
Latent Class Cluster Models 

According to Kaufman and Rousseeuw (1990), cluster analysis is "the classification of similar objects into 
groups, where the number of groups, as well as their forms are unknown". This same definition could be used 
for exploratory Latent Class (LC) analysis where a K-class latent variable is used to explain the associations 
among a set of observed variables. Each latent class, like each cluster, groups together similar cases. 

Contrary to traditional ad hoc clustering approaches, the LC approach to clustering is model-based. The 
fundamental assumption underlying LC models is that of local independence which states that objects 
(persons, cases) in the same latent class share a common joint probability distribution among the observed 
variables. Since persons in the same latent class (cluster) cannot be distinguished from each other based on 
their observed responses, they are similar to each other (homogeneous) with respect to these observed 
variables. Persons are classified into that class having the highest posterior membership probability of 
belonging given the set of responses for that case. 

LC is most similar to the K-Means approach to cluster analysis in which cases that are "close" to one of K 
centers are grouped together. In fact, LC clustering can be viewed as a probabilistic variant of K-Means 
clustering where probabilities are used to define "closeness" to each center (McLachlan and Basford, 1988). 
As such, LC clustering provides a way not only to formalize the K-Means approach in terms of a statistical 
model, but also to extend the K-Means approach in several directions. 

LC Extensions of the K-Means Approach 

1. Probability-based classification. While K-Means uses an ad-hoc distance measure for classification, 
the LC approach allows cases to be classified into clusters using model based posterior membership 
probabilities estimated by maximum likelihood (ML) methods. This approach also yields ML estimates 
for misclassification rates. 
 

2. Determination of number of clusters. K-Means provides no assistance in determining the number of 
clusters. In contrast, LC clustering provides various diagnostics such as the BIC statistic, which can be 
useful in determining the number of clusters. 
 

3. Inclusion of variables of mixed scale types. K-Means clustering is limited to interval scale 
quantitative variables, for which Euclidean distance measures can be calculated. In contrast, LC 
clustering can be performed on variables of mixed metrics. Variables may be continuous, categorical 
(nominal or ordinal), or counts or any combination of these. 
 

No need to standardize variables. Prior to performing K-Means clustering, variables must be 
standardized to have equal variance prior to avoid obtaining clusters that are dominated by variables 
having the largest amounts of variation. In contrast, the LC clustering solution is invariant of linear 
transformations on the variables; thus, standardization of variables is not necessary. 

4. Inclusion of demographics and other exogenous variables. A common practice following a K-
Means clustering is to use discriminant analysis to describe differences among the clusters on one or 
more exogenous variables. In contrast, the LC cluster model can be easily extended to include 
exogenous variables (covariates). This allows both classification and cluster description to be 
performed simultaneously using a single uniform ML estimation algorithm. 

The General LC Cluster Model 

The basic LC cluster model can be expressed as: 

f(yi) = k p(x=k) f(yi|x=k)
 

while the LC cluster model with covariates is: 

f(yi|zi) = k p(x=k|zi) f(yi|x=k)
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or 

f(yi|zi) = k p(x=k|zi) f(yi|x=k,zi)
 

where: 

� yi: vector of dependent/endogenous/indicators for case i 
 

� zi: vector of independent/exogenous/covariates for case i  
� x: nominal latent variable (k denotes a class, k=1,2,…,K) 

and f(yi|x=k) denotes the joint distribution specified for the yi given latent class x=k.
 

For yi continuous, the multivariate normal distribution is used with class-specific means. In addition, the 
within-class covariance matrices can be assumed to be equal or unequal across classes (ie., class 
independent or class dependent), and the local independence assumption can be relaxed by applying 
various structures to the within-class covariance matrices:  

� diagonal (local independence)  
� free or partially free -- allow non-zero correlations (direct effects) between selected variables 

For variables of other/mixed scale types, local independence among the variables imposes restrictions on 
second-order as well as to higher-order moments. Within a latent class, the likelihood function under the 
assumption of independence is specified using the product of the following distributions: 

� continuous: normal  
� nominal: multinomial  
� ordinal: restricted multinomial  
� count: Poisson / binomial 

LC Cluster vs. K-Means – Comparisons with Simulated Data 

To examine the kinds of differences that might be expected in practice between LC cluster and K-Means 
clustering, we generated data of the type most commonly assumed when using K-Means clustering. 
Specifically, we generated several data sets containing two normally distributed variables within each of K=2 
clusters. For data sets 1-3, the first cluster consists of 200 cases with mean (3,4), the second 100 cases with 
mean (7,1). 
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Data Set 1: Within each Class, Variables are Independent with Std. Dev. V�= 1 

In data set 1, within each cluster the variables were generated to be independent with 

standard deviation equal to 1. Data set 1 was generated to make discrimination easy and not exploit the 
inability of the K-Means approach to properly handle variables having different variances. 

The LC models correctly identify this data set as arising from 2 clusters, having equal within-cluster 
covariance matrices (i.e., the "2-cluster, equal" model has the lowest BIC = 2154). The ML estimate for the 
expected misclassification rate is 1.1%. Classification based on the modal posterior membership probability 
resulted in all 200 cluster 1 cases being classified correctly and only 1 of the 100 cluster 2 cases, (y1,y2) = 
(5.08,2.43), being misclassified into class 1. For data set 1, use of K-means clustering with 2 clusters 
produced a comparable result – all 100 cluster 2 cases were classified correctly and only 1 of the 200 cluster 
1 cases were misclassified, (y1,y2) = (4.32,1.49).  

Data set 2 was identical to data set 1 except that the standard deviation for the second variable was doubled 
so the standard deviation for Y2 was twice that of Y1. 
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Data Set 2: Within each Class, Std. Dev. for y2 = 2V 

The LC models again correctly identify this data set as arising from 2 clusters, having equal within-cluster 
covariance matrices (i.e., the "2-cluster, equal" model has the lowest BIC = 2552). The ML estimate for the 
expected misclassification rate is 0.9%. Classification based on the modal posterior membership probability 
resulted in 3 of the cluster 1 cases and 1 of the cluster 2 cases being misclassified. For these data, K-Means 
performed much worse than LC clustering. Overall, 24 (8%) of the cases were misclassified (18 cluster 1 
cases and 6 cluster 2 cases). When the variables were standardized to have equal variances prior to the K-
Means analysis, the number of misclassifications dropped to 15 (5%), 10 of the cluster 1 and 5 of the cluster 2 
cases, still markedly worse than the LC clustering. 

Data set 3 threw in a new wrinkle of unequal standard deviations across clusters. To accomplish this, for 
cluster 1 the standard deviations were reduced to 0.5 for both variables. For cluster 2, the data remained the 
same as used in data set 2. 

 
Data Set 3: Within Class 1, Std. Dev. for y1 and y2 = 0.5V 
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The LC models correctly identify this data set as arising from 2 clusters, having unequal within-cluster 
covariance matrices (i.e., the "2-cluster, unequal" model has the lowest BIC = 1750). The ML estimate for the 
expected misclassification rate was 0.1%, and use of the modal posterior membership probabilities resulted in 
perfect classification. K-Means correctly classified all cluster 1 cases for these data but misclassified 6 cluster 
2 cases. When the variables were standardized to have equal variances prior to a K-Means analysis, the 
results were identical, markedly worse than the LC clustering. 

For data set 4 we added some within-class correlation to the variables so that the local independence 
assumption no longer held true. For class 1 the correlation added was moderate, while for class 2 only a slight 
amount of correlation was added.  

The LC models correctly identify this data set as arising from 2 clusters, having a "free" covariance structure – 
i.e., unequal within-cluster covariance matrices that included nonzero correlations within each class (i.e., the 
"2-cluster, free" model has the lowest BIC = 3263). The ML estimate for the expected misclassification rate 
was 3.3%, and use of the modal posterior membership probabilities resulted in 10 misclassifications among 
the 300 cases. K-Means performed very poorly for these data. While all 100 cluster 2 cases were classified 
correctly, 44 cluster 1 cases were misclassified, for an overall misclassification rate of almost 15%. If the 
recommended standardization procedure was followed prior to a K-Means analysis, the results would have 
been even worse -- 14 of the cluster 1 and 66 of the cluster 2 cases being misclassified, an error rate of over 
26%! 

 
Data Set 4: Moderate Correlation within Class 1, Slight Correlation within Class 2 

Comparison with Discriminant Analysis 

Since data set 2 satisfies the assumptions made in discriminant analysis, if we now pretend that the true class 
membership is known for all cases, the linear discriminant function can be calculated and used as the gold 
standard. We computed the linear discriminant function and appended it to the data set in Figure 5. 
Remarkably, it can be seen that the results are identical to that of latent class analysis – the same 4 cases are 
misclassified! These results show that it is not possible to obtain better classification results for these data 
than that given by the LC model. 
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Data Set 5: Data Set 2 with linear discriminant added 

Summary and Conclusion 

Recent developments in LC modeling offer an alternative approach to cluster analysis which can be viewed 
as a probabilistic extension of the K-Means approach to clustering. Using 4 data sets which simulate the 
occurrance of data from 2 homogeneous populations we compared LC with K-Means clustering. For all 
situations considered the LC approach does exceptionally well in classification. In contrast, the K-Means 
approach only does well when the variables have equal variance and the assumption of local independence 
holds true. Further research is recommended to explore other simulated settings.  

Data set 1: diagonal / class-independent 

Data set 2: diagonal / class-independent 

Model LL BIC Npar 

1-Cluster equal -1226 2475 4 

2-Cluster equal -1057 2154 * 7 

3-Cluster equal -1051 2159 10 

1-Cluster unequal -1132 2293 5 

2-Cluster unequal -1057 2160 8 

3-Cluster unequal -1051 2164 11 

Model LL BIC Npar 

Page 6 of 7LC Clustering as a Probabilistic Extension of K-Means

01-12-03http://statisticalinnovations.com/articles/kmeans2a.htm



Data set 3: diagonal / class-dependent 

Data set 4: free / class-dependent 

1-Cluster equal -1333 2689 4 

2-Cluster equal -1256 2552 * 7 

3-Cluster equal -1251 2558 10 

1-Cluster unequal -1333 2689 5 

2-Cluster unequal -1252 2557 8 

3-Cluster unequal -1249 2561 11 

Model LL BIC Npar 

1-Cluster equal -1209 2440 4 

2-Cluster equal -962 1964 7 

3-Cluster equal -906 1869 10 

1-Cluster unequal -1209 2440 4 

2-Cluster unequal -850 1750 * 9 

3-Cluster unequal -846 1772 14 

Model LL BIC Npar 

1-Cluster diagonal -1750 3522 4 

2-Cluster diagonal -1700 3450 9 

3-Cluster diagonal -1645 3370 14 

1-Cluster free -1686 3400 5 

2-Cluster free -1600 3263 * 11 

3-Cluster free -1596 3289 17 
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