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We congratulate Albert Maydeu on his lucid and timely overview of goodness-of-fit 

assessment in IRT models, a field to which he himself has contributed considerably in the 

form of limited-information statistics (Joe & Maydeu-Olivares, 2010; Maydeu-Olivares & Joe, 

2005). 

In this commentary we would like to focus on two aspects of model fit: 1) what causes 

there may be of misfit, and 2) what consequences misfit may have. We present our view on 

these topics in an integrated framework that is slightly different from that presented by Prof. 

Maydeu. In the following section we elaborate on these points. Subsequently we provide a 

short illustration using an IRT analysis and, finally, draw some conclusions.  

 

A model-based approach to goodness-of-fit 

 

Why does the model not fit? 

 

Any IRT model with more than zero degrees of freedom can be seen as a restricted version of 

an alternative model. For example, the Rasch (1PL) model can be seen as a 2PL model in 

which all discrimination parameters have been set equal; the standard local independence 

model can be seen as a model in which bivariate dependencies between items have been set to 

zero; and an IRT model with covariates implicitly restricts direct effects of covariates and 

interactions between covariates and the latent trait to zero, respectively corresponding to 

uniform and non-uniform item biases (DIF). These restrictions can be seen as the cause of 

model misfit. The goal of goodness-of-fit assessment is then to detect which restrictions 

should be freed.  
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A tool from statistics to detect misspecified restrictions is the score test (Rao, 1948). 

The score test is also known as the “Lagrange multiplier test” and was introduced to IRT by 

Glas (1998, 1999) and van der Linden & Glas (2010). Denoting the restrictions corresponding 

to the fitted IRT model as 𝑎! = 0 and the sample parameter estimates under that model as 𝜃, 

if we consider some alternative set of restrictions, 𝑎! = 0, the “score” 𝑠(𝜃) is the vector of 

first derivatives of the likelihood with respect to the parameters of the alternative model, 

evaluated at the ML estimates of the restricted model, 𝑠 𝜃 =    !"
!" !!!

, where L is the 

likelihood. If a restriction is true in the population, then its 𝑠 𝜃  should equal zero; therefore a 

test of the null hypothesis that the restriction to be investigated holds in the population is 

𝐻!:  𝑠 𝜃 = 0, for which the test statistic 𝑇! can be constructed as  

𝑇! = 𝐴!!   𝑠 𝜃 ′(𝐴!!   𝐼(𝜃)  𝐴! )!!𝑠 𝜃 𝐴! , 

where 𝐴! = 𝜕𝑎! 𝜕𝜃, and 𝐼 is the information matrix with respect to all possible parameters. 

Asymptotically, 𝑇!, which is referred to as the “modification index” in structural equation 

modeling (Saris, Satorra, & Sörbom, 1987), will follow a chi-square distribution with degrees 

of freedom equal to the difference in degrees of freedom between the alternative model and 

the model fitted. 

The score test is well known to be asymptotically equivalent to the Wald test after 

freeing a set of parameters, but it does not require the estimation of the possibly large number 

of alternative models, and has in simulations and applications often been found more accurate 

(Agresti, 2002). It is also asymptotically equivalent to a likelihood ratio test of the restriction; 

again an important advantage is that the researcher need not estimate many alternative models 

when using score tests. In IRT modeling, in which large numbers of items are often modeled 

and numerical integration is usually required, this is an attractive feature. Thus, the 

advantages of the score test are that it provides a well-studied test of specific restrictions 
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warranting direct interpretation in terms of an alternative model, while at the same time the 

many possible alternative models need not be estimated.  

Oberski, Van Kollenburg, & Vermunt (2013) show that the score test and the ad hoc 

bivariate residual (BVR) tests discussed by Maydeu are in certain cases equivalent. For 

example, the BVR between pairs of indicators amounts to an uncorrected score test of the 

restriction that a local dependence parameter needs to be introduced. Maydeu’s mean-and-

variance corrected BVR should therefore closely approximate the score test of this restriction. 

For further details we refer to Oberski et al. (2013). 

While the score test has several advantages, it shares an important disadvantage with 

other goodness-of-fit statistics such as the BVR: it only assesses statistical significance of a 

misspecification, not its substantive importance. A measure assessing the substantive size of 

the misspecification is the so-called “expected parameter change” (EPCself), well-known in 

structural equation modeling (Saris et al., 1987), and introduced to latent class modeling by 

Oberski & Vermunt (forthcoming). The EPCself is the change in a particular restricted 

parameter itself that can be expected if this restriction were freed. It can be defined as 

EPCself = 𝑃self 𝐴!!   𝐼 𝜃 𝐴!
!!
𝑠 𝜃 𝐴! , 

where 𝑃self selects the possibly misspecified parameter itself (Bentler & Chou, 1992). Like the 

score test and other goodness-of-fit measures, it can be calculated without estimating 

alternative models. Unlike the score test, however, it assesses the substantive size of the 

misspecification rather than merely the statistical significance. 

At this point we would like to comment on Maydeu’s statement that “the goodness of 

approximation of an IRT model should be regarded as the effect size of its misfit”. While we 

think the idea behind this statement takes us in the right direction, it is, in our opinion, not 

completely correct. As shown by Saris, Satorra, & Van der Veld (2009), fit indices, including 

the RMSEA, can be highly sensitive to certain misspecifications and not others due to aspects 
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of the model that are unrelated to the size of the misspecification itself. In IRT, for example, 

misspecifications related to an item with low marginal information will be less easily detected 

than those for items with high marginal information, even when the misspecifications are 

exactly the same size. In this sense, therefore, we think that Maydeu’s statement is a good 

starting point, but somewhat too simplistic when applied to RMSEA and similar measures. 

The score test and expected parameter change statistics indeed provide “the effect size of 

misfit”, at least the effect of misfit on the misspecified parameter itself. 

 

What difference does it make that the model does not fit? 

 

Any IRT analysis is performed with some goal in mind. Another perspective on the “effect of 

misfit” is therefore that it should refer to the consequence of misspecification for certain 

parameters of interest. For example, an IRT analysis may be performed to examine 

differences in ability between boys and girls. In that case the parameter of interest is the 

regression coefficient of the covariate “gender” on the latent ability (indicating the difference 

in means between boys and girls). This regression coefficient will be biased if boys and girls 

do not react equivalently to some item, i.e. when there is item bias or differential item 

functioning. From this perspective the main question is not whether there is some nonzero 

item bias or not, but rather what the effect of such item bias might be on the parameter of 

interest. This point was made in the context of invariance testing by Borsboom (2006), and in 

the context of selection in educational testing by Millsap (1995, 1997, 1998, 2007). Recently, 

Oberski (2013) suggested using a measure that assesses the change in the parameter of 

interest when freeing a possibly misspecified restriction, the “EPC-interest”. It can be defined 

as  

EPCinterest = 𝑃interest 𝐴!!   𝐼 𝜃 𝐴!
!!
𝑠 𝜃 𝐴! . 
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Like EPCself, this yields an estimate of the parameter change if a particular restriction 

were freed. The only difference between EPCinterest and the more widely known EPCself is that 

instead of the change in the parameter itself, the selection matrix 𝑃interest selects the 

parameter(s) of interest. It directly provides the effect of misspecification on the goals of the 

IRT analysis being conducted. 

 

Illustration with an IRT model with covariates 

We now demonstrate the use of the score test, EPC-self, and EPC-interest in an IRT analysis  

of an 18-item math test taken from 2156 eight grade pupils, a data set collected by Doolaard  

(1999). The goal of this analysis was to assess the effects of four covariates – whether the 

school participates in the national school leaving Cito examination (Cito; 0=no, 1=yes), 

nonverbal intelligence (ISI; standardized), socioeconomic status (SES, standardized), and 

gender (0=male, 1=female) – on a pupil’s latent ability. A 2PL model was estimated, 

including effects of the covariates on the latent ability.  This yielded effect size estimates for 

the covariates Cito, ISI, SES, and gender of 0.631 (s.e. 0.073), 0.654 (s.e. 0.046), 0.323 (s.e. 

0.034), and -0.292 (s.e. 0.058), respectively. 

Misfit may potentially affect the effect size estimates of the covariates, particularly 

when there is item bias, i.e. residual relationships between the items and the covariates. 

Therefore these bivariate residuals, shown in Table 1, are examined. The Table shows that the 

bivariate Pearson residuals between items and covariates do indicate some misfit, if 4 is taken 

as a cutoff value as suggested by Vermunt & Magidson (2005).  However, though larger 

values do indicate possible item bias, these BVRs do not asymptotically follow a chi-square 

distribution (Tay, Vermunt, & Wang, 2013). One of the corrections suggested by Maydeu 

could be used. These corrected statistics should provide very similar values to the score tests 

for freeing direct effect parameters from covariates to items, shown in the subsequent 
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columns. It can be seen that these score tests for uniform item bias are generally larger than 

the bivariate residuals. They do follow the same pattern however: certain direct effects appear 

to be statistically significant. The last four columns of Table 1 reports the EPC-self values 

indicating whether the direct effects of the covariates are also substantively large. Indeed this 

appears to be the case for some of them. Particularly the effect of gender on item y11 is 

statistically significant and rather large on a logit scale (0.610). Therefore this item appears to 

have considerable item bias, something that in principle could potentially affect the 

parameters of interest. 

Inclusion of this direct effect in the model indeed yields a statistically significant and 

substantively large value (0.627), close to its EPC-self value. However, the resulting change 

in the parameters of interest after estimating this alternative model turns out to be rather small, 

namely -0.002, -0.003, -0.002, and -0.032, for the effects of Cito, ISI, SES, and gender, 

respectively. This could also have been seen without estimating the alternative model by 

examining the EPC-interest values: these are -0.002, -0.002, -0.002, and -0.030, respectively. 

The fact that these are also the largest EPC-interest values indicates that although there are 

several misspecifications (statistically significant item biases which are ignored), none of 

these strongly affects the covariate effects on the latent trait that are the parameters of interest. 

 

Conclusion 

This commentary expanded on Maydeu’s overview of goodness-of-fit testing in item response 

theory by providing a model-based framework for GOF assessment. Within this framework, 

the score test, EPC-self, and EPC-interest are useful tools for GOF evaluation that aid the 

researcher in determining 1) in what sense the model fits the data and in what sense it does 

not; and 2) whether possible misfit is important or not. Many unresolved issues remain with 

the use of these measures, such as the problem of equivalent models, multiple testing, dealing 
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with dependencies between parameters, and a shift of responsibility for deciding what may 

cause misfit and what is “of interest” towards the practitioner. These issues are, however, not 

absent in other goodness-of-fit assessment procedures, but merely less explicit. Therefore the 

model-based perspective appears to us to be a fruitful area of future research. 
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Table 1 
 
CITO example 2PL model. Item bias (DIF) analysis: goodness-of-fit assessment of the 
restrictions that the direct effects of covariates on the indicators are zero. 
 

 Bivariate residuals (BVR’s) Score statistics (MI's) Expected parameter changes 
(EPC's) 

 cito isi ses sex cito isi ses sex cito isi ses sex 
y1 11.0 9.5 0.3 0.0 11.8 13.5 0.3 0.0 -0.44 -0.24 0.03 -0.02 
y2 2.8 1.5 1.4 5.7 3.0 2.2 1.7 6.1 0.24 -0.11 0.09 0.30 
y3 0.3 0.2 0.1 5.6 0.3 0.4 0.1 6.0 0.07 -0.04 0.02 -0.26 
y4 1.1 1.0 2.0 0.2 1.4 1.6 2.4 0.2 -0.18 -0.09 -0.10 -0.06 
y5 1.0 0.0 0.5 1.8 1.1 0.0 0.5 1.9 0.13 0.00 0.04 -0.14 
y6 4.2 0.6 4.4 0.0 4.5 0.9 5.0 0.0 -0.25 0.06 -0.11 0.00 
y7 1.0 0.1 0.0 1.8 1.0 0.1 0.0 1.9 -0.13 -0.02 0.00 -0.15 
y8 7.0 1.2 0.9 0.1 7.6 2.0 1.1 0.1 -0.44 0.12 -0.08 0.04 
y9 0.0 0.9 0.4 0.4 0.0 1.4 0.4 0.5 0.01 0.08 -0.03 0.07 

y10 0.4 0.1 2.1 0.2 0.4 0.1 2.5 0.2 0.09 -0.02 0.09 -0.05 
y11 1.9 0.6 4.2 26.2 2.0 0.9 4.9 27.5 0.19 0.07 -0.14 0.61 
y12 0.1 3.1 0.5 0.1 0.1 4.8 0.6 0.1 -0.03 0.13 0.04 -0.03 
y13 0.6 1.7 0.3 11.6 0.7 2.9 0.4 12.2 -0.16 -0.18 -0.06 0.60 
y14 0.2 1.0 0.0 1.7 0.2 1.5 0.0 1.8 0.08 0.10 -0.01 -0.18 
y15 11.4 2.9 0.2 0.5 12.2 4.3 0.2 0.5 0.46 -0.14 0.03 -0.08 
y16 2.2 11.1 0.3 0.6 2.3 17.3 0.4 0.7 0.18 0.27 -0.03 -0.09 
y17 0.6 2.4 2.6 1.5 0.6 4.1 3.2 1.6 -0.14 0.19 0.15 0.20 
y18 0.7 0.3 0.7 3.5 0.7 0.5 0.8 3.8 0.11 -0.04 0.05 -0.21 

 
 
 


