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Summary. The paper demonstrates application of the latent Markov model for assessing devel-
opments by individuals through stages of a process. This approach is applied by using a data-
base on ownership of 12 financial products and various demographic variables. The latent
Markov model derives latent classes, representing household product portfolios, and shows the
relationship between class membership and household demographics. The analysis provides
insight into switching between the latent classes, reflecting developments of individual house-
hold product portfolios, and the effects of demographics on such switches. Based on this, we
formulate equations to predict future acquisitions of financial products. The model accurately
predicts which product a specific household unit acquires next, for most of the products.
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1. Introduction

In economics, psychology and other social sciences, researchers investigate the order in which
individuals or household units acquire the characteristics defining the stages of a process. Exam-
ples are the order in which some individuals use different types of illicit drugs (Collins and
Wugalter, 1992; Graham et al., 1991), the order in which children acquire various types of intel-
lectual skills and abilities (Kingma, 1984; Verweij et al., 1999) and the order in which household
units acquire durable or financial products (Kamakura et al., 1991; Paroush, 1965). As an ex-
ample of the last, extant research results show households generally acquire savings accounts
before investment trusts and after that they acquire shares (Paas, 1998). This paper investigates
the order in which households acquire such financial products. The methodology discussed is
relevant for other applications.

Statistical models analysing temporal patterns of consumer choice behaviour generally con-
cern repeat purchases of consumable products, such as detergents, paper towels and ketchup
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(e.g. Erdem and Sun (2001) and Uncles et al. (1995)). Models on more durable products, such as
savings accounts, televisions and air-conditioning units, receive far less attention. Nevertheless,
a technique which is known as acquisition pattern analysis (e.g. Kamakura et al. (1991), Paas
and Molenaar (2005) and Soutar and Cornish-Ward (1997)) provides insight into the order
in which households acquire such products. Behavioural scientists use this analysis to evalu-
ate priorities that households have for products and marketing managers for purposes such as
market segmentation and estimating the potential of an innovation by predicting its position in
existing acquisition patterns (Gatignon and Robertson, 1985; Kamakura ez al., 1991). Recently,
acquisition pattern analysis has received attention for predicting which product a household is
most likely to acquire next (Li et al., 2005; Paas and Molenaar, 2005).

In our application of acquisition pattern analysis, households have various financial objec-
tives that cannot be fulfilled at once. Acquisitions of financial products usually imply major
investments or long-term contractual obligations. Finite resources will lead to a priority struc-
ture of household financial objectives: products for more basic objectives are generally acquired
before products providing utility for more advanced objectives. Furthermore, Kamakura et al.
(1991) and Soutar and Cornish-Ward (1997) suggested the phases, through which households
pass during their life cycle, will lead to a similar order in which financial priorities become
salient and consequently a common order for acquiring financial products. Note that this paper
studies household units as these are the principal decision-making unit in the financial product
market (Guiso et al., 2002; Warneryd, 1999).

Although acquisition pattern analysis is based on plausible theoretical assumptions, relevant
empirical studies have methodological shortcomings. Extant studies typically analyse cross-
sectional data and derive acquisition patterns from cross-sectional differences between house-
holds (e.g. Kamakura et al. (1991), Paas (1998) and Soutar and Cornish-Ward (1997)). For
instance, if households acquire three products in the order first A, then B and last C, then the
following cross-sectional ownership patterns should occur only sparsely:

(a) ownership of product C, without ownership of products A and B and
(b) ownership of B without A.

Paas and Molenaar (2005) theoretically and empirically demonstrated that acquisition patterns,
deduced from cross-sectional data, can predict future product acquisitions by individuals. Such
predictions have various practical purposes, such as selecting the product to be offered to a
particular household unit. However, cross-sectional data do not provide insight into divergent
orders of acquisition. Divergence in this context implies that different segments of households in
a population follow different orders for acquiring products. For example, one segment acquires
savings accounts before investment trusts and last shares, whereas another segment starts with
the acquisition of shares. This is empirically relevant, as Bijmolt ez al. (2004) and Paas et al.
(2005) reported the occurrence of such divergence. Besides this, it is not only interesting to know
which product a household is likely to acquire next, but also the timing of such acquisitions can
be salient (Kamakura et al., 1991). Cross-sectional data provide little insight into such timing.
Some relevant cross-sectional methods are available, such as the life calendar history method
that was introduced by Freedman ez al. (1988). Here respondents are asked to recall the order
in which events or activities, such as the acquisition of various products, took place. Various
approaches have been developed to offer respondents some support in this burdensome recall
process. However, such methods still impose a heavy cognitive task on respondents and the
results tend to be strongly biased by memory effects (Means et al., 1991).

This paper applies the latent Markov model (LMM)—which is also known as the hidden Mar-
kov model and the latent transition model—for analysing acquisition patterns in the financial
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product market, based on longitudinal panel data. In this application of the LMM, households
may be conceived of being divided into a number of unobservable discrete categories for which
product portfolios differ. To illustrate this, assume a data set containing three panel waves,
collected in 1996, 1998 and 2000, with information on household ownership of products A, B
and C. The usual axiom of the LMM is that latent class membership explains the association
between observed variables. This concerns product ownership in our application. Moreover,
each latent class represents a prototypical product portfolio. For example, if most households
owning product C also own products A and B, and most households with B also own product
A, the model would consist of four latent classes:

(a) a class with households owning none of the products;
(b) a class with households owning only product A;

(c) aclass with households owning products A and B;
(d) a class with households owning all three products.

Besides this, the LMM describes the developments of financial product portfolios by individual
households over time, using switching probabilities between latent classes over consecutive mea-
surement occasions. Consider our previously mentioned hypothetical LMM. Here the analysis
would define the probability for households in the segment owning only product A in 1996 to
be in the segment owning none of the products in 1998, or, alternatively, the probability for
such a household to be in the segment owning

(a) products A and B or
(b) products A, B and C.

Other changes in product portfolios are also modelled and represented by probabilities of switch-
ing from one latent class to another over consecutive measurement occasions. Further discussion
and technical details on this application of the LMM are provided later in the paper.

The contribution of the paper is twofold. First, we introduce an approach for applying the
LMM to predict future behaviour. For this, we modify the forward-backward algorithm (Baum
et al., 1970; Fearnhead and Meligkotsidou, 2004), which is an alternative to the more com-
monly applied expectation—-maximization (EM) algorithm of Dempster ez al. (1977). The paper
concentrates on predicting household acquisitions of financial products, but the approach is
applicable to other purposes, such as predicting the intellectual skill that a child will acquire
next. Second, the paper contributes to theory on financial behaviour, through the presenta-
tion of new empirical findings on household financial product portfolios and developments
therein.

The next section presents the LMM and Section 3 explains the application of the LMM for
predicting product acquisitions of individual households. Section 4 reports an LMM analysis
of a database with ownership information for 12 financial products, by 7676 households in four
bi-yearly waves. Section 5 presents the accuracy with which the next acquisition is predicted.
The paper concludes with implications in Section 6.

2. The latent Markov model

2.1. Model specification

Below we present the LMM with concomitant variables (Van de Pol and Langeheine, 1990;
Vermunt et al., 1999; Bartolucci et al., 2007) and in particular how it can be applied to analyse
household acquisition patterns of financial products. However, first some notation is required:
i=1,...,listheindex of households; j=1,..., J is the index of financial products; k=1,..., K
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is the index of covariates; s=1,..., S is the index of latent classes representing household prod-
uct portfolios (latent classes in an LMM are sometimes referred to as latent states, as these
represent the phases of some process); r=0,...,T is the index of a sequence of T 4+ 1 mea-
surement occasions; X;; =s; denotes that household i is a member of latent class s; at mea-
surement occasion ¢ (below the symbol s or r is sometimes used instead of s; to refer to a
specific latent class); ¥;;; denotes whether household i owns product j at measurement occasion
t (Y =1 if subject i has j at t; otherwise, Y;;; =0); Y;; denotes the 1 x J vector of binary
variables indicating which of the J products household i owns at measurement occasion #; Y;
denotes the full set of products at all T+ 1 occasions (it is a stacked row vector defined as
{Y0,Yi1,-..,Yir}); Zi; denotes the 1 x K vector of values that household i has on the K covari-
ates at r; Z; denotes the full set of covariate values at all T+ 1 measurement occasions, defined
as {Z,‘o,Zil, e ,Z,‘T}.

The LMM specifies P(Y;|Z;), i.e. the probability of having a particular combination of prod-
ucts at the 7'+ 1 measurement occasions given a household’s time-specific covariate values. Two
components define this probability: a structural component models individual changes in latent
states across time points (developments in household product portfolios) and a measurement
component connects the latent states (the types of product portfolios) at a particular time point
to the observed responses (the observed product ownerships).

The structural component has a first-order Markov model structure, i.e., when controlling
for covariate values at ¢ (Z;;), X;; is affected only by class membership at the previous measure-
ment occasion, X;,_1, but not by latent class membership at earlier occasions. The structural
component involves two types of model probabilities:

(a) the initial latent state probability P(X;y=s¢|Z;o) denotes the probability that household
i belongs to latent class sg at the initial measurement occasion given its covariate values
at this occasion, and

(b) the latent transition probability P(X;; =s;|X;;—1=s:—1, Zi;) denotes the probability that
a household in latent class s,_; at occasion r—1 switches to latent state s; at occasion ¢
given its covariate values at ¢.

The measurement part of the model, which connects the latent class membership at time point
t to the observed responses at ¢, takes the form of a standard latent class model for dichoto-
mous response variables (Lazarsfeld and Henry, 1968; Goodman, 1974). This component can
be interpreted as a latent class structure, defining a segmentation based on the observed product
ownerships at each measurement occasion. The probability of having a specific combination
of J products at measurement occasion ¢, given that household i belongs to latent class sy, is
assumed to take the form

J
PVl Xis=s0) = [T (50" (1 =) =70 1)
Jj=1

where 7r;s denotes the probability of having product j conditional on membership of latent
class s. The multiplication over j on the right-hand side of equation (1) indicates that the J
product ownerships are treated as independent Bernoulli trials conditional on a household’s
latent class membership at occasion ¢. This is the local independence assumption, which was
outlined previously as crucial to this type of model. In our application it explains the associ-
ation between ownership of the products. The latent class structure is assumed to capture the
observed relationships in the product ownerships. Note that the model probabilities 7r§s, defin-
ing the measurement part of the model, contain an index ¢. This index indicates that w}ss may
differ across measurement occasions. Moreover, for each measurement occasion ¢ the model
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incorporates one unobserved latent variable, which can take S values called latent classes. Thus,
in total the model incorporates 7 + 1 latent variables.

Combining the first-order Markov model, which connects the latent states at the various
time points, and the latent class structure, connecting the latent states to the observed product
ownerships, yields the LMM

s s s T
PYGIZ)= > > ... > P(Xio=s0l1Zio) [] P(Xir=s:1Xi,1—1=51-1,Zit) [ ] P(Yis| Xir =51)
S0=1S1=1 st=1 t=1 t=0
()

where the measurement part P(Y;;|X;; =s;) has the form that is provided in equation (1). Logistic
models may parameterize and restrict the model probabilities as will be considered below. The
summations over the classes of each of the 7 + 1 discrete latent variables implies that we margin-
alize over all unobserved 7 + 1 variables to obtain the expression for P(Y;|Z;), the probability
of the observed product ownerships given covariate values. Furthermore, the following assump-
tions underlic the LMM that is defined in equations (1) and (2):

T

(a) households belong to only one latent class at each specific measurement occasion, but
this class is unknown;

(b) a first-order Markov chain defines the latent transition structure;

(c) covariates may affect latent class membership at occasion ¢, X;;, but conditional on this
latent class membership not the observed product ownerships, ¥;;;;

(d) product ownerships at occasion ¢ are solely affected by the latent class membership at z, not
by latent class membership at other time points or by other observed product ownerships;

(e) asindicated by equation (1), ownerships of the J products at occasion #, ¥;;;, are mutually
independent given latent class membership at 7.

These simplifying assumptions are, in fact, a combination of the assumptions of a latent class
model and the ones of a first-order Markov transition model (Van de Pol and Langeheine, 1990;
Vermunt et al., 1999; Wedel and Kamakura, 2000). Though these assumptions cannot be fully
relaxed because otherwise the model would no longer be identifiable, it is possible to check and
relax assumptions (b)—(e) partially. For example, we could define a second-order instead of a
first-order Markov process, allow covariates to have direct effects on certain observed owner-
ships, allow the latent state at time point ¢ to affect the ownership of certain products at time
point £ 4+ 1 or allow certain product ownerships at time point ¢ to be associated within classes.
Logistic models can be used to parameterize the probabilities for the structural components
of the latent Markov model, P(X;o =s|Z;1) and P(X;; =s|X;,—1 =r,Z;;), which depend on co-
variate values. The linear model for the logarithm of the ratio of the probability of being in

latent class s relative to being in the reference class S at r =0 takes the form
P(Xi0=5|Zp) 0 K 0

1 —— = Z; 3

{ Pa= 812y J = 0 2 o P ©

for1 <s<S—1,where 7?0 denotes an intercept and y?k, 1 <k <K, theslope for the kth covariate.

A similarly logistic model for transition probabilities is
) { P(Xir=s|Xi—1=r,Zy)
P(Xit=S|Xi1—1=r,2Zy)

K
} =70+ > Vi Zin 4
=1

for1<s<S—1,1<r<Sand 1 <t<T.Inequation (4) there is a separate set of intercepts, 7§r0>
for each origin state. In contrast, the covariate effects 7/, are assumed to be constant across
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origin states. This is, however, an assumption that can be relaxed and tested. A specification
with varying covariate effects across origin states is equivalent to including interactions between
covariates and origin state. A likelihood ratio test comparing our specification and a model with
such interaction terms can be used to assess whether the simplifying assumption of constant
covariate effects across origin states holds for a particular data set. The main advantage of our
specification is that it is much more parsimonious, especially when the number of latent classes
S is large, which applies to the models that are discussed in the empirical sections of our paper.

Foreach 1 <j<Jand 0<r< T, the S probabilities that are relevant for product ownership
may also be reparameterized through log-odds as

ﬂ-;“‘ t t
log e jo—i—ﬁjs for 1 <s<S. ®)

A

Since this involves S + 1 parameters, for identification we may, for instance, assume that ﬁ;s =0
so that the log-odds for latent class S are ;. The log-odds for the other S — 1 classes are then
expressed as differences from the log-odds for this base class. This representation also becomes
useful if the parameters are then used in logistic models, e.g. to specify restrictions on the mea-
surement models. In Rasch-type models for example (Vermunt, 2001), the ﬁ%are equal for all
items j. The current application as will be developed in Section 3.1 does not use such constraints.

2.2. Parameter estimation

Maximum likelihood provides estimates of the model parameters of an LMM. An EM algo-
rithm is used for this purpose (Van de Pol and Langeheine, 1990). We use an EM algorithm
called the forward-backward algorithm (Baum er al., 1970; Fearnhead and Meligkotsidou,
2004), implemented in Latent GOLD version 5.0 (Vermunt and Magidson, 2007). Below fol-
lows a discussion on the forward—backward algorithm, starting with the main differences from
the more conventional application of EM.

A major limitation of the standard EM estimation of Dempster et al. (1977) for the current
LMM parameters is that the time and storage that are needed for computation increase expo-
nentially with the number of time points (Vermunt et al., 1999). The E-step of this iterative
algorithm involves computation of the joint posterior latent distribution of all latent variables,
which contains S7*! entries. For example, with S =10 and 7 + 1 =4, this already leads to a
distribution with 10000 entries. After retrieving the entries in the joint posterior distribution
one collapses over the other latent variables to obtain the required univariate and bivariate mar-
ginal posterior probabilities for adjacent time points. Instead, the alternative forward—backward
algorithm obtains the relevant marginal posterior probabilities directly by using a set of recur-
sive formulae, yielding a method for which the size of the problem increases only linearly with
the number of time points (McDonald and Zucchini, 1997). The original forward-backward
algorithm of Baum et al. (1970) assumes at each measurement occasion a single response vari-
able only. Our application has multiple responses for J =12 financial products. Thus, we adjust
and extend the algorithm to handle this situation. Utilizing the forward—backward algorithm
instead of the conventional application of EM is one of the major differences between the LMM
analyses that are employed in the current paper and those that were employed by Collins and
Wugalter (1992) and Graham et al. (1991).

EM, implemented through the forward—backward algorithm or through other algorithms,
is a general iterative procedure for maximum likelihood estimation in the presence of latent
variables or other types of missing data (Dempster et al., 1977). It switches between an E-step
and an M-step till convergence. The E-step computes the expected value of the complete-
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data log-likelihood or, more intuitively, estimates the missing data (here the unobserved class
memberships). For this the algorithm employs the expected value given the current parame-
ter values and the observed data. The M-step uses standard estimation methods to update the
model parameters, such that the expected complete-data log-likelihood is maximized. Below the
M-step involves using the filled-in expected values as if they were observed data in logistic regres-
sion analysis. The E- and M-step cycle till a certain convergence criterion has been reached.

For an LMM described in equations (1) and (2), the contribution of case i to the expected
complete-data log-likelihood E{log(L;)} is as follows:

s
E{log(L)}= Y P(Xio=s0lYi, Z;) log{ P(Xio =501Zi0) }

so=1

T S S
+ Z Z Z P(X;;—1=s5:1, Xi,,:stlY,',Z,')log{P(X,',:s,|Xi,t,1 ZSzfl,Zit)}

t=1s,_1=1s=1

T S
+ Z:) Zl P(Xir=s11Yi, Z;) log{ P(Yis| Xir = 9)}. (6)
t=0s,=

The M-step maximizes expression (6) summed over household observations to find updated
model parameter estimates. These can then also be used to update P(X;o=s9|Zi), P(X;; =
st|Xi—1=s:_1, Zit), and P(Y;;| X;; =s;) through which, as is shown below, the current parameter
model estimates enter the next E-step. This E-step requires updating the univariate and bivariate
posterior latent class membership probabilities P(X;; =s|Y;, Z;) and P(X; ;—1=r, X; =s|Y;, Z;)
for each household. All these probabilities condition on the data and also implicitly on the cur-
rent model estimates. The forward—backward algorithm obtains them by a recursive scheme
and once found they are used in expression (6) for the next M-step.

The probabilities aj; (s) = P(Xir =s, Yi —|Zi,—) and G (s) = P(Y; 1+ | Xir =s, Z; 1+) are the two
key components of the forward-backward algorithm. Index ¢— refers to the information for
time point ¢ and all earlier time points, and ¢+ for all time points after ¢. Thus, the forward
probability «;,(s) refers to having the observed set of responses, i.e. observed product owner-
ships, up to time point ¢ and being in latent class s at ¢, conditional on covariate values and
model parameters. The backward probability 5;,(s;) is the probability of having the observed
set of responses after time point ¢, conditional on being in latent class s at ¢, covariate values
and model parameters. As shown in Appendix A the connection between these two components
and the relevant posterior probabilities is as follows:

;i (8) Bir (5)

P X =s|Y;, Z;) =
(Xir=s|Yi, Z;) PY:|Z;) s

(N

aji—1(r) P(Xj; =5s|X; -1 =r,Zit) P(Yit| Xir =) Bis (5)
P(Yi|Z;) ’

P(Xii—1=r,Xii=s|Yi,Zi)= ®)
These two equations show that the relevant posteriors P(X;; =s|Y;,Z;) and P(X; ;1 =r, Xir =
s|Y;, Z;) can be obtained with «;;(s), 5 (s) and the model probabilities P(X;; =s|X; —1=r, Zi)
and P(Y;| Xj; =s) from the previous M-step (Baum et al., 1970). The denominator P(Y;|Z;) in
equations (7) and (8), as shown in Appendix A, is obtained by Ele it (s) Bir(s) for any conve-
nient arbitrary choice of ¢; this includes t = T" when it becomes simply EfZlaiT(s).

The recursive scheme for obtaining a;;(s) and 5, (s), which can be established by using basic
rules of probability and the properties of the LMM, proceeds as follows:

@jo(s) = P(Xio =51Zio) P(Yio| Xio =), )
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s
air(9) = ay—1(r) P(Xiy=s|X;—1=r,Zip) PXi|Xir =5), for 1< <7, (10)
r=1
and

Bir(s) =1, (11)

s

Bit($) =" Bis1(r) PXi 1 =r1Xir=5,2Zi 1+1) PYi 1111 Xi 141 =1), forT—1>21>0.

r=1

(12)

In the computation of «;:(s) we start with the initial time point (¢ =0), via equation (9), and
then proceed until we reach time point 7. In equation (10) information on latent class member-
ship and responses, i.e. product ownerships, at the time point 7 is added by the multiplication.
Information on class membership at r — 1 is removed by the summation. The computation of
the (5 (s) starts with the last time point 7', via equation (11), and continues backwards until
the initial time point (¢ =0) has been reached. In equation (12) information on latent class
membership and the product ownerships at ¢ + 1 is added by the multiplication. Moreover, the
conditioning on the latent class membership at time point ¢+ 1 is replaced by the conditioning
on the class membership at time point 7 by using the summation.

3. Predicting product acquisitions by using the latent Markov model

3.1. Additional model assumptions
To be useful for prediction the model that was previously discussed will need some additional
restricting assumptions. Section 3.1 discusses these assumptions and Section 3.2 the prediction
of product acquisitions on the basis of the assumptions. The assumptions are based on the LMM
framework that was introduced by Brangula-Vlagsma et al. (2002). They suggested two types of
change: manifest change and latent change. The former refers to dynamics in the measurement
part of the model, i.e. ownership probabilities for products are not constant per latent class over
time. Latent change refers to switching between latent classes by individual households, i.e. the
structural part of the model. We develop a model with a time constant measurement model,
which allows switching between latent classes. In other words, the model allows latent change
but not manifest change. Equation (13) imposes this restriction:

T =Tjs for 1<s<S,1<j<Jand 0<t<T, (13)
Equation (13) specifies that product penetration levels should be consistent in latent classes over
measurement occasions. Assume a data set containing three panel waves, collected in 1996, 1998
and 2000. Consider that in 1996, for example, 45% of the households in latent class 1 own a
credit card. An absence of manifest change implies that the penetration level of the credit card
in latent class 1 is also 45% in the 1998 and 2000 panel waves. Acquisitions of financial products,
such as credit cards, only result in changes of latent class membership by individual households.
Models without manifest change are most suitable for marketing purposes, such as segmenta-
tion, because changing segment structures would lead to a reformulation of segment-specific
marketing strategies (Wedel and Kamakura, 2000). Note that imposing equation (13) implies
that the time indices can be dropped from equations (1) and (2).

The other assumption, which is based on Brangula-Vlagsma et al. (2002), restricts the latent
change transition probabilities to be constant across time. In terms of the parameters in equation
(4) it specifies that

Vir0 ="Vsr0 for 1<s<S—1,1<r<Sand 1<¢<T,
Vor =sk for 1<s<S—1,1<k<Kand 1<t<T. (14)
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Consider that in the previously mentioned hypothetical example the overall probability of
switching from latent class 1 to latent class 2 between measurement occasions 1996 and 1998
equals 10%. The restriction that is defined in equation (14) implies that this probability should
also be 10% between measurement occasions 1998 and 2000. Furthermore, covariate effects are
time constant. If, between 1996 and 1998, 15% of the households with a head aged between 45
and 60 years switches from latent class 1 to 2, then this 15% probability should also apply to
switches between 1998 and 2000.

The current paper makes no assumptions about the form of the relationship between latent
class membership and the observed product ownerships. For example, the ordinal latent class
model (Croon, 1991), the Rasch model (Vermunt, 2001) or the frameworks that were presented
by Proctor (1970) and Feick (1987) can impose across class monotonicity on the response prob-
abilities. Such restrictions can test whether households tend to acquire products in a common
order (Bijmolt ez al., 2004; Paas and Molenaar, 2005). This is the second major difference
between the LMM that is introduced in the current paper and the models that were applied by
Collins and Wugalter (1992) and Graham et al. (1991), besides the difference in the EM algo-
rithm employed, as discussed earlier in this paper. These previously applied models are based
on such cumulative restrictions. Extant studies on acquisition patterns of financial products
(Bijmolt et al., 2004; Paas et al., 2005) suggest, however, that a common order of acquisition is
questionable for the financial product market. For other applications of latent Markov model-
ling, relaxing the cumulative restriction leads to a more general model that can provide more
complete information for the stages of a process. To illustrate this, consider that the measure-
ment component is a table with J rows, one for each product, and S columns, one for each latent
class. Cell {j, s} presents the probability of owning product j given membership of segment s.
In the more relaxed model a common order leads to a distinct type of measurement component,
i.e. high proportions, e.g. at least 0.70, in the lower right-hand part of the table representing
the measurement component and low proportions, e.g. below 0.30, in the upper left-hand part
(Collins and Wugalter, 1992; Graham et al., 1991). If households tend to follow different orders,
this will be reflected by other patterns in the measurement part of the model, as will be reported
in Section 4.3.

3.2. Prediction equations

For predicting future product acquisitions by individual households, we assess the probability
that households own financial product j at time point 7 + 1 given all observed information
that is available at T', which is denoted by P(Y;; 741 =1Y;r—,Z; 7). The information at T
concerns the products that are owned by and the covariate values for the households at 7 and
all earlier occasions, which is referred to with the symbol T—. For the prediction of house-
hold product acquisitions, the LMM first allocates probabilities of individual households being
members of latent classes at the last measurement occasion 7. For predicting household latent
class membership at 7 + 1 the procedure uses latent class membership at 7 in combination with

(a) household covariate values and
(b) the covariate-specific transition probabilities that are defined in the model.

The household’s predicted latent class membership at 7' + 1 is used to calculate the probability
of owning products at this time point. For example, if a household is likely to be found in a
latent class at T + 1, where the probability is high for owning a credit card, this product is likely
to be owned at T + 1. Such a finding is particularly interesting for households that do not own
this product at 7. They will probably acquire a credit card between T and T + 1.
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Formulated formally, the following three steps lead to future ownership probabilities:

s
P(XiT=S|YiT79ZiT7)=aiT(S)/ > oir(r), (15)
=1
S T
PXiri=rlYir—,Zit—,Zit+1)=Y PXir=s\Yir—, Zi7-) P(Xi 71 =rIXir=5,Z;i 741),
s=1
(16)
s
PYijrp=1Yir—.Zir— . Ziry1)=> PXirr1=5Yir—. ZiT—.ZiT11)
s=1
X P(Yijr1=11Xir11=5). (17)

Thefirst step, which is represented as equation (15), involves computing P(X; r =s|Yi.r—, Zi 1),
the posterior latent class membership probabilities for household i at occasion T given all
observed information up to 7. This involves using equation (7) for r =T. The second step,
equation (16), calculates prior latent class membership probabilities for time 7 + 1 given the
observed information up to 7. This involves multiplying the posteriors from the first step by the
transition probabilities P(X; r+1 =r|X;r =s, Z; 7+1) and marginalizing over class membership
at time point 7. Step 3, equation (17), provides the relevant predicted probabilities for owning
the products at time point T + 1. Predictions are derived from the prior class membership prob-
abilities P(X; 741 =s|Y; 17—, Zi 7—, Z; 7+1) and the latent-class-specific ownership probabilities
P(Yijr+1=1Xi741=9).

Equations (16) and (17) require estimates for unknown future transition probabilities
P(X; 741 =r|Xir =s,Z;r+1) and future latent-class-specific product ownership probabilities
P(Y;; 741 =1|X; 741 =s) respectively. This implies that the assumptions in equations (13) and
(14) must be fulfilled. In situations in which it is not possible to predict future covariate values
or in which parameters vary over time, more ad hoc assumptions are required for applying equa-
tions (15)—(17). For example, we could fix time-varying covariates and/or model parameters at
their value at the last measurement occasion. This situation does not occur in our empirical data.
Section 4.2 compares models by using the standard Bayesian information criterion BIC. Higher
values when conditions (13) and (14) are relaxed imply that these assumptions are consistent
with the data analysed.

4. Empirical application of the latent Markov model

4.1. Data

The Dutch division of the international market research company Growth from Knowledge
provided the data that are analysed. This company conducts a bi-yearly empirical study on
financial product ownership in the Netherlands. The data concern household ownership of 12
financial products in 1996, 1998, 2000 and 2002. Interviews were conducted face to face, and
respondents were asked about ownership of financial products by their household and used
their financial administration to verify answers, i.e. households were asked to retrieve their
bank and insurance records to check which products they own. This leads to a highly accurate
representation of the product portfolios of the households.

A representative sample of 7676 households participated in this study. Not all households
participated in each wave of the panel, as a result of attrition or signing up with the panel after
1996. Vermunt ez al. (1999) showed that missing data can easily be accommodated under the
missingness at random assumption. This is relevant when applying the LMM to panel data
with attrition. The missingness at random assumption is appropriate for the database that is
analysed, i.e. the procedure replacing households that drop out of the Growth from Knowledge
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Table 1. Levels of ownership of the products analysed in each

panel wave
Product Levels of ownership in the
following years:

1996 1998 2000 2002
Bonds 0.04 0.04 0.03 0.03
Shares 0.08 0.10 0.11 0.11
Investment trust 0.11 0.20 0.25 0.21
Unemployment 0.10 0.21 0.22 0.22

insurance

Loan 0.24 0.20 0.20 0.15
Credit card 0.29 0.30 0.35 0.41
Mortgage 0.52 0.53 0.54 0.53
Life insurance 0.59 0.60 0.59 0.55
Pension fund 0.62 0.67 0.64 0.59
House insurance 0.62 0.64 0.64 0.66
Car insurance 0.76 0.77 0.77 0.78
Savings account 0.93 0.95 0.96 0.96

panel ensures that the sample remains representative for the population with regard to various
important demographic variables, such as age, income and marital status.

Table 1 presents levels of penetration of the products analysed across the four measurement
occasions. This set of products is similar to those which have been analysed in extant cross-
sectional studies (e.g. Bijmolt ez al. (2004), Kamakura et al. (1991), Paas and Molenaar (2005)
and Soutar and Cornish-Ward (1997)). There is also information on

(a) net household income,
(b) age of the head of the household and
(c) size of the household.

These demographics will be the covariates for explaining the product portfolios that households
have and changes therein. Previous research shows that these variables are strongly related to
household financial product portfolios (Browning and Lusardi, 1996; Soutar and Cornish-Ward,
1997).

The LMM is estimated by using the first three panel waves, using Latent GOLD 5.0. The syn-
tax that we used is provided in Appendix B. The 2002 wave is the hold-out sample for evaluating
the out-of-sample forecasting accuracy of the prediction equations.

4.2. Model selection

We first assessed the fit of models by imposing the restrictions in equations (13) and (14) and
using the criterion BIC. Increasing the number of latent classes, from 1 to 10, shows that a
nine-class LMM, with these restrictions, is most suitable for our data set. Models with fewer
(or more) classes result in higher BIC-values. The nine-class model has 196 parameters and
BIC=95193 and is called ‘the final model’. Besides statistical fit, the final model is also readily
interpreted. For example, Section 4.3 reports that households owning more risky investments
also tend to own the more basic financial products. This is consistent with theory on financial
product portfolios (Guiso et al., 2002; Warneryd, 1999). Other model outcomes, such as the
covariate effects that are discussed in Section 4.3, are also consistent with extant theory.
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To assess the feasibility of restrictions (13) and (14), the relative fit of the final model is
compared with two alternative models. Besides these, a third benchmark assesses the feasibility
of assuming change over the period in which the data analysed were collected. The three
benchmark models are based on LMM specifications that Brangula-Vlagsma ez al (2002)
introduced and evaluated as potentially suitable. As in the final model, the first benchmark
assumes a time constant measurement component and allows switching between latent clas-
ses (latent change). However, this model assumes time-varying switching probabilities. Thus,
the assumption that is represented by equation (13) is imposed, but the assumption in
equation (14) is relaxed. The latter is the only difference between the first benchmark
model and the final model. We tested such models with 1-10 segments. All have a higher BIC
than the final model. The second benchmark model has a time-varying measurement component
(manifest change) and embraces time constant transition probabilities. This model relaxes
the assumption in equation (13) but maintains assumption (14). Again all models with 1-10
segments have higher BIC-values than the final model. The third benchmark, the no-change
model, has a time constant measurement component and assumes that households remain in
the same latent class over time. Models with 1-10 segments of this type were outperformed by
the final model, in terms of BIC. In sum, the restrictions in equations (13) and (14) are highly
plausible and product portfolios change significantly over the measurement occasions.

4.3. Results
Table 2 presents the measurement component of the final model. For enhancing interpretation,
the nine latent classes are ranked according to increasing product penetration levels across the
12 products. Products are also ordered, from the least commonly owned, i.e. bonds, to the most
commonly owned product, i.e. savings accounts.

The measurement model is quite consistent with results of extant cross-sectional studies,
which assume a common order for acquiring financial products (e.g. Kamakura et al. (1991),
Paas (1998) and Soutar and Cornish-Ward (1997)). In latent classes, where the probability of

Table 2. Measurement component

Product Results for the following classes:
1 2 3 4 5 6 7 8 9
Bonds 0.01 0.01 0.07 0.01 0.02 0.15 0.01 0.02 0.19
Shares 0.01 0.01 0.10 0.02 0.15 0.38 0.02 0.06 0.59
Investment trust 0.04 0.08 0.13 0.08 0.11 0.57 0.10 0.18 0.75
Unemployment 0.00 0.00 0.01 0.20 0.02 0.16 0.30 0.38 0.29
insurance

Loan 0.10 0.11 0.03 0.46 0.13 0.10 0.29 0.37 0.11
Credit card 0.06 0.08 0.06 0.32 0.26 0.61 0.04 0.97 0.67
Mortgage 0.00 0.00 0.03 0.00 0.99 0.03 0.99 0.99 0.99
Life insurance 0.17 0.04 0.20 0.77 0.47 0.54 0.97 0.97 0.83
Pension fund 0.28 0.37 0.29 0.85 0.39 0.57 0.94 0.93 0.82
House insurance 0.00 0.01 0.99 0.01 0.99 0.52 0.99 0.97 1.00
Car insurance 0.01 0.99 0.72 0.83 0.71 0.89 0.89 0.93 0.95
Savings account 0.81 0.88 0.95 0.93 0.96 0.95 0.95 0.98 1.00
Average number 1.49 2.58 3.58 4.19 5.20 5.47 6.49 7.75 8.19

of products
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Table 3. Transition matrix

Latent Results for the following latent classes at t + 1:
class at t
1 2 3 4 5 6 7 8 9

1 095 003 0.00 0.01 0.01 000 0.00 0.00 0.00
2 0.05 093 0.00 0.00 0.01 0.00 0.01 0.00  0.00
3 0.01 004 093 000 0.01 000 0.0l 0.00 0.00
4 0.00 000 0.00 094 0.03 000 0.03 0.00 0.00
5 0.01 001 0.0l 0.00 095 001 0.00 0.01 0.01
6 0.00 000 0.00 0.00 0.00 097 0.00 0.01 0.02
7 0.00 000 0.00 0.01 000 000 0.87 011 0.01
8 0.00 000 0.00 0.02 000 000 0.01 09 0.03
9 0.00 000 0.00 0.00 0.00 000 0.00 0.00 1.00
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owning a less commonly owned product is high, households also tend to own products with
higher overall penetrations (as reported in Table 1). This pattern suggests a common order of
acquisition (Bijmolt et al., 2004; Paas and Molenaar, 2005). However, the results suggest some
divergence from the common order. For example, in class 6 the credit card has a higher pene-
tration than the mortgage product, whereas in the whole sample the latter product has a higher
level of penetration. This suggests that most households acquire a mortgage before owning a
credit card, whereas some acquire a credit card before a mortgage. Similar situations occur
because of the relatively low probabilities of ownership for house insurance in class 4. Besides
this, loans and unemployment insurance cut across the entire acquisition pattern, because the
rate of penetration is far from monotonically increasing from class 1 to class 9.

Table 3, the latent transition matrix, presents the probabilities of switching classes. A large
percentage of households remained in the same latent class between consecutive measurement
occasions, as indicated by the high proportions in the cells on the diagonal. However, 14% of
the 7676 households switched latent class in the period 1996-2000. This percentage is consistent
with the expected gradual development of a household’s financial product portfolios (Browning
and Lusardi, 1996; Guiso et al., 2002).

Table 3 also provides a more precise interpretation of the dynamics of the acquisition pattern.
In particular, Table 3 shows how often certain switches occur. For example, the most common
switch is from latent class 7 to 8 (11% between consecutive measurement occasions). Extant
cross-sectional studies do not provide such information. Also, we find that households in latent
class 4 relatively often switch into latent class 7. The average household in latent class 7 owns
6.49 products, whereas the average number is only 4.19 in class 4. This switch implies that a
relatively rapid accumulation of financial products may occur, as switching between these clas-
ses implies the acquisition of multiple products between consecutive measurement occasions.
Again, extant cross-sectional studies do not report such tendencies.

All three covariates significantly affect initial latent class membership, in 1996 (income, Wald
coefficient 709.34, 24 degrees of freedom, p < 0.01; age, Wald coefficient 405.06, 24 degrees of
freedom, p < 0.01; household size, Wald coefficient 288.40, 16 degrees of freedom, p < 0.01).
For brevity we discuss only the general tendencies. First, high income households are relatively
often allocated to latent classes with relatively high ownership probabilities for most prod-
ucts. For age of the head of the household a similar tendency occurs; only now intermediate
age takes on the role of the high income category. These effects are consistent with extant
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theory (Browning and Lusardi, 1996; Guiso et al., 2002; Warneryd, 1999). Furthermore, larger
households are relatively often found in latent classes where overall product ownership
probabilities are relatively low. Perhaps, having more children leads to higher expenditures
and, therefore, fewer assets will be left for financial products. The three covariates also
significantly affect switching probabilities (income, Wald coefficient 45.95, 24 degrees of free-
dom, p < 0.004; age, Wald coefficient 66.35, 24 degrees of freedom, p < 0.0001; household assets,
Wald coefficient 70.81, 16 degrees of freedom, p < 0.0001). Thus, the covariates can improve
the predictions of which households in a specific latent class are more likely to switch to an-
other latent class. This is important for the accuracy of forecasting of the LMM. The covariate
effects on switching probabilities are similar to the effects on initial latent class membership, i.e.
where values on covariates imply a larger probability of belonging to an initial latent class s the
model tends to show that these covariate values also imply a greater probability of switching
into s.

5. Forecasting accuracy of the latent Markov model

The prediction equations (15)—(17) are applied to the LMM that was derived from the 1996—
2000 data. The data from the 2002 measurement occasion are used as the hold-out sample. This
specific analysis employs only data for the 2239 households that participated in the survey in
both 2000 and 2002. The extent to which households predicted as owning product j in 2002
are distinguished from households not owning this product in 2002 quantifies the accuracy of
forecasting of the prediction equations. This distinction is made between households that do
not own product j in 2000.

The Gini coefficient, a measure of concentration, is used for assessing the accuracy of forecast-
ing of the prediction equations. Kamakura et al. (2003) previously applied the Gini coefficient
to evaluate the accuracy of forecasting of models assessing product ownership at different finan-
cial firms. We use the definition which is commonly accepted (Sen, 1997):

. 1 2 x
Ginij=1+————> rijJij (18)
nj o nipji=1

where 7 ; represents the number of households not owning product j in 2000, y; is the percent-
age of these n; households that own product j in 2002 and r;; is the rank of household i with
regard to the predicted probability of owning product j in 2002. Values of r;; are higher as the
probability for owning product j is lower. Furthermore, y;; =1 when household i owns product
7 in 2002; otherwise y;; =0. Values of Gini; range from 0 to 1 where 0 implies that predictions
are no better than random and value 1 implies perfect forecasting.

The out-of-sample forecasting accuracy and the value of Gini; can be presented graphically.
For example, the x-axis in Fig. 1 represents the cumulative percentage of households not owning
mortgages in 2000. These households are ordered on the basis of the predicted probability that
they will own a mortgage in 2002. Households with large predicted probabilities are found closer
to the origin. Further from this point are those households with smaller predicted probabilities.
The y-axis displays the cumulative percentage of households actually owning a mortgage in
2002. Consider the 10% of respondents without a mortgage in 2000, and with the highest pre-
dicted probability of owning this product in 2002. Fig. 1 shows that 37% of all the respondents
that do not own a mortgage in 2000 but do own this product in 2002 are among this 10% group.
This is considerably better than random predictions that are represented by the diagonal line.
More generally, for Fig. 1 Gini;=0.47. This implies that 47% of the surface above the straight
diagonal line, representing forecasting accuracy under random prediction, is found between the
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Fig. 1. Power curve (the term ‘power curve’ refers to the diagonal line representing the accuracy of forecast-
ing of the model-based predictions; the term in this context should not be confused with its more standard
use in inference)

straight diagonal line and the power curve. As more of the surface above the straight diagonal
line lies under the power curve, the accuracy of forecasting is higher and hence the value of
Gini; increases.

Table 4 reports values of Gini; for all 12 LMM-based predictions. The following seven prod-
ucts have power curves that are similar to the curve in Fig. 1: bonds, shares, investment trusts,
unemployment insurances, loans, credit cards and house insurance. The accuracy of forecasting
is somewhat lower for savings accounts. This product has a very high level of penetration at
all measurement occasions; at least 93% of the households own this product at each occasion
(see Table 1). Perhaps the LMM-based predictions are less effective for predicting acquisitions
of such commonly owned products. Also, predictions are less accurate for life insurance, and
pension funds and least effective for car insurance. It is possible that car insurance is redundant
for many households in the Netherlands, owing to lease cars that are supplied by employers.

Table 4. Gini coefficient values

Product Gini coefficient
Bonds 0.50
Shares 0.31
Investment trust 0.26
Unemployment 0.36
insurance
Life insurance 0.17
Pension fund 0.19
Loan 0.49
Credit card 0.62
Mortgage 0.47
House insurance 0.40
Car insurance —-0.23
Savings account 0.11
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Such conditions of labour could be unrelated to household behaviour in the financial services
market, and ownership of this product may, therefore, be inadequately modelled in combination
with ownership of other financial products. Similar labour conditions exist for life insurance
and pension funds. Perhaps future research should employ covariates reflecting the conditions
of labour of household members.

6. Discussion

This paper presents the LM M as a suitable technique for investigating acquisition patterns based
on longitudinal data. We formulated equations supporting application of the LMM for assess-
ing the out-of-sample probability that specific individuals or household units would acquire
the overt characteristics defining the latent stages of a process. This is a novel utilization of the
LMM. We employed the out-of-sample predictions to assess predictive validity of the LMM
and to forecast household acquisitions of financial products. The paper has both theoretical
and methodological contributions.

From the theoretical perspective, the LMM provided substantive insight into the orders
in which households acquire financial products. Consistent with previous studies, a common
order of acquisition occurs for many products. The results presented also provide new
insights. In particular, some products do not fully fit into a single order of acquisition. For
example, some households acquire a mortgage before owning a credit card, whereas others
acquire a credit card before they own a mortgage. Also, the loan product and unemployment
insurance in our data set are not captured in the acquisition pattern. This contradicts extant
theory, assuming that a utility structure of financial objectives leads to a common order of
product acquisitions which all households tend to follow (Kamakura et al., 1991; Paas, 1998;
Soutar and Cornish-Ward, 1997). Concerning the dynamics of the acquisition pattern, little
switching occurs between latent classes. This is consistent with the expectation that house-
holds only gradually develop their financial product portfolios (Guiso et al., 2002; Wirneryd,
1999). Besides this, covariate effects in the model reported are also highly plausible, owing
to consistency with the life cycle model (Browning and Lusardi, 1996). New in the current
paper is the provision of insight into the timing of acquisition of products by the LMM.
Unexpected is the finding that switches between latent classes may involve the acquisition of
multiple products in the relatively short period of 2 years between the measurement occasions.
This behaviour was not considered in previous studies into acquisition patterns of financial
products.

The methodological contribution is that we introduced prediction equations (15)-(17) for
forecasting out-of-sample behaviour. Moreover, the empirical results reported demonstrate that
the prediction equations (15)—(17) are effective for forecasting household acquisitions for most
products in our database. This suggests high predictive validity of the LMM reported and that
this model is suitable for predicting future household acquisition behaviour in the financial
products market. For consumer behaviour and economics these findings imply that the LMM
can predict the entrance into product categories, by individual consumers or household units,
in other markets where consumers use products over longer periods, e.g. the durable product
market or the market for telecommunication products. More generally, the paper demonstrates
that the LMM can support out-of-sample prediction. This is important for various prediction
purposes involving individual progression through stages defining a process, such as the use of
different illicit drugs or criminal behaviour, to which the LMM has previously been applied
(Collins and Wugalter, 1992; Graham et al., 1991; Bartolucci et al., 2007). Nevertheless, further
research should provide a more rigorous explanation of the inaccurate predictions for one of the
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12 products in our data set (car insurance) and the differences between accuracy of forecasting
between the other 11 products.
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Appendix A: The connection between the key components of the forward—backward
algorithm and the posterior probabilities

The univariate posterior probability may be expressed as

PXiu=s,YilZ) _ PXi=5,Yi=, Yiis|Zi—, Zisrs)

P(Xi=s|Yi,Z;) = =
(X =510 22) P(Y/|Z) P(Y,|Z)

19

Here the observed data have been separated into disjoint sets; occurring at time ¢ or before indexed by 7r—,
and for time points after it indexed by 7+. Using basic rules of probability the numerator on the right-hand
side of expression (19) can be expressed as

PXi=5,Yi\Li—, Liy) Pi(Yi i |\ Xiv =5, Yo, Liy—, Li 1) (20)

The conditioning on Z; ., in the first term can be removed since the situation at ¢ is independent of co-
variate values after it. Also because of the Markov process, the latent class sequence after time ¢ and
therefore Y, ,, are independent of the history before time ¢. Thus expression (20) becomes P(X;; =s,
Y- 1Zi,-) P.(Yi.+|Xi=s,Z;,) and, on substitution in equation (19),

P(Xi=5,Yi, -\ ZLi;—) P(Yi, | Xiv =5, Zi 1)
P(Y:|Z;)

P(X,‘t:lei’ Zl):
~ P(YilZi)

which is expression (7) in the text on defining «;,(s) and 3 (s).
Using similar ideas and the properties of independence of Y; ;.. of prior history conditional on the state
at time ¢ the posterior bivariate probability can initially be expressed as

(2]

PXif = ,Xiz ’YiZi
PX;1=r,Xiu=s5Y:,Z;))= (Xi—1=r,Xi=s |Z,)

P(Yi|Z;)
_ P(X;—1=r,Xi=5,Yu|ZLi-) PXii|Xir =5, Zir1) 22)
P(Yi|Z:)
_ PX =1, X =5, Y- Ziy-) Bi(s)
P(Y;|Z) '
Now Y,_ can be separated into disjoint sets Y;, at time ¢ and Y; ,_;)— for time point  — 1 and all earlier

time points, as can Z;,_ in a similar way. The first probability in the numerator above by using basic rules
can then be written

PXi—1=r, Yi.,(t—l)—lzir, Zi,(tfl)f) P(Xi =5, Yyl Xi -1 =7, Yi.,(r—l)—a z;,, Zi.(t—l)—)~ (23)

The first probability in expression (23) is «a;,_1(s) since Z; as a future covariate can be dropped from
the conditioning. The second probability in expression (23) reduces to P(X;; =s, Y;/|X;—1 =r, Z;;) owing
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to the historical properties of the Markov process and on further decomposition becomes P(X;, =s|X; ;-1
=r,Z;y) P(Y;|X;; = s). On substitution of these results into expression (23) and then back into
equation (22)

P(Xyy=r. Xy =s|Y;. Z;) = a1 (8) P(Xyy =3s|Xi,1=7, Zit) P(Yy| Xis = 5) Bis(s5) ,
P(Yi|Z;)
which is equation (8) in the text.
The denominator P(Y;|Z;) which is required for both univariate and bivariate posteriors may be found
in terms of a;,(s) and G;(s) as follows. For arbitrarily chosen ¢t P(X;, =s, Y;|Z;) = o, (s) 5;;(s) as shown
above. Marginalizing to Y; by summing over the latent classes yields

s
P (Yi|Z;) = Z Qi (5) Bi(s).
s=1
The simplest form of this is for t =T when P;(Y;|Z;) = 2§=1 a;r(s), i.e. when Gi7(s) =1.

Appendix B: Syntax for Latent GOLD 5.0

We used Latent GOLD version 5.0 to obtain the results that are reported in the text. This is the syntax file
for estimating the LMM of interest:

options
missing all;
coding last;

variables
caseid id;
dependent Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10, Y11, Y12;
independent age nominal, income nominal, hsize nominal;
latent X nominal markov 9;

equations
X[=0] <- 1 + age + income + hsize;
X <- 1 | X[-1] + age + income + hsize;
Yl <-
Y2 <-
Y3 <-
Y4 <-
Y5 <-
Y6 <-
Y7 <-
Y8 <-
Y9 <-
Y10 <- 1 +
Y1l <- 1 +
Y12 <- 1 +

’

PRRPRPRRERRER
+ o+ o+ o+
PO X N_% PO

XD

As options we indicate records with missing values that should be retained in the analysis and that dummy
coding applies to the last category as reference category. The variables section defines the dependent, inde-
pendent and latent variables as well as the case 1d connecting the multiple records of a case (the data
file should be a person—period file). The identifier markov indicates that the nominal latent variable X is a
dynamic latent variable. The equations section defines the logit equations that were described in the text:
one equation for the initial state probability, one equation for the transition probabilities and one for each
of the 12 response variables (observed ownerships). Provided that X is the label for the latent variable, the
initial state at t =0 is denoted X [=01], the state at a particular time point ¢ by X and the state at time point
t—1 by X[-1]. The right-hand side terms in the equations are self-explanatory, except for the | X[-171’
indicating that the logit parameters concerned (the constants in the equation for X) vary across origin
states (across level of X[-11).
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