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Introduction and Goal 

Multinomial logit choice models based on latent class (LC) or HB methods are utilized in 

marketing research today along with simulators which predict choices and market shares. 

However, a weakness in these models creates a potential interpretability and validity problem. 

The problem is that the part-worth preference (utility) parameters that are used to make such 

predictions are generally confounded with a scale parameter which reflects the amount of 

uncertainty by different respondents.  

This scale parameter confound is assumed not to exist in current HB models under the common 

restrictive assumption that the level of uncertainty, inferred by the values of the scale parameter, 

is identical for each respondent.  Similarly, no confound occurs in LC choice models under the 

assumption that the values of the scale factor are the same for all respondents regardless of the 

latent class to which they belong (Louviere et. al., 2000, page 206). If the equality assumption is 

violated, the predictions contain additional amounts of error as well as potential bias.  

We begin this paper by introducing the scale factor issue in conjunction with some simple 

hypothetical LC choice models. We then propose some extended LC choice models that can be 

used to test the equal scale factor assumption, and when violated, to estimate and thus remove 

the effects of the different scale parameters that exist for different respondent subgroups. By not 

allowing differences in the scale factor to be a determinant in the formation of different latent 

classes, LC segments resulting from this new approach more clearly differentiate respondents 

based on their true preference differences by revealing their scale free part-worth preference 

utilities. Thus, isolation of the scale factors should result in more pure measures of part-worth 

preference utilities.  

                                                 
1
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Applications of these new extended models
2
 in 2 real world choice experiments find that in both 

cases the commonly made assumption of equal scale factors is unwarranted. Comparing results 

from the standard models to the extended models suggests that the former leads to some faulty 

conclusions regarding the actual part-worths as well as misclassification of a substantial number 

of respondents into the wrong LC segment. The results also suggest that discrete factor (DFactor) 

choice models, with and without a scale-factor adjustment, may well provide additional 

improvements in both data fit as well as interpretation of results over the more traditional LC 

choice models.  

 

What is the Scale Parameter? 

The scale parameter λi relates to the amount of certainty in respondent i’s expected choices. 

Swait and Louviere (1993) pointed out for a given respondent i, standard choice modeling 

estimates the product  λi β rather than β.  Thus, differences in the scale parameters should be 

isolated in order to obtain meaningful comparisons of preference part-worth β-parameters across 

individuals or groups.  

The scale parameter can also be explained in terms of the variance in observed responses.     

Response variance is inversely related to λ (variance = π2/6λi
2). Thus response variance may be 

viewed as a measure of uncertainty (lack of certainty). For persons with λ approaching 0, the 

response variance approaches infinity, which reflects complete uncertainty. In this case, choice 

probabilities derived from the multinomial logit model are equal for all alternatives (Ben-Akiva 

and Lerman,1985). 

The  magnitude and importance of such confounds are not well understood. Clearly, Louviere 

and Eagle (2006) believe the scale factor issue is very important. In their 2006 Sawtooth 

Conference presentation they state: 

“All choice models confound scale and [preference part-worth] parameter estimates. The 

confound is particularly problematic in complex models like random coefficients [HB-

like] models and latent class models if one cannot separate scale and [preference] 

parameters.” 

“Thus, it is likely that random coefficient models are biased and misleading.” 

                                                 
2
 These models, which include extensions of standard LC choice models as well as discrete 

factor choice models, have been implemented in the syntax version of the Latent GOLD Choice 

program (Vermunt and Magidson, 2008). 
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“So, the bottom line is that one cannot estimate individual-level parameters from choice 

models unless one can separate scale and model parameter estimates.” … 

and 

“The field needs research that leads to new models that can capture both scale and 

systematic component (mean) effects.” 

As a simple illustration of the scale parameter, consider first the situation where there is 

complete homogeneity with regards to brand preference. Specifically, assume that all 

respondents prefer brand A over B, and B over C and have the following identical BRAND 

preference part-worth utilities: βA = 0.5, βB = 0.1, and βC = -0.6. 

Further suppose that 2 respondent subgroups exist, the first expressing less certainty than the 

other in several pair-wise brand comparisons. The scale factors for these two groups are denoted 

by λ[1] and λ[2] respectively. Without loss of generality, for purposes of parameter 

identification, we fix λ[1]= 1 for the first subgroup, and for concreteness assume that λ[2] = 2 for 

the second subgroup. This situation is reflected in Table 1. 

 

Table 1: Assumed values for the preference parameter β, and the product λ[s]*β for each of the 

2 subgroups. 

 Preference Parameter 

(β) 

λ[s]*β 

BRAND  Subgroup 

s=1 

Subgroup 

s=2 

λ[1] = 1 

Subgroup s=1 

λ[2] = 2 

Subgroup s=2 

A  + 0.5 + 0.5 + 0.5 + 1.0 

B  + 0.1 + 0.1 + 0.1 + 0.2 

C  - 0.6 - 0.6 - 0.6 - 1.2 
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These parameters yield choice probabilities (shown in Table 2) which are obtained from the 

multinomial (conditional) logit model equations: 

Prob(Brand = A| Subgroup s) = exp(λ[s]*βA)/SUM(s), 

Prob(Brand = B| Subgroup s) = exp(λ[s]*βB)/SUM(s), 

Prob(Brand = C| Subgroup s) = exp(λ[s]*βC)/SUM(s), 

where  

SUM(s) = exp(λ[s]*βA) + exp(λ[s]*βB) + exp(λ[s]*βC). 

From this example, it should be clear that a higher value for λ[s] (as occurs in subgroup 2) 

translates into more extreme choice probabilities.  

 

Table 2: Choice probabilities for each subgroup obtained from the multinomial logit model 

equations under the parameter values given in Table 1. 

 Choice Probabilities 

BRAND  Subgroup s=1  Subgroup s=2  

A .50 .64 

B  .33 .29 

C  .17 .07 

 

 

Scale Parameter as a Confound 

LC choice analysis identifies K ≥ 1 different latent classes, each of which is associated with a 

unique set of part-worth parameters. Since a standard LC choice analysis assumes λ = 1 for all 

respondents, if data were generated according to the probabilities in Table 2, this standard 

analysis would tend to mistakenly identify each of the 2 subgroups as different LC segments 

with different preference part-worths as shown in Table 3 below:  
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Table 3: Expected results under a standard LC choice analysis which mistakenly assumes λ[1] = 

λ[2] = 1 (True values shown in parenthesis). 

 Estimated (True) part-worth preference 

parameters (β) under assumption λ[s] = 1 

BRAND  Subgroup 1 Subgroup 2 

A  + 0.5 (+ 0.5) + 1.0 (+ 0.5) 

B  + 0.1 (+ 0.1) + 0.2 (+ 0.1) 

C  - 0.6 (- 0.6) - 1.2 (- 0.6) 

 

 

Table 3 shows the incorrect results where the part-worth parameter is confounded by the scale 

parameter. It is incorrect to infer that subgroup 2 (labeled ‘Segment 2’ in Table 3) prefers Brand 

A more than subgroup 1, or that subgroup 2 prefers brand C less than subgroup 1 because the 

true brand preference part-worths are in fact identical for both subgroups 1 and 2. The only true 

difference between respondents in Segments 1 and 2 is that the responses obtained from the 

former group reflect greater amounts of uncertainty. 

 

Scale-Extended LC Choice Models 

As mentioned above, standard LC choice models contain a K-category latent variable X 

representing K homogeneous LC segments. Each segment k has its own unique preference part-

worths which are estimated under the assumption λ = 1 for all respondents.  

LC Choice Model extension #1 contains 2 categorical latent variables, X* and S: X* denotes LC 

segments differing in their preference part-worth utilities. S denotes latent subgroups that differ 

in their scale parameter, with λ[1] fixed to the value 1 for purposes of identification. That is, the 

λ corresponding to the first subgroup, λ[1], is set to 1. The values for the other λ[s] parameters 

are assumed to be nonnegative. 

In the example described above, the standard LC choice model results in 2 LC segments that 

appear to differ in their part-worth utilities for each of the attributes, but upon further inspection 
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it can be seen that these part-worth utilities are proportional to each other. This is an indication 

that the λ equality assumption does not hold true.  

These 2 segments can be explained more simply as a single homogeneous segment having the 

same preference part-worths, but with 2 different latent subgroups which have different scale 

parameter values λ[2] ≠ λ[1].  Each respondent in subgroup 1 shares the same scale parameter 

λ[1], and each respondent in subgroup 2 shares the same scale parameter λ[2]. That is, in this 

example S consists of 2 subgroups differing only in their level of uncertainty, not their 

preference part-worth utilities. Thus, S is dichotomous, and X* has only a single category (i.e., 

there is only 1 LC segment).  

Next assume that X* has 2 underlying LC segments that truly differ in brand preferences, 

segment 1 most preferring brand A, while segment 2 most prefers brand C. Further suppose that 

each of these segments consists of both more and less certain respondents. This situation can be 

represented in terms of the 4 cells in Table 4 below. LC segment 1 consists of the 2 cells (1,1) 

and (1,2), while LC segment 2 contains cells (2,1) and (2,2). 

 

Table 4: Example with 2 LC segments and 2 scale parameter subgroups 

 Less certain subgroup 

(s = 1): λ[s]=1 

More certain subgroup 

(s = 2): λ[s]=2 

Segment 1 (X*=1):                        

β1 = (0.5, 0.0, -0.5) 

joint class (1,1) joint class (1,2) 

Segment 2 (X*=2):                       

β1 = (-0.2, -0.8, 1.0) 

joint class (2,1) joint class (2,2) 

 

 

Our scale-extended choice model generalizes the latent class (LC) multinomial logit choice 

model from its standard log-linear form to a log-bilinear form. The standard LC choice model 

expresses the expected utility of the j-th alternative as a linear function of the part-worth 

parameters.  For example, with attribute A1 at level l1, and A2 at l2, the expected utility of class 

X=k is  *.2

.

*.1

. 21

XA

kl

XA

kl ββ + . 

The scale-extended model incorporates the scale parameter λ[s], and thus is bi-linear in the 

parameters. This yields a logit model with a linear term of the form *.2

.

*.1

. 21

XA

kls

XA

kls βλβλ + , where 
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the β and λ[s] parameters are estimated simultaneously. Note that each part-worth is multiplied 

by the same scale parameter λ[s]. 

Each member belonging to latent class segment k=1,2,…,K shares the same pure preference 

utilities, but some of these members differ in uncertainty (i.e., differ on their scale factor). For 

purposes of identification, we set λ1 = 1 for the largest subscale group.  For 2 or more latent 

subgroups, each of the K LC segments contains some respondents with scale parameter = 1, and 

some with a higher value (reflecting lower amounts of uncertainty) and/or a lower value 

(reflecting larger amounts of uncertainty. When there is only a single subgroup, the model 

reduces to a standard LC choice model, where all respondents are assumed to have a common 

scale factor (λ = 1.)   

How do the results compare between a standard LC choice analysis designed to identify different 

latent segments, and a scale-extended LC model where within each class, subgroups of 

respondents are allowed to have different scale parameters? Theoretically, if the true underlying 

population conforms to Table 4, the standard LC choice modeling approach might identify 4 LC 

segments that might be more or less confounded, while the scale-extended approach would 

identify 2 segments, each consisting of more or less certain subgroups. 

Below, two real-world choice data sets are used to illustrate the various models; the first is a 5-

attribute choice experiment for coffee makers (Skrondal and Rabe-Hesketh, 2004), the second is 

a 50% random sample provided by Sawtooth software of TV choice data originally described by 

Huber et. al. (1998). The latter data has an additional variable reflecting the length of time to 

complete the choice task, information that might be expected to be related to one’s scale factor.   

We also introduce a new class of LC choice models, called discrete factor (DFactor) choice 

models.  In clustering applications, DFactor models were shown to outperform traditional LC 

models (Magidson and Vermunt, 2001), so they might be expected to outperform traditional LC 

choice models as well. The DFactor models are illustrated in the first example. 

 

Example 1: Coffee Makers – Standard vs. Scale-Extended Models  

Consider data from a discrete choice study with 5 attributes – BRAND, CAPACITY, PRICE, 

FILTER and THERMOS (Skrondal and Rabe-Hesketh, 2004). For these data, models containing 

between K = 1 – 6 LC segments were estimated, each with between 1 and 3 scale subgroups. For 

the standard models (i.e., those containing only a single scale factor), the 5-class solution fit best 

(lowest BIC). For scale-extended models with S* dichotomous (i.e., 2 scale subgroups), again 

the 5-class model fit best. Table 5 provides the fit statistics for these models, which were 

estimated using the LG-Syntax module in Latent GOLD Choice. Appendix A1 provides the 

model specifications. For more technical details, see Vermunt and Magidson (2008). 
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Table 5: Fit measures for the LC choice models estimated with Coffee Makers data 

 

 

Compared to the standard models with K segments, the corresponding K-class scale-extended 

model contains 2 additional distinct parameters to be estimated –- λ[2], the scale factor for the 

2
nd

 subgroup and P[2], the proportion of the population falling into this 2
nd

 subgroup.
3
 Note that 

based on the BIC criteria, the scale-extended models is preferred over the standard models 

regardless of the number of segments. 

For the scale-extended models, the 2 latent variables were assumed to be independent. This 

hypothesis was tested for the 5-class model by a likelihood ratio comparison with a model 

assuming dependence between the two latent variables and found to be supported. Also, models 

with different numbers of scale subgroups were estimated for the 5-class model and those 

containing 2 subgroups were found to fit best.  

For the 5-class scale-extended model, each segment k consists of both lower (s=1) and higher 

(s=2) certainty subgroups. The larger S-class consisted of 52% of the respondents who expressed 

higher amounts of certainty (λ[2] = 11.2) than the other subgroup (λ[1] = 1).  The scale-extended 

model segments differed considerably from those from the standard model.  As shown in Table 

6, only 62+16+20+9+9 = 118 of the 185 respondents remain grouped in the same class. For 

example, only 62 of the 83 respondents grouped into class X*[1] were grouped into the 

corresponding X[1]-class. Overall, 37% of the respondents were classified into an X-class that 

differed from the corresponding X* classification. 

                                                 
3
 Given P[2], P[1], the proportion in the first subgroup can be computed as 1 – P[2], and thus is not counted as a 

distinct parameter to be estimated. 
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Table 6: Cross-tabulation of classification with and without scale factor 

 

 

DFactor Models as an Alternative to LC Choice Models 

Magidson and Vermunt (2001) suggested the use of Discrete Factor (DFactor) models as an 

alternative to traditional LC Cluster models and introduced a basic model containing 

dichotomous uncorrelated DFactors that generally provided a more parsimonious explanation of 

data. Thus, it might be expected that basic DFactor choice models might also outperform 

traditional LC choice models. 

Discrete Factor (DFactor) Choice Models posit M latent DFactors denoted as X1, X2,…,XM  

with K1, K2,…,KM  categories which yields a total of K1 x K2 x … x KM segments. A basic 

DFactor model contains dichotomous DFactors which are mutually independent of each other. 

These models impose a factor structure on the parameters of a LC choice model. For example, 

the part-worth utility parameters corresponding to segment (X1, X2) = (k1, k2) of a basic 2-

DFactor model
4
 are expressed as:  

 

where: 

 

and 

 

                                                 
4
 For dichotomous DFactors, dummy coding is used (X1 = 0 or 1 and X2 = 0 or 1) so that the constant 

2l
a reflects the 

part-worth associated with attribute A1 for the first LC segment (0, 0). 
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Since this is a restricted (structured) version of a LC choice model with K = K1 x K2 x … x KM 

classes, it is a parsimonious model, containing relatively few parameters. In fact, a basic DFactor 

choice model with M DFactors has the same number of parameters as a LC choice model with 

only K=M+1 latent class segments. Thus, for example, a basic 2 DFactor model is a restricted 4-

class model that contains the same number of parameters as a 3-class model.  

LC Choice Model Extension #2 utilizes a Scale-Extended (DFactor) Choice Model which posits 

M DFactors X1*, X2*,…,XM* and S. By default, each Xm
*
 is dichotomous.   As before, the 

categories of S represent subgroups with different scale factors, and for identification purposes, 

the restriction λ[1] = 1 is made for the 1st category of S, which is the category having the lower 

scale factor.  

 

Example 1: Model Results for DFactor Models 

For the coffee-maker data, models containing between 1 and 4 DFactors were estimated, with 

and without the scale parameter. As in the standard choice models, the scale-extended form of 

the model contains 2 additional parameters. (See Appendices A1 and A2 for the syntax equations 

corresponding to the standard LC Choice and DFactor models.) The fit statistics for these models 

are given in Table 7. 

 

Table 7: Fit measures for the DFactor choice models estimated with Coffee Makers data 

 

 

First, comparing Table 7 with Table 5 we see that each standard DFactor model fits these data 

better (lower BIC) than the corresponding standard LC choice model containing the same 

number of parameters (Npar). Also, the scale-extended DFactor models outperform (lower BIC) 

the standard DFactor models. Among the models estimated, the scale-adjusted 4 DFactor model 

fit best. 

As in the Extension #1, 2 scale subgroups were found to be best for 4-DFactor models. The 

larger S-class consisted of 61% of the respondents who expressed higher amounts of certainty 
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(λ[2] = 9.0) than the other subgroup (λ[1] = 1). Again, S was found to be independent of X*. 

That is, about 61% of the members of each X* segment were classified into this S-subgroup. 

Compared to the 5-Class Cluster solution, the 4-DFactor Scale-Extended Model classifies more 

respondents into the higher certainty group, 77% of whom are classified into the corresponding 

group by the Cluster approach. Similarly, 91% of those classified into the less certain group by 

the DFactor approach are classified into the corresponding group by the Cluster approach. 

Overall, the S-subgroups identified by the different types of scale-extended choice models show 

strong agreement --  both models classify the same 99 respondents into the more certain group 

and the same 52 respondents into the less certain group. Overall, a somewhat higher number of 

respondents were classified into the more certain subgroup, consistent with the fact the scale 

factor for this at this subgroup was somewhat lower than obtained under the traditional approach 

(9.0 vs. 11.2). 

 

Table 8: Fit measures for the DFactor choice models estimated with Coffee Makers data 

 

 

Example 2: Sawtooth Software TV Choice Data 

It is possible to include covariates in a LC model to better predict/explain/describe the latent 

variable. In example #2 we include the time to complete the choice tasks as a numeric covariate, 

specify linear and quadratic time effects,  and examine whether completion time is related to 

latent variables S and/or X*.  Overall, the time to complete the 18 choice tasks ranged from 1 

minute to 22 minutes with a mean time of 6.4 minutes. 

This choice experiment consists of N = 176 respondents, who selected from various choice sets 

TVs that differed on their levels across 6 attributes – Brand, Screen Size, Sound, Channel 

Blocking, Picture-in-Picture availability and Price. The data were obtained as a random 50% 

sample of all respondents analyzed originally by Huber et. al. (1998). 
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For these data we estimated a 4-class LC choice model where the 4
th

 class has zero effects.  That 

is, for segment #4, the choices are assumed to not be affected by the attributes (i.e., segment #4 

is a random response segment). We compare models with and without a scale parameter. For the 

former, 2 scale subgroups were assumed. Both models included time as an active covariate. The 

model specifications are given in Appendix B. 

For the standard LC choice model (no scale parameter), time was found to be a significant 

predictor of the classes (X), the 3
rd

 and 4
th

 classes having significantly lower mean completion 

time than classes 1 and 2. The scale-extended LC Choice model was preferred based on the BIC.  

Results from the scale-extended model were as follows: 

• The second subgroup of S consists of 69% of the cases. This subgroup is more certain 

(λ[2] = 3.7) than subgroup #1 (λ[1] = 1). 

• Time was found to be a significant predictor of S, but not X*.  

 

Table 9: Cross-tabulation of classification based on original and scale adjusted 4-class models 

 

 

 

Table 9 shows the correspondence between respondent classifications based on the two models. 

For clarity, the original classes are denoted as 1, 2, 3 and 4 while the classes from the scale-

extended model are denoted using an * (1*, 2*, 3* and 4*). The comparison can be summarized 

as follows:  
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• S and X* were correlated – Classes 1 and 2 tend to be in the more certain subgroup while 

class 3 tends to be in the less certain subgroup.  

• The random responder class (class 4) is much smaller when the scale factor is estimated, 

as many of those classified as random responders by the standard model become 

reclassified into the uncertain subgroup of classes 1 or 2.  

• Relationship between individual classifications: 

•  Class 1 mostly corresponds to class 1*, mean time = 7.5, more certain (λ = 3.7) 

• Class 2 mostly corresponds to class 2*, mean time = 7.5, more certain (λ = 3.7) 

• Class 3 mostly corresponds to class 3*,   mean time = 4.4, less certain   (λ = 1) 

• Class 4 mostly redistributed to 1* and 2*, mean time = 4.2, less certain   (λ = 1) 

Note that since classes 1 and 2 tend to have higher λ than class 3, its part-worths would be 

expected to be overstated relative to class 3. Table 10 below shows that all of the part-worths are 

in fact higher than the corresponding scale-adjusted values.  

Especially noteworthy is the comparison of the part-worths that address price sensitivity.  Under 

the standard LC choice model, class 3 appears to be less price sensitive: 0.38 vs. -0.35 differs by 

less than either 0.87 vs. -0.85 (class 1) or 0.61 vs. -0.93 (class 2). However, given the same scale 

value (λ=1 shown) the scale-adjusted differences suggest greater price sensitivity for class 3. 
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Table 10. Comparison of Original vs. Scale-adjusted part-worths  

 

 

Summary and Conclusions 

Louviere and Eagle (2006) argued that in choice modeling it is not valid to compare part-worths 

across individuals, groups or latent classes, without removing the potential confound with the 

scale parameters. In this presentation we introduced new LC models that can estimate and thus 

remove the scale parameters, and applied these models in 2 CBC examples with real data.   

In both examples the equal scale parameter assumption used to justify standard LC choice 

modeling was found to be violated, different scale parameters reflecting different amounts of 

uncertainty being present in different subgroups. Thus, in both cases the confound existed. 

In example 1, 2 subgroups that differed in their scale parameters were found. While these 

subgroups were approximately equally distributed among the classes, ignoring these subgroups 

resulted in misclassifying 37% of the cases into a different class. Similar misclassification rates 

were found in DFactor Choice models, which provided improved fits over the more traditional 

models. 
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In example 2, the 2 scale subgroups found were correlated with the LC segments. While 

segments #1 and #2 appeared to be more price sensitive than segment #3, they tended to have 

higher scale factors than segment #3 which masked the actual relationship. Removal of this 

confound resulted in the conclusion that these segtments were in fact less (not more) price-

sensitive than segment #3.  

Extensions of standard LC and discrete factor (DFactor) choice models are now available that 

can capture both scale and preference parameters, thus removing the scale confound from 

preference part-worth parameter estimates. We believe that application of these and related HB-

like models based on CFactors (see e.g., Rabe Hesketh and Skrondal, 2004; Vermunt and 

Magidson, 2008) will result in improved estimates of preference part-worths and a better 

understanding of the effects associated with different respondent levels of uncertainty.  This, in 

turn, can lead to improved targeting to relevant segments based on an improved understanding of 

segment preferences and levels of uncertainty. 
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Appendices 

 Below we present the Equation section and the Latent Variables portion of the Variables section 

of the LG-syntax that define the various models described in this article. The remaining portions 

of the syntax contain technical and output options, as well as the definition of the variables 

which specify the attributes, the dependent variable, and various id variables. 

 

Appendix A1: LG-Syntax specifications for LC Choice Models estimated on the Coffee 

Maker Choice Data with and without a Scale Adjustment 

A standard LC Choice Model is defined as follows: 

variables 

 latent Class nominal 5; 

equations 

   Class <- 1; 

   choice <- brand |Class + capacity | Class + price | Class  

             + filter | Class + thermos | Class;  

Here, ‘Class’ is the name assigned to the categorical latent variable representing the 5 segments. 

One logit equation is for the class sizes, the other for the observed choices. Note that “| Class” 

means that the parameter concerned depends on Class.  

A Scale-Adjusted version of the LC Choice Model may be defined as follows: 

latent   

   Class nominal 5, sClass nominal 2, scale continuous; 

equations 

   Class <- 1 ; sClass <- 1; 

   scale <- (s) 1 | sClass;  

   (0) scale; 

   choice <- brand scale |Class + capacity scale | Class  

             + price scale | Class + filter scale | Class  

             + thermos scale | Class ; 

      s[1] = 1; s[2] = +; 

The scale factor named ‘scale’ is defined as a continuous latent variable with a mean (intercept) 

depending on sClasses and a residual variance equal to zero. The restrictions set the scale factor 

for the first sClass to 1, and insure that the scale factor for the second sClass is nonnegative. 
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 Appendix A2: LG-Syntax specifications for DFactor Choice Models estimated on the 

Coffee Maker Choice Data with and without a Scale Adjustment 

 

A DFactor Choice Model is defined as follows: 

latent 

   dfac1 ordinal 2, dfac2 ordinal 2, dfac3 ordinal 2, dfac4 ordinal 2; 

equations 

   dfac1 <- 1; dfac2 <- 1; dfac3 <- 1; dfac4 <- 1; class <- 1; 

   choice <- brand + capacity + price + filter + thermos    

       + brand dfac1 + brand dfac2 + brand dfac3 + brand dfac4   

       + capacity dfac1 + capacity dfac2 + capacity dfac3 + capacity dfac4   

       + price dfac1 + price dfac2 + price dfac3 + price dfac4   

       + filter dfac1 + filter dfac2 + filter dfac3 + filter dfac4   

          + thermos dfac1 + thermos dfac2  + thermos dfac3 + thermos dfac4; 

and a Scale-Adjusted DFactor Choice Model as 

latent 

   sClass nominal 2, dfac1 ordinal 2, dfac2 ordinal 2, dfac3 ordinal 2,   

   dfac4 ordinal 2,  scale continuous; 

equations 

   scale <- (s) 1 | sClass; 

   (0) scale; 

   dfac1 <- 1; dfac2 <- 1; dfac3 <- 1; dfac4 <- 1; sClass <- 1;  

   choice <- brand scale + capacity scale + price scale + filter scale 

            + thermos scale + brand dfac1 scale + brand dfac2 scale  

            + brand dfac3 scale + brand dfac4 scale + capacity dfac1 scale 

            + capacity dfac2 scale + capacity dfac3 scale  

            + capacity dfac4 scale + price dfac1 scale + price dfac2 scale 

            + price dfac3 scale + price dfac4 scale + filter dfac1 scale  

            + filter dfac2 scale + filter dfac3 scale + filter dfac4 scale 

            + thermos dfac1 scale + thermos dfac2 scale  

            + thermos dfac3 scale + thermos dfac4 scale; 

      s[1] = 1; s[2] = +; 
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Appendix B: LG-Syntax specifications for 4-class models estimated on the TV Choice Data 

 

A standard 4-class model with the 4
th

 class being restricted to be a random class and the 

covariate ‘TimeR’ affecting the classes and monotonic non-increasing price effect is obtained by: 

latent 

   Class nominal 4; 

equations 

   Class <- 1 + (b) TimeR; 

   Choice <- (a1) brand | Class + (a2) size | Class  

            + (a3) sound | Class + (a4) block | Class  

            + (a5) pip | Class + (b2) price | Class; 

   a1[4]=0; a2[4]=0; a3[4]=0; a4[4]=0; a5[4]=0; b2[4]=0;  

      b2 = -; 

A 4-class Scale-Adjusted model with the 4
th

 class being restricted to be a random class and the 

covariate ‘TimeR’ affecting the scale factor and monotonic non-increasing price effect: 

latent 

   scale  continuous, sClass nominal 2, Class nominal 4 ; 

equations 

   sClass <- 1 + (b) TimeR; 

   Class <- 1; 

   Class <-> sClass; 

   scale <- (s) 1 | sClass; 

   (0) scale; 

   Choice <- (a1) brand scale | Class + (a2) size scale | Class  

            + (a3) sound scale | Class + (a4) block scale | Class  

            + (a5) pip scale | Class + (b2) price scale | Class; 

   a1[4]=0; a2[4]=0; a3[4]=0; a4[4]=0; a5[4]=0; b2[4]=0; 

   b2 = -; s[1] = 1; s[2] = +; 


