (11) instead of (10). In a similar way, we can specify
ordered variants of the column and linear-by-linear association models.

Unfortunately, the log-linear inequality restrictions cannot be used
to define row-column association models with ordered row and column
scores as proposed by Ritov and Gilula (1991) since these models are not
log-linear but log-bilinear (see also Vermunt 1998). The log-linear inequal-
ity restrictions can, however, be used to specify correspondence or corre-
lation models with ordered row and column scores. As was demonstrated
by Ritov and Gilula (1993), this can be accomplished by specifying the
row-column correlation model as a latent class model with log-linear in-
equality restrictions of the form described in equation (13).

As in the case of log-linear equality restrictions, the above exam-
ples of log-linear inequality restrictions can also be used in a multivariate
setting. We may, for instance, assume a positive association, a row asso-
ciation with ordered scores, or a correlation model with ordered scores for
A and B within levels of a third variable, say C. An example is the binary
logit model with ordered-restricted parameters for one of the two regres-
sors proposed by Agresti and Coull (1996).

Another interesting ordinal hypothesis for a three-way table is that
a bivariate relationship is stronger in one subgroup than in another. Sup-
pose that we assume a nonnegative association between A and B within
levels of C. In addition, we want the association to increase with C. The
latter assumption can be specified by the following additional set of log-
linear constraints on the conditional local odds ratio:

In 0ab|c+l —In 0ab|(‘ = —In Tabe+1 T In Tap+ic+1 T In T a+1bc+1
—In7aiipiicrt T INTape — IN T,

—In Ta+ipe T In Tat1b+1c = 0.

Note that this set of order restrictions concerns the three-variable inter-
action term between A, B, and C.
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4. MAXIMUM-LIKELIHOOD ESTIMATION

Maximum-likelihood estimation of cell probabilities under ordinal re-
strictions is an optimization problem under inequality constraints. One
of the methods for solving such a problem is the Lagrangian method
with activated constraints (see Gill and Murray 1974; Gill, Murray, and
Wright 1981). The Lagrangian method, which is well-known in maximum-
likelihood estimation with equality constraints, involves augmenting the
object function to be maximized with one Lagrange term for each of the
constraints. If a constraint has the form of an inequality constraint,
the corresponding equality constraint is activated or deactivated during
the optimization process, depending on whether the corresponding in-
equality constraint is violated or not. Appendix A describes some of the
basic principles of optimization under equality and inequality constraints.

Assuming a (product-)multinomial sampling scheme, maximum-
likelihood estimation of the 7r;; parameters under the restrictions de-
scribed in equations (3), (7), (9), and (12) involves finding the saddle point
of the following (Lagrange) function

L= nylnm; + 2“1‘(2 il — 1)
7 i J
+ ; 51p<’2j Z1ijp Tjli Clp) + ; 'qu(ij 224 Mjli ~ C2q> (14)
+ ZBw(% Zar In 7751 — C3r> + 2,343(121_ Zags I — 045) ,
with
B2y =0

B4x20 ’

where the « and the B parameters are Lagrange multipliers. As can be seen,
the first term at the right-hand side of equation (14) is the well-known
kernel of the (product-)multinomial log-likelihood function. The second
component specifies a set of Lagrange terms which guarantee that the prob-
abilities 77;; sum to 1 within each level of the independent variable X. The
other four terms belong to the linear equality, linear inequality, log-linear
equality, and log-linear inequality restrictions, respectively.
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Because the second and the fourth set of constraints are inequality
constraints, the 8,, and B4, parameters must be greater than or equal to
zero, which implies that the corresponding equality constraints are only
activated if the inequality constraints concerned are violated. More pre-
cisely, an active constraint corresponds with a 3,, or B4, which is larger
than 0, while an inactive constraint corresponds with a B,, or B4, which
equals 0.

Taking the first derivative with respect to 77;|; and setting the result
equal to zero yields the following expression for the ML estimate of 77;);:

nij + 2 23ijr B3r + 2 z4ijs B4s
r s
—a; = 2 2up By — 2 22 Bag
P q

Thus, given the Lagrange multipliers, there is a closed form solution for
the 77;);’s. What is needed is a method for finding the Lagrange multipliers.
This can, for instance, be accomplished by means of the unidimensional
Newton method. This method involves updating one parameter at a time,
fixing all the other parameters at their current values.” For a;, a unidimen-
sional Newton update is of the form

J
E,"’ji/(*ai = 2 2By~ 2 ZZijq:B2q>
J P q

al = a; — step ,  (16)

fOI'Blp,
zzwpﬂjli_clp
Z

> 2l lei/(‘“i = > 2By~ 2, Zzl‘jqﬂzq>
ij P q

B{p = Blp - step

s

a7

2Vermunt (1997:312-15) applied unidimensional Newton for a similar
problem—that is, for the estimation of (conditional) probabilities under simple equal-
ity and fixed-value restrictions.
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and for Bs,,

2 23y, In 7)) — c3,
Z

2 z%ijr/(”ij + 2 23ijr Bz, + E Z4ijs,34s>
ij r s

In each of these updating equations, the numerator is the function that must
become zero and the denominator its first derivative with respect to the
parameter concerned.

The updating equations for B,, and B4, have the same form as for
Bi, and Bs,, respectively. As already indicated above, the Lagrange pa-
rameters pertaining to the inequality restrictions must be greater than or
equal to zero, which implies that 85, and B}, must be set equal to zero if
they become negative. This amounts to not activating or deactivating the
equality constraint corresponding to an inequality constraint.

With step it is possible to change the step size of the adjustments.
This may be necessary if 7j|; takes on an inadmissible value, or, more
precisely, a value smaller than zero. In addition, step may be used to start
with somewhat smaller step sizes in the first iterations.

The exact iteration scheme is as follows:

Bér = BBr - Step (18)

1. Seta;= —n;., B, = B2y = B3, = Bas; =0, and step = 1/4, and compute
7j;’s using equation (15).

2. Save current a’s, B’s, and 7;|;’s.

3. For each Lagrange parameter,
a. update parameter using equation (16), (17), or (18).
b. if smaller than 0, set parameter equal to O (only for B,, and B4;).
c. compute new 7;;’s using equation (15).
d. if one or more 7;; < 0: half step, restore saved a, B’s, and 7;;’s

from 2, and restart with 3(a).

4. If no convergence is reached, double step if step < 1 and restart with

2—that is, go to next iteration.

As can be seen from step 1, the starting values for 7;; are n; /n; —that is,
the unrestricted observed probability of Y =j given X = i. Step 3(b) shows
how the algorithm deals with inequality constraints: If an update of 3,, or
B4, yields a value smaller than zero, the parameter concerned is set to zero.
In this way, an inactive constraint may remain inactive or an active con-
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straint may become inactive, depending on whether its previous value was
zero or positive. An inactive inequality constraint is activated if the value
of the corresponding Lagrange multiplier changes from zero into a posi-
tive value. The convergence mentioned in step 4 can be defined either in
terms of a maximum change of the Lagrange parameters or a minimum
change of the log-likelihood function.

The above unidimensional Newton method will converge to the ML
solution if the restrictions do not contradict one another, if all observed cell
entries are larger than zero, and if the model does not combine linear with
log-linear restrictions.

The first condition states that the algorithm will not converge if
contradictory restrictions, such as a = 0, b = 3, and a = b, are imposed.
This is, of course, not specific for the current algorithm. It should be noted
that contrary to multidimensional methods like Newton-Raphson and
Fisher-scoring, the unidimensional method does not have problems with
redundant restrictions suchasa = b, b=c,and a = c.

The problem associated with the second condition is well-known in
the analysis of categorical data and is therefore not specific for this algo-
rithm. As in standard log-linear models, some parameters may be un-
defined because some observed cells are equal to zero. A simple way to
overcome this problem is to add a small number to each cell entry. To solve
the numerical problems associated with zero cells, a very small number,
say 107!, already suffices.?

A third problem is that the algorithm may fail to converge to the ML
solution if a model combines linear and log-linear restrictions. This prob-
lem was noted by Bergsma (1998) in the context of the algorithm proposed
by Haber and Brown (1986) for log-linear models with linear (equality)
restrictions on the expected cell entries. Haber and Brown proposed an
algorithm in which first the log-linear parameters and then the parameters
associated with the linear restrictions are updated at each iteration cycle.
Bergsma showed that their proof of convergence contains an incorrect
assumption—namely, that the term belonging to the linear part of the model,
the denominator of equation (15), is positive for each cell entry. In the ML
solution, both the numerator and denominator may be negative for some
cells. A problem arises, however, because an algorithm that does not si-
multaneously update the terms belonging to the linear and to the log-linear

3Adding somewhat larger numbers to the observed cell entries can very well be
defended from a Bayesian point of view (Clogg and Eliason 1987). With an informa-
tive (Dirichlet) prior, the estimated cell entries can, for instance, be smoothed to the
independence model. For an excellent overview of this topic, see Schafer(1997).
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restrictions may not converge because of the requisite that the probabilities
should remain positive after each update. The results by Haber and Brown
hold asymptotically, which means that if the model holds and the sample
size is large enough this problem will not occur. Thus, in practice, this
problem is more likely to occur if the model of interest fits badly or if the
sample size is small.

Bergsma (1998) proposed estimating models that combine linear
and log-linear equality restrictions with a Fisher-scoring algorithm devel-
oped for the estimation of extended log-linear models (Lang and Agresti
1994; Bergsma 1997). This multidimensional saddle point method for find-
ing ML estimates under a general class of equality constraints can easily be
modified into an activate set procedure to allow for inequalities (see Ap-
pendix A). Another advantage of applying this more advanced method is
that an even more general class of inequality constraints can be formu-
lated, such as log-linear inequality restrictions on marginal probabilities.
This may, for instance, yield a nonparametric variant of the cumulative
logit model. Nevertheless, the procedure described above remains very
attractive because of its simplicity. It can easily be implemented using
macro languages of packages as SAS, GLIM, and S-plus. For the examples
presented in the next section, we used both the simple unidimensional
Newton algorithm and an adaptation of Bergsma’s (1997) algorithm to
inequalities. In all estimated models, both procedures yielded the same
results.

Robertson, Wright, and Dykstra (1988, chap. 1) described an al-
ternative procedure for obtaining order-restricted maximum-likelihood
estimates. They showed that some order-restricted maximum-likelihood
problems can be transformed into isotonic regression problems. One of
the algorithms they proposed for solving these isotonic regression prob-
lems is the pooling adjacent violators algorithm (PAVA), which is a sim-
ple IPF-like algorithm that can be used to solve models with simple order
restrictions. Another method for finding ML estimates under equality
and inequality constraints is to transform the constrained ML estimation
problem into a quadratic programming problem (for instance, see Fahr-
meir and Klinger 1994 and Schoenberg 1997).

4.1. Latent Variables and Other Types of Missing Data
The proposed nonparametric ordinal modeling approach can also be ap-

plied in situations in which there is some type of missing data, such as in
latent class models and in models for panel data subject to partial non-
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response. However, to be able to deal with missing data, we have to adapt
the estimation algorithm described in Section 4.

The simplest option is to use the EM algorithm (Dempster, Laird,
and Rubin 1977). The main advantage of using this iterative method is that
it is obtained with minor modifications of the estimation procedure for
complete data. In the E step of the EM algorithm, we estimate the complete
data on the basis of the incomplete data and the current parameter esti-
mates. The M step of the algorithm involves estimating the model param-
eters as if all data were observed. Croon (1990), for instance, implemented
(PAVA) in the M step of the version of the EM algorithm that he used for
estimating his ordinal latent class model. Here, we will use an EM algo-
rithm which implements the simple unidimensional Newton method in the
M step. Appendix B discusses the EM algorithm for a marginal model with
partially missing data and for an order-restricted latent class model.

5. MODEL TESTING

Suppose that H; denotes the hypothesized order-restricted model, Hj is a
more restrictive alternative obtained by transforming the inequality restric-
tions into equality restrictions, and H; is a less restrictive alternative that is
obtained by omitting the inequality restrictions. This could, for instance,
be non-negative local odds-ratios (H, ), independence (H,), and the satu-
rated model (H,). The two tests of interest are between H, and H; and
between H, and H,. Such tests can be performed using standard likelihood-
ratio statistics. The corresponding statistics, L21|0 and L%“ , are defined as

i)
L21|0=22n,«j1n<A )
ij

Tj1i(0)

il

Jjli2)

L%|1=22n,~jln<A ) ,
i

Tjli(1)

where 7jj;(0), 7ji1), and 7;|;2) denote the estimated probabilities under
Hy, H,, and H,, respectively.

A complication in using these test statistics is, however, that they
are not asymptotically y? distributed. Wollan (1985) has shown that the
above two test statistics follow chi-bar-squared distributions, which are
weighted sums of chi-squared distributions, when H, holds (see Robert-
son, Wright, and Dykstra, 1988:321).
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Let /,,,. denote the number of inequality constraints, or the maxi-
mum number of activated constraints, and dfp the number of degrees of
freedom under Hy. The p-values for L}, and L3, are approximated as
follows

Lnax

P(L3o=c)~ D> P(NP(x&-n=c)
=0

Lnax

P(L3 =z c)~ > P()P(xl=c) ,
i=0

that is, as the sum over all the possible numbers of active constraints of the
probability of the corresponding number of constraints times the asymp-
totic p-value concerned.

A problem is encountered however, when computing the P(l)’s,
which depend on the maximum number of constraints, a vector of weights
w—in our case the observed frequencies—and the type of order restric-
tions that is used. For simple order restrictions, the P(!)’s can be computed
analytically up to /,., = 5. Robertson, Wright, and Dykstra (1988) re-
ported P(!) tables for 1 < [,,,, = 19, assuming uniform weights w and
simple order restrictions. Simulation studies by Grove (1980) and Robert-
son, Wright, and Dykstra (1988) showed that the uniform weights assump-
tion does not seriously distort the results when testing whether multinomials
are stochastically ordered.

Rather than combining asymptotic results with an approximation of
the P(1)’s, it is also possible to determine the p-values for the test statistics
using parametric bootstrapping methods, which are also known as Monte
Carlo studies. This very simple method, which is based on an empirical
reconstruction of the sampling distributions of the test statistics, is the one
followed here. Ritov and Gilula (1993) proposed such a procedure in ML
correspondence analysis with ordered category scores. Schoenberg (1997)
advocated using bootstrap testing methods in a general class of con-
strained maximum-likelihood problems. Langeheine, Pannekoek, and Van
de Pol (1996) proposed using bootstrapping in categorical data analysis for
dealing with sparse tables, which is another situation in which we cannot
rely on asymptotic theory for the test statistics. Agresti and Coull (1996)
used Monte Carlo studies in combination with exact tests to determine the
goodness-of-fit of order-restricted binary logit models that were estimated
with a small sample.

In the L3 case, T frequency tables with the same number of obser-
vations as the original observed table are simulated from the estimated
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probabilities under H,. For each of these tables, we estimate the models
defined by Hy and H, and compute the value of L}y. This yields an em-
pirical approximation of the distribution of L}|,. The estimated p-value is
the proportion of simulated tables with an L7, at least as large as for the
original table. The standard error of the estimated p-value equals
Vp(1— p)/T. The bootstrap procedure for L3, differs only from the above
one in that frequency tables have to be simulated from the estimated prob-
abilities of the order-restricted maximum-likelihood solution—that is, H, .*

A simulation study by Ritov and Gilula (1993) showed that para-
metric bootstrapping yields reliable results when applied in order-restricted
correlation models, which are special cases of the models presented in
this paper. To further assess the performance of bootstrapping, the ex-
amples for which Grove (1980) and Robertson, Wright, and Dykstra
(1988:234-39) reported multinomial likelihood-ratio tests based on as-
ymptotic chi-bar-squared distribution were replicated. For these exam-
ples, the bootstrapped p-values were very close to the reported asymptotic
p-values. It should be noted that although bootstrapping seems to work
well in these situations, it is not clear at all how the method performs
when applied to sparse tables.

6. EXAMPLES

This section discusses four situations in which the nonparametric ordinal
models presented in this paper may be useful. The first example is a con-
tinuation of the bivariate example presented in Section 2. The second ex-
ample illustrates the use of inequality restrictions in logit regression models
for ordinal dependent and independent variables. The third example fo-
cuses on marginal models for longitudinal data subject to partial non-
response. The last example deals with latent class models for ordinal items.

6.1. Association Between Two Ordinal Variables

In Section 2, some parametric and nonparametric models were presented
for the 5-by-3 cross-classification of number of siblings (5) and happiness

4As was noted by one of the reviewers, in the L3, case, the bootstrap is not
estimating the p-value corresponding to the chi-bar-squared distribution. The chi-bar-
squared approximation of P(L3;, = c) requires that H, holds, which means that it
yields what could be called the least favorable p-value. On the other hand, the empirical
bootstrap approximation of the distribution of L3, holds under H;, which is more in
agreement with standard tests.
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(H) reported in Table 1. More precisely, we specified independence (A.1),
cumulative logit (A.2), row-column association (A.3), row association
(A.4), column association (A.5), and uniform association (A.6) models, as
well as a model assuming nonincreasing cumulative probabilities (A.7)
and a model assuming local odds ratios of at least 1 (A.8).

The models presented so far for this two-way table are either para-
metric or nonparametric. There is, however, another interesting class of
models for this type of data—that is, models that combine parametric
with nonparametric features, such as order-restricted variants of the row-
column, row, and column association models. According to the assumed
measurement level of the row and the column variables, these three mod-
els could be labeled as ordinal-ordinal, ordinal-interval, and interval-
ordinal, respectively.

The order-restricted RC model fits the data quite well:* L3 o = 8.36,
p = .08. While in the unrestricted RC model, the scores for rows 3 and 4
and for columns 1 and 2 were out of order. In the order-restricted ML
solution, only one equality restriction is imposed: the score for column 1 is
equated to the score for column 2. This demonstrates again that it is dan-
gerous to specify ordinal models by post hoc equality constraints.

Since the unrestricted row association model (A.4) fits badly, it is
not surprising that the order-restricted R model fits very badly too (L3 ;o =
18.60, p ~.00). In the ML solution for this model, the estimated scores for
rows 5 and 6 are equated. On the other hand, the ordinal C model fits very
well (L3 |, = 8.84, p ~ .22). The ML solution for this model contains one
activated constraint: the parameters belonging to the first two columns are
equated.

On the basis of these results, it can be concluded that the relation-
ship between number of siblings and happiness can be described by means
of a (partially) nonparametric ordinal model. The two nonparametric mod-
els, as well as the order-restricted RC and C models, fit the data quite well.
The most parsimonious model that fits the data is the order-restricted C
model. This indicates that the row variable, number of siblings (S), may be
treated as an interval level variable with equal-interval scored categories,
while the column variable, happiness (H ), should be treated as an ordinal.

*It should be noted that this model cannot be specified with the linear or log-
linear constraints presented in this paper. It was estimated with a modified version of
the PAVA-like procedure proposed by Ritov and Gilula (1991) which is described in
detail in an accompanying paper (Vermunt 1998).
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6.3. Logit Regression Models for Ordinal Variables

This example uses the data reported in Clogg (1982, table 2). The table
concerns a 4-by-5-by-3 cross-classification of the ordinal variables years
of schooling (Y), number of siblings (S), and happiness (H).® We treat
happiness (H) as a dependent variable and years of schooling (Y) and
number of siblings (S) as independent variables. In fact, we are interested
in modeling the probability that H = h given that Y = y and S = s, denoted
by 7,s. With this example we want to illustrate the use of order restric-
tions in the context of a logit model with ordinal dependent and indepen-
dent variables.

The test results for the estimated logit models are reported in
Table 4. A standard multinomial logit analysis treating each of the three
variables as nominal shows that the three-variable interaction is not sig-
nificant (L%, = 24.88, df = 24, p = .41). In addition, the test results for
Models B.2 and B.3 indicate that both independent variables have a sig-
nificant effect on happiness.

The usual way of dealing with the fact that Y, S, and H are ordinal
variables within the framework of logit analysis is the assignment of a
priori scores to the levels of Y, S, and H. This yields linear-by-linear (par-
tial) associations, or, in the case equal-interval scoring, uniform associa-
tions for the YH and SH interactions. Note that such an approach actually
assumes that we are dealing with interval level variables. The model that
further restricts Model B.1 by assuming uniform two-way interactions does
not fit at all: L%, = 54.58, df = 36, p = .02.

An alternative way of specifying an ordinal logit model is by means
of inequality restrictions on the conditional local odd ratios—that is,
Ony)s = 1 and 6y, = 1. This is a way of formulating that Y has a negative
effect on H within each level of S and that S has a positive effect on H
within each level of Y. If we also want to exclude the three-variable inter-
action term, we need the additional constraint 6|, = 0j,y|,+1. The model,
which combines these log-linear equality and inequality constraints, fits
well (L% s = 35.30, p =~ .35). The conclusion could be that the partial
effects of Y and S on H are ordinal and equal across levels of the other
explanatory variable.

5The original table in Clogg (1982) is a 3-by-4-by-5 table. For convenience
here, another order between the variables is used.
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6.3. Marginal Models for Partially Missing Longitudinal Data

This example illustrates the use of marginal models with linear (in)equal-
ity constraints in the context of longitudinal data. In addition, it demon-
strates the possibility to deal with partially missing data. The data, which
are taken from the 1986-1987 SIPP panel, concern measurements of a
person’s employment status at four time points, where each time point is
separated by three months.” Employment status is classified into two cat-
egories: employed and not employed. A complication in the analysis of
this data is that for many subjects in the sample there is missing informa-
tion. More precisely, for 28 percent of the 6754 cases, information on the
employment status is missing for one or more time points. In addition,
except for observing only the first and the last time point, all possible
missing data patterns are present in the sample. The nonzero observed
frequencies are reported in Table 5.

We are interested in studying the trend in the employment rate over
the four periods. Suppose that because of macroeconomic conditions one
expects a monotonically increasing employment rate during the observa-
tion period. As will be shown below, the data are not fully in agreement
with such a trend, which may, however, be the result of sampling error.

Since this paper does not deal with missing data mechanisms, we
will just assume an ignorable, missing at random (MAR), missing data
mechanism (Little and Rubin 1987). For the partially observed SIPP data,
four marginal models were estimated: a saturated, a marginal homogene-
ity, a nondecreasing marginal, and a linearly changing marginal model.
The test results are presented in Table 4.

According to the saturated model, which of course fits perfectly, the
estimated marginal probabilities of being employed at each of the four
time points are .587, .607, .599, and .605, respectively. This indicates that
there is a small increase in the number of employed individuals during the
observation period. The increase is, however, not monotonic. The mar-
ginal homogeneity model tests whether the observed differences between
the time points are significant. The bad fit of this model (L%, = 22.36,
df = 3, p < .01) shows that this is the case. The third model assumes that
the marginal probability of being employed is nondecreasing between con-

"For more information about this data set, see Vermunt (1997:216 and 286—
87). Here, we use only the information on the first four of the six panel waves.
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TABLE 5
Observed Response Patterns with Frequencies from SIPP Panel
Pattern Frequency Pattern Frequency Pattern Frequency
1111 2447 1112 114 1121 75
1122 79 1211 87 1212 9
1221 22 1222 84 2111 147
2112 31 2121 41 2122 80
2211 103 2212 36 2221 61
2222 1450 1110 106 1120 9
1210 8 1220 5 2110 8
2120 5 2210 3 2220 75
1101 38 1102 3 1201 5
1202 3 2101 4 2201 7
2202 23 1100 103 1200 15
2100 24 2200 99 1011 14
1012 4 1021 1 1022 1
2011 3 2021 1 2022 18
1010 5 2020 7 1000 183
2000 155 0111 70 0121 7
0122 7 0211 8 0212 7
0221 2 0222 40 0110 19
0120 3 0210 3 0220 13
0101 3 0100 39 0200 28
0011 65 0012 2 0021 17
0022 56 0010 26 0020 16
0001 89 0002 64 0000 369
Note: 0 = missing; 1 = employed; 2 = not employed.

secutive time points. This model, which has one activated constraint, fits
quite well (L%, = 3.17, p ~ 07). As might be expected on the basis of the
marginal distribution from the saturated model, the inequality constraint
concerning the second and third time point is activated, which means that
in the ML solution the marginal distributions of these time points are
equated. And finally, a model was estimated with a linear change in the
number of employed. As can be seen, this model is too restrictive: L%, =
13.73,df =2,p < .0L.

6.4. Latent Class Models for Ordinal Items

The last example illustrates the use of the nonparametric approach in the
context of latent class models for ordinal items. For this purpose, we use a
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4-by-4-by-4 cross-tabulation of three extrinsic job satisfaction items used
by Shockey (1988) in a paper on latent class analysis (see also Hagenaars
1998). The three ordinal items measure an individual’s satisfaction with
job security (S), pay (P), and fringe benefits (B). The levels of the items
are (1) not at all true, (2) a little true, (3), somewhat true, and (4) very true.
The latent variable will be denoted by W.

For the three-way classification, different types of latent class mod-
els are specified, each having the general form

7Twspb = 7Tw7Tx|w7Tp|w7Tb|w . (19)

The models, which are all four class models, differ with respect to the
restrictions that are imposed on the conditional response probabilities 7, ,
T p|w, and 7rp,),,. The test results are reported in Table 4.

As reported by Shockey (1988), the unrestricted latent class model
with four latent classes fits the job satisfaction data very well: L}, =
15.11, df = 24, p = .92. When using such a standard latent class model,
there is, however, no guarantee that the latent classes are ordered. By or-
dered, we mean that the higher the latent class the more satisfied one be-
comes with each of the job items. In this context, it also means that the
latent variable is unidimensional. The linear and log-linear equality and
inequality constraints proposed in this paper can be used to impose such an
ordinal structure on the relationships between the latent variable and the
indicators. More precisely, they can be used to further restrict the condi-
tional response probabilities 7, 7)., and 7).

The most restricted model that is used is a four-class model in which
the WS, WP, and WB interactions are assumed to be uniform. This model
does not provide a good description of the data: L}, = 115.79, df = 48,
p < .01. Aless restrictive model is obtained by using column associations
for the WS, WP, and WB interactions, with the items as column variables.
This means that the latent variable is treated as interval level and the items
as nominal. Although the category scores for each of the indicators have
the expected order, the model fits badly: L3, 5 = 105.86, df = 42, p < .0l.

It is also possible to use the nonparametric ordinal specifications in
the context of latent class analysis. One interesting type of assumption is
that each of the cumulative response probabilities, Fy,,, F,),,, and Fj,,, is
stochastically ordered, which means that they have to be restricted as de-
scribed in equation (8). This yields the ordinal latent class model proposed
by Croon (1990). Another option is to use log-linear inequality constraints
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on the local odds ratios 6,,,, 6,,, and 6, (see equation 13). The former
specifications yield a well-fitting model (L} 4 = 15.55, p =~ .96). Actually,
the unrestricted four-class model was already very close to this solution.
This can be seen from the fact that the L? values of the nominal and the
ordinal model are almost identical and, in addition, that only 2 of the 36
inequality constraints need to be activated in the ordinal model. Although
the four-class model with nonnegative local log-odds ratios does not per-
form as well as the other ordinal model, it also fits the data quite well:
L3 s = 39.20, p ~ .34. The ML solution for this ordinal latent class model
contains 16 activated constraints, which means that 16 estimated local
odds ratios are equal to one.

Table 6 reports the estimated latent class probabilities 7,,., as well
as the estimated cumulative conditional probabilities according to Model
D.4. As can be seen, the restriction imposed is that the probability that an
individual selects a particular item category or lower decreases or remains
equal as w increases. This is one way of expressing a positive relationship

TABLE 6
Parameter Estimates for Model D.4
(Order-Restricted Latent Class Model)

w=1 w=2 w=3 W=4
T 0.16 0.17 0.37 0.30
Fyp S=1 §=2 §=3 S=4
w=1 0.61 %0.76 0.95 1.00
w=2 0.16 *0.76 0.94 1.00
w=3 0.03 0.17 0.85 1.00
W=4 0.03 0.09 0.34 1.00
Fu P=1 P=2 P=3 P=4
w=1 0.45 0.62 0.86 1.00
w=2 *0.04 0.46 0.81 1.00
w=3 *0.04 0.13 0.70 1.00
W=4 0.02 0.08 0.18 1.00
Fo B=1 B=2 B=3 B=4
w=1 0.75 0.87 0.98 1.00
w=2 0.22 0.70 0.95 1.00
w=3 0.08 0.22 0.79 1.00
W=4 0.02 0.03 0.19 1.00

Note: A “** indicates an activated constraint.
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between the latent variable and the items. Only two inequality constraints
are activated in the reported ML solution.

This example showed that nonparametric ordinal restrictions may
yield well-fitting and easy to interpret latent class models. The log-linear
latent class models with uniform and column association structures were
much too restrictive, while the results obtained by unrestricted latent class
analyses may be difficult to interpret.

7. DISCUSSION

This paper described a general nonparametric approach for dealing with
ordinal categorical data, which is based on specifying linear or log-linear
inequality constraints on (conditional) probabilities. Several types of or-
dinal models can be defined with the proposed inequality constraints. In
addition, inequality constraints can be combined with equality constraints,
which makes it possible to define models that combine nonparametric with
parametric features, such as order-restricted row association models, or-
dinal row-column correlation models, and ordinal regression models in
which higher-order interaction terms are omitted.

A simple estimation method was proposed that performs very well
in most situations. Implementation of this unidimensional Newton method
in the M step of the EM algorithm makes it possible to use the ordinal
restrictions when there is partially missing data or when the model con-
tains one or more latent variables. The difficulties associated with goodness-
of-fit testing in models with inequality constraints were overcome by using
bootstrap or Monte Carlo methods rather than relying on asymptotic dis-
tribution functions. The proposed estimation algorithm and testing proce-
dure perform well in the analysis of tables that are not too sparse.

The examples showed that in most situations truly ordinal models
fit much better than models in which a priori scores are assigned to the
categories of the ordinal variables. In addition, these ordinal models do not
have the interpretation problems associated with quasi-ordinal models, in
which estimated category scores may be out of order.

A possible extension of the approach proposed here is the applica-
tion of inequality constraints in extended log-linear models (Lang and
Agresti 1994; Bergsma 1997). This would yield new types of ordinal mod-
els, such as cumulative logit models for ordinal independent variables,
ordinal models for global odds ratios, and ordinal models for a general
class of association measures. For this purpose, the saddle point algorithm



218 VERMUNT

proposed by Bergsma (1997), which is a generalization of the algorithm
proposed by Lang and Agresti (1994), should be transformed into an active
set method.

Another interesting direction for future research is the use of Bayes-
ian approaches for estimating parameters and assessing fit of nonparamet-
ric ordinal models for categorical data. Some work has already been done
on this subject by Agresti and Chuang (1986); Evans et al. (1997); Hoijtink
and Molenaar (1997); McDonald and Prevost (1997).

APPENDIX A: OPTIMIZATION UNDER (IN)EQUALITY
CONSTRAINTS

Suppose we have to find the value of a set of parameters y that maximizes
a function f(y) under the following r equality constraints:

h]('y):0,}12(7):0,...,}1,(7):0 . (20)

This is a standard constraint optimization problem that can be solved by
finding the saddle point of the Lagrange function

k(y, ) = fly) + 2 Aihi(y) 21
i=1

where the A;’s are called Lagrange parameters. This objective function
contains, besides the y parameters of interest, a set of parameters corre-
sponding to the constraints. It should be noted that the saddle point of
k(7y, A) is the maximum of f(7y) under the above equality constraints.

The saddle point of the Lagrange function is the point in the param-
eter space at which the first derivatives to all parameters are equal to zero,
in this case,

ok (y,A) _ A’y <, Mly) _

+ A, —=0 (22)
ay, ay, ;) ay,
0k(y,A)
= h; =0. 23
Yy () (23)

As can be seen, the second set of conditions corresponds to the constraints
that we want to impose. The first set is the modification of the standard
condition df(y)/dy; = O resulting from the imposed constraints. The so-
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lution to these equations can be found using standard algorithms, such as
Fisher scoring, Newton-Raphson, or unidimensional Newton.

When some of the constraints have the form of inequalities,
hi(y) = 0, the situation is slightly different. In that case, we have to
formulate the additional condition that A; = 0. Actually, this condition
guarantees that the constraint h;(y) = 0 is imposed only if the un-
restricted h;(y) is smaller than 0. In other words, the inequality restric-
tion concerned is activated, which means that the corresponding equality
restriction is imposed only if it is violated.

In optimization under inequality constraints, one may also refer to
the Kuhn-Tucker conditions. These state that an optimum of f(y) under
the inequality constraints A;(y) = 0 satisfies the following four conditions:

hi(y)=0

Af (v)/dy;) + Zizo A;(0h;(y)/dy;) =0
/\,‘ =0

Aihi(y) =0.

Ll o e

The first condition states that inequality restrictions should be fulfilled.
The second corresponds to setting the first derivative of the Lagrange func-
tion to zero for all y;’s. The third is the above-mentioned condition with
respect to the sign of the Lagrange parameters. The fourth condition is
automatically fulfilled because, depending on whether a constraint is in-
active or active, either A; or 4;(7y) will be equal to zero.

As in the case of equalities, standard algorithms can be used for
finding the optimum of f(7y) under the specified inequality constraints.
The only necessary modification is that at each iteration cycle it must be
checked which inequalities should be activated and which should be de-
activated. This is exactly what is done by so-called active set methods. A
possible implementation is the following. Start with all A;’s equal to zero.
Each iteration cycle consists of two steps: (1) determine the active set of
constraints, and (2) update the y;’s, as well as the A;’s belonging to the
active set of constraints. Step 1 involves deactivating the constraints that
are no longer necessary, which correspond with A;’s smaller than zero, and
activating constraints that are violated, which correspond with gradients
indicating that the A;’s will become larger than zero. Note that we are in
fact checking the first and third Kuhn-Tucker conditions.?

8McDonald and Diamond (1983) gave an overview of methods that can be
used to determine the active set in the estimation on generalized linear models with
linear inequality constraints.
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APPENDIX B: THE EM ALGORITHM FOR MODELS WITH
(IN)EQUALITY CONSTRAINTS

The linear and log-linear (in)equality constraints described in this paper
can also be applied when there are missing data or latent variables. This
can be accomplished by implementing the active set variant of the unidi-
mensional Newton method in an EM algorithm.

In the E step of the EM algorithm, we have to calculate the expec-
tation of the complete data, given the observed data and the current pa-
rameter estimates. The M step involves estimating the “parameters” of
interest, treating the expectation of the observed data as if it were the ob-
served data. This means that a single M step has the same form as ML
estimation with fully observed data. The EM algorithm cycles between the
E step and the M step until convergence.

Suppose we are interested in the estimation of a model with sto-
chastically ordered marginal distributions for three-wave panel data. The
variable of interest at the three points in time is denoted by A, B, and C.
What we are interested in is obtaining estimates for the probabilities 7 .
under the linear inequality constraint F, = F, = F ,. Suppose that re-
spondents may have missing values on B, on C, or on both B and C. In other
words, there is a subgroup for which we observe A, B, and C, a subgroup
for which we observe A and B, a subgroup for which we observe A and C,
and a subgroup for which we observe A. The cell entries in the frequency
tables for these four subgroups are denoted by n.p., fap, Nae, and ng,
respectively.

The E step of the rth iteration cycle involves computing the ex-
pected value of the complete data, 7., in the following way:

fithe = Nabe + NapTilay) + NacFhlac + Naricla - (24)
Note that the 77’s are computed from the estimated probabilities from the
previous iteration (¢ — 1). In the M step, new frf,ﬁ,)f are obtained with
the active set method described in Section 4 using fzc(,;,)c as observed
frequencies.

Another example of the implementation of the EM algorithm con-
cerns an order-restricted latent class model. Suppose we have a latent class
model with a single latent variable X and three indicators A, B, and C. The
model has the form

Txabe = TxTa|xTp|xTe|x » (25)
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in which the probabilities 7|, 7|, and 7|, are assumed to fulfil some
kind of order restriction—for instance, that all local odds are at least 1.

The E step of tth EM cycle involves obtaining the expectation of the
complete data, 7', by

NGO A (1—1)
Nyxabe = Nabe Tx|abe - (26)

In the M step, new order-restricted estimates ﬁ'f,ﬁ)x, ﬁ'g&, and ﬁ'y,l can be

obtained by using 7 )((i,) , ﬁf(f,),‘, and ﬁ,(rf,)c as data in the standard restricted ML

procedure described in Section 4.
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