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Abstract

In the social and behavioral sciences, variables are often categorical and,

people nested in groups. Models for such data, such as multilevel logistic

regression or the multilevel latent class model, should account for not only

the categorical nature of the variables, but also the nested structure of the

persons. To assess whether the model accomplishes this goal adequately,

local fit measures for multilevel categorical data were recently introduced

by Nagelkerke, Oberski, and Vermunt (2015). The ”BVR-group” evalu-

ates the variable-group fit, while the ”BVR-pair” evaluates the person-

person fit within groups. In this article, we evaluate the performance of

these two measures for the multilevel latent class model (Vermunt, 2003).

An extensive simulation study indicates that, whenever multilevel latent

class modeling itself is viable, Type I error is controlled and power ad-

equate for both fit statistics. Thus, the BVR-group and BVR-pair are

useful measures to locate important sources of misfit in multilevel latent

class analysis.



Introduction

Latent class (LC) models can be used to search for classes of systematically

similar respondents by considering their responses to a number of discrete in-

dicator items. Analogous to many statistical methods this model assumes the

observations that are classified to be independent. However, dependence often

does occur when respondents are observed in naturally occurring groups, leading

to a violation of the assumption. When ignored, this dependence will bias the

results (Park & Yu, 2015). The multilevel extension to the LC model provides a

solution for such cases of nested categorical data (Vermunt, 2003) by taking the

grouping into account. Additionally, and maybe more importantly, it does not

only solve the statistical problem of dependent observations, but it substantively

allows observed groups to also be classified based on their members (Vermunt,

2003, 2008) providing a simultaneous classification of individuals and groups.

The resulting classification of respondents and groups may be used as a

predictor in subsequent analyses (e.g. Roosma, Van Oorschot, & Gelissen, 2015).

Or, after an exploratory or confirmatory classification covariates can be added

to the model to try and substantively explain the classes (e.g. Fagginger Auer,

Hickendorff, Van Putten, Béguin, & Heiser, 2016; Tomczyk, Hanewinkel, &

Isensee, 2015). Regardless of the approach, in both these cases the quality of

the classification has a direct influence on the quality of the eventual outcomes

of interest, and the fit of the measurement model should be carefully considered

before continuing with further analyses.

Central to the model fit in multilevel LC analysis are two assumptions of

conditional independence given the latent variables. On the lower level the as-

sumption is that all dependence between items is captured by the latent variable,

thus assuming conditional independence of the indicators given the latent class

variable. This assumption is identical to that of a regular LC model. On the
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higher level a similar assumption is made, where the observed group members

are assumed conditionally independent given the higher-level latent variable.

In such relatively complex models, with assumptions on two levels and the

distinct substantive goals of reproducing the overall and within-group responses,

local fit statistics are of increased importance. Traditionally, global fit indices

such as the AIC and BIC are used to examine whether all of the assumptions

hold, relative to some measure of model complexity. However, this approach has

the disadvantage that misspecifications that are small relative to the model com-

plexity may in fact still be harmful to subsequent analyses of interest (Oberski,

2014). Furthermore, their use generally limits itself to the comparison of esti-

mated models in practice. With a nigh infinite number of model specifications,

the selected, best fitting model out of the estimated alternatives may very well

contain misspecifications and assumption violations. For this reason, the global

fit measures can best be supplemented with measures of local fit that examine

the strength of evidence against individual model assumptions.

To examine local fit in models for multilevel categorical data, Nagelkerke

et al. (2015) recently proposed the BVR-group and BVR-pair measures. Both

are in line with the bivariate residual (BVR) proposed by Vermunt and

Magidson (2013b) that measures how well the item-item dependence is captured

by a single-level LC model. The two multilevel fit measures are comparable, but

test how well the model captures the group-item dependence and person-person

dependence related to the higher level of the model. All three, the BVR-group,

BVR-pair, and BVR, take the form of a Pearson residual, but despite this

resemblance they do not follow an asymptotic chi-square distribution. P-values

can nonetheless be obtained relatively easily by means of a parametric bootstrap

(Oberski, Van Kollenburg, & Vermunt, 2013).

The two higher-level residuals respectively aim to detect misfit re-
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lated to the conditional independence assumption and substantively

correct reproduction of the data. The BVR-group signals residual de-

pendence between observed group membership and indicator items.

When such residual dependence exists it is an indication of the model

not fitting one or more of the groups-correctly, implying that the

model does not fully capture the between-group differences. The

BVR-pair signals residual dependence between persons that are a

member of the same group. This residual dependence is also indica-

tive of the model not correctly capturing the nested structure of the

data, but here the focus is on the within-group similarities of the

group members.

In Nagelkerke et al. (2015) only a limited simulation study is provided, how-

ever, and little is currently known about the properties of the two statistics.

With an extensive simulation study we here aim to more thoroughly investigate

the power and type I error of the bootstrapped BVR-pair and BVR-group. Of

primary interest is whether and under what conditions the two statistics have

enough power to detect several types of misspecification of the multilevel LC

model. The misspecifications of the model that are considered are

closely related to the two assumptions of conditional independence

added by the multilevel extension to the LC model. That is, the as-

sumption that the members of an observed cluster in the data are

independent conditional on the higher-level latent variable to achieve

a group-level classification, and the assumption that observed group

membership and the individual responses are conditionally indepen-

dent to correctly reproduce the observed responses within the ob-

served groups (Vermunt, 2003).

It should be noted that the context of the study is confined to multilevel LC
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analysis for which the statistics are originally developed, but that they can be

obtained for any method that models nested categorical data, such as multilevel

IRT. The two residuals namely aim to test for the correct modeling of within-

group similarities and between-group differences by contrasting the observed

and expected frequencies. Whether these expected frequencies are obtained

from a multilevel LC model or an alternative method does not impact the way

in which the eventual values are obtained.

The remainder of this article is structured as follows. In the following section

the multilevel LC model is briefly introduced. Next the BVR-group and BVR-

pair statistics are described, after which the design of the simulation study,

including the bootstrap procedure are discussed. The results of the simulation

study and the conclusions that can be drawn in terms of type I error and power

are presented in the final two sections.1

Multilevel Latent Class Model

The multilevel LC model is described using two equations. Both strongly resem-

ble the expression of a regular LC model which classifies individuals based on

the probabilities of their responses. The equation for the lower level of a multi-

level model does exactly the same, but to take into account the nested structure

of the data the response probabilities are made conditional on the group-class

membership. To classify the groups and obtain this group-class membership,

the higher-level equation describes the marginal probabilities of the combined

response patterns of the group-members of observed groups. That is, it describes

the vector of response patterns that is obtained by combining all members of a

group (Vermunt, 2003, 2008).

1Appendices and additional resources can be found online at the Open Science Framework,
at the permanent URL: osf.io/23mp2.
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Let the lower-level latent variable be denoted as ηij , classifying units in C

latent classes, with one class referred to as c. The higher-level latent variable is

denoted ζj , with G group-level latent classes, one of which is denoted g. Here

the response of individual i in group j to item k is denoted yijk, with a total

of J groups, all having nj members summing to N , and K items having Rk

categories. The vector of responses of individual i in group j to all K items

is denoted yij , with r referring to a particular answer pattern and rk referring

to one particular response to item k. Assuming conditional independence the

lower level of the model is expressed as:

Pr(yij = r|ζj = g) =

C∑
c=1

Pr(ηij = c|ζj = g)

K∏
k=1

Pr(yijk = rk|ηij = c, ζj = g). (1)

When the conditioning on the group-level latent variable is removed, equation

1 is identical to that of a regular LC model. Without this conditioning the

probability of observing a certain pattern of responses r is the sum over the

unconditional probability of class membership multiplied by the product of all

conditional probabilities of observing the separate responses rk. In turn condi-

tioning all these terms on the group-level classes (ζj = g) allows the classification

of groups.

Given the lower-level expression, the higher level now describes the classifica-

tion of groups based on their members. Here the vector of all response patterns

of units within group j is denoted as yj , with s denoting a particular combi-

nation of response patterns. The conditional independence assumption on this

level relates to the units within groups, where not the responses to single items,

but the entire response patterns of group members are assumed independent
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(Vermunt, 2003). The upper level can then be expressed as:

Pr(yj = s) =

G∑
g=1

Pr(ζj = g)

nj∏
i=1

Pr(yij = r|ζj = g). (2)

This second equation likewise resembles that of a regular LC model, but now

the full vector yj of individual response patterns s in group j is described

as a combination of the size, or prevalence, of group-level latent class g, and

the conditional probabilities of observing the combination of individual answer

patterns r.

Equations 1 and 2 describe the most general form of the multilevel LC model,

in which both the class sizes and the response probabilities are allowed to vary

across group-level latent classes. This general form is hardly ever used, because

of the difficulty interpreting group clusters with a completely different lower-

level structure. There are two common ways to constrain the model. Setting

Pr(ηij = c|ζj = g) = Pr(ηij = c) fixes the class membership on the lower

level to be independent of that on the higher level, but allows the response

probabilities to be estimated freely. The second and most common constraint

Pr(yijk = rk|ηij = c, ζj = g) = Pr(yijk = rk|ηij = g) inversely fixes the

response probabilities on the lower level to be independent of the higher-level

class membership, but allows the class sizes to be estimated freely. The latter

constraint leads to the model that simultaneously classifies respondents and the

groups in which they are nested (Lukočienė, Varriale, & Vermunt, 2010).

Multilevel Local Fit Statistics

The idea behind the two fit statistics for the higher level of the multilevel LC

model is relatively straightforward. Given that LC analysis is concerned with

categorical indicators, and both the substantive goal of the model as well as
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the assumptions it makes can be reduced to adhering to a conditional indepen-

dence assumption, a test comparable to a chi-square test is an intuitive solution.

Both statistics can then compare the dependencies captured by the model to

the dependencies present in the data. Because the asymptotic distribution is

unknown, in the following the type I error and power are considered for the

bootstrap of the measures.

BVR-group Residual

The BVR-group is concerned with the average model fit across groups, and

quantifies the covariance between observed groups and items that is not cap-

tured by the model. When such residual covariance exists the observed group

membership still affects the response probabilities of group members, imply-

ing that between-group differences are not fully captured by the group-level

latent variable. That is, the BVR-group tests whether the observed response

frequencies within the observed groups are adequately reproduced by the model

of interest.

The expectation under a well fitting model is, of course, that the expected

and observed response frequencies are close to identical. For the within group

frequencies this implies that, given the model, the indicator variables should be

conditionally independent of observed group membership. To test this, a Pear-

son residual can be obtained by cross-tabulating the observed and expected

frequencies within all groups. This residual is then indicative of all the uncap-

tured variation caused by observed group membership.

The expected frequency, denoted as mjr, can be obtained from the model

as the individual probability of giving a certain response Pr(yijk = rk) and
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summing this probability over the group members:

Pr(yijk = rk) =

G∑
g=1

Pr(yijk = rk|ζj = g)Pr(ζj = g|yj = s), (3)

with

Pr(yijk = rk|ζj = g) =

C∑
c=1

Pr(yijk = rk|ηij = c, ζj = g)Pr(ηij = c|ζj = g).

(4)

Then,

mjr =

nj∑
i=1

Pr(yijk = rk). (5)

The above can be simplified in a model without covariates to multiplying

the probability of a response with the number of group members, rather than

the more general sum over nj in equation 5. The observed response frequencies,

denoted njr, are a simple count of the responses given by the group-members.

The BVR-group then equals:

BV Rgroup.k =
1

(Rk − 1)(J − 1)

J∑
j=1

Rk∑
r=1

(njr −mjr)2

mjr
. (6)

As shown in equation 6 a separate residual is computed for each group

and each response category, all of which are subsequently summed over the J

groups, and Rk categories. Additionally, the resulting statistic is divided by

(Rk−1)(J −1), which is the number of non-redundant parameters in the cross-

table, standardizing the BVR-group so it is not affected by the number of groups

in the data and the number of categories of the variable.

Because the focus is mainly on item specific misfit, the BVR-group is here

obtained per item. However, by removing the sum over J groups the statistic

can be obtained per group to inspect whether misfit originates from the model
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not fitting specific groups. Moreover, by not summing over the Rk categories

it can be obtained per response category, which could be useful when extreme

responses are a plausible cause of misfit.

BVR-pair Residual

On the higher level of a multilevel LC model the assumption is made that

given the group-level latent variable the response patterns of nested units are

conditionally independent. That is, the full response patterns r of all nj group

members in equation 2 are assumed to be conditionally independent. The BVR-

pair tests for violations of this assumption. When there is residual dependence

among the members of observed groups the within-group similarity is not cor-

rectly reproduced by the group-level latent variable. In other words, the nested

structure of the data is not fully captured by the model.

Since the assumption on this level does not relate to the items, but to the

units, the group members need to be related to one another. This is done by

creating all possible pairs of units within an observed group to obtain the pair-

wise response frequencies. When the assumption that all dependence between

the units is captured by the model holds, the expected and observed frequencies

would again be in agreement. Here, by considering the pairwise frequencies,

this would be indicative of the response of unit i and i′, rather than item k and

k′, being locally independent.

The expected frequency of a pair of responses is obtained using the joint

probability of unit i giving response r, and unit i′ giving response r′ to item k:

Pr(yijk = rk, yi′jk = r′k) =

G∑
g=1

Pr(yijk = rk|ζj = g)Pr(yi′jk = r′k|ζj = g)Pr(ζj = g|yj = s). (7)
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After which the expected frequency mkrr′ can be obtained by multiplying with

the number of possible pairs within the group:

mkrr′ =

J∑
j=1

(nj(nj − 1)/2)Pr(yijk = rk, yi′jk = r′k). (8)

Essentially, the probabilities of all possible combinations of the discrete re-

sponses to a single item are obtained per group and multiplied by the number

of possible pairs of members in a group.

Obtaining the observed frequency (nkrr′) can be thought of as creating a

cross-table for each pair. This table would identify the combined response of unit

i and i′ to item k, since only one cell would have a value of one. Subsequently

summing these tables over all pairs results in the pairwise frequency for that

particular item (for an illustration see Nagelkerke et al., 2015).

Important to note here is that in a multilevel LC model the ordering of the

responses does not matter for the probability of a pair. For example, two units

responding to a dichotomous item forming a yes-no pair, have a probability

that is identical to a no-yes pair. Yet, in practice the observed frequencies for

such pairs will almost always differ depending on how the data set is ordered.

Therefore, patterns with the same, but differently ordered responses are summed

when obtaining the BVR-pair statistic:

BV R−pair =
J

N

1

Rk(Rk − 1)/2

 Rk∑
r

R′
k∑

r′>r

((nkrr′ + nkr′r)− (mkrr′ +mkr′r))2

mkrr′ +mkr′r

+
∑
r

(nkrr −mkrr)2

mkrr

]
. (9)

To arrive at the BVR-pair, the raw residual is divided by the number of non-

redundant parameters in the table. Given the symmetry on the off-diagonals
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this is a division by Rk(Rk−1)/2. Additionally, since the theoretical maximum

value increases as a triangular sequence with nj , the statistic is divided by the

average group size, simply to reduce the absolute values.

Because of this triangular increase one more problem needs to be solved

when the groups are of different sizes, as it causes units in larger groups to be

in far more pairs than those in smaller groups. As a result, the observed and

expected marginal frequencies can differ, where (nkrr−mkrr) 6= (mkrr′ +mkr′r).

Such a difference affects the values of the BVR-pair, whilst not being indicative

of residual dependence. To avoid the influence of these marginal differences on

the BVR-pair, iterative proportional fitting is used to update the table with

expected pairwise frequencies so that it retains its cross-product ratios (Bishop,

Fienberg, & Holland, 1975), but has the observed marginal frequencies (Again,

for an illustration see Nagelkerke et al., 2015).

Note that the computational complexity of obtaining the BVR-

pair is primarily determined by the number of items, possible re-

sponses, and group-classes. For the BVR-group this would be the

number of possible responses and groups. The sample size in terms of

the number of observations and groups only affects frequency counts

and thus adds little time to the required computations. However, be-

cause the residuals do not follow a known asymptotic distribution, a

bootstrap is required to obtain p-values. This, of course, does increase

the computational times, and may make obtaining the computation-

ally intensive for truly big data sets. For N = 62,500 the average time

for 250 bootstraps in this study was approximately 9 minutes on a 4

x 3.30 Ghz processor.
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Simulation Design

The misfit that the two residual statistics aim to capture are the model not

fitting observed groups, causing residual conditional dependence between group

membership and indicator items, and the model not capturing all within-group

dependence between units, causing a residual dependence between pairs of ob-

servations. These types of misift can be remedied in the multilevel LC model by

either allowing a direct effect from the group-level latent class variable on one or

more of the indicators, or adding additional group-level latent classes. To test

the power of detecting such misfit this logic is reversed, whereby a population

model is assumed containing for instance a direct effect and analyzing these data

with a misfitting model excluding that particular parameter. To investigate the

power and type I error of the two residuals a Monte Carlo simulation is used to

evaluate a range of different models, with differing types of misspecification.

Variables and Factors

The power in LC models themselves is primarily dependent on two mutually

influencing factors, namely the amount of information and entropy, or class

separation. The former is what affects the power of any statistical test, and de-

pends on commonly studied factors such as the sample size, the size of observed

groups and the number of observed items. In LC analysis an important addi-

tional aspect is how distinctly different the latent classes are, which is affected

by the number of classes and the effect sizes of the parameters.

The factors that are varied and affect the structure of the sample are:

• Number of observed groups: 50, 100 or 250 groups

• Number of observed group members: 10, 50, or 250 group members

• Number of indicator items: 6 or 10 items

The factors that are varied and can be thought of as model specific are:
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• Number of lower-level classes: 2 or 3 classes

• Number of higher-level classes: 2 or 3 classes

• Loglinear effect from the lower-level latent variable to the indicator: 0.424

or 0.693 (conditional response probabilities)

• Loglinear effect from the higher-level latent variable on one or two indica-

tors: 0.000 (no direct effect), 0.201 or 0.511

• Loglinear effect from the higher-level latent variable on the lower-level

latent variable: See Table 1.

TABLE 1 ABOUT HERE

The loglinear parameters are effects coded, leading to conditional probabil-

ities of 0.7 or 0.8 in one lower-level class, and the complement of 0.3 or 0.2 in

the other. In conditions with three classes, half of the items in the middle class

have a conditional probability of 0.7 or 0.8, and the complement for the other

half of the items. For examples of the conditional probabilities in the different

population models see Appendix A at osf.io/23mp2. All intercept values are

kept at zero, which implies equal class sizes. Of course, by crossing the number

of groups and their members different sample sizes are obtained, namely 500,

1000, 2500, 5000, 12,500, 25,000, and 62,500.

The power to detect misfit is considered for eight types of misspecification,

as well as for the correctly specified models to estimate the type I error.

The misspecifications considered are:

• A missing class on the lower level

• A missing class on the higher level

• A missing direct effect (weak and strong)

• A missing direct effect when there are two direct effects (weak and strong)
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• A missing class on the higher level and a missing direct effect

Design of Experiments

It needs to be taken into account that the model itself is relatively complex,

and that the residuals require a parametric bootstrap. This leads to many

model re-estimations since the bootstrap needs to be performed for each Monte

Carlo replication. To reduce the computational intensity and keep the study

feasible, a smaller design than full factorial was chosen, whereby the higher

order interactions between the variables are deliberately left confounded (see

e.g. Lundstedt et al., 1998). The idea is identical to a fractional factorial design,

or Ik−p design, but because the variables of interest have different numbers of

levels the setup does not result in a true fraction of the full factorial. Using

SAS JMP (see e.g. Montgomery, 2012) a design consisting of 422 conditions

was generated that has no aliasing for the main effects, nor for the second and

third order interactions in the full set of conditions. This way, only 1/5 of the

computations are needed. The compromise is that higher order interactions

cannot be estimated, although generally four variable interaction effects and up

are of limited practical value. It must be noted that these are interactions on

the variable level, which means that the limitations occur on the factor level,

where certain combinations are not taken into account. For example, all low N

conditions have an observed group size of 10.

Monte Carlo and Bootstrap

The Monte Carlo simulation is conducted using a combination of R (R Devel-

opment Core Team, 2015) and LatentGOLD 5.0 (Vermunt & Magidson, 2013a),

whereby R is used to generate syntax and post-process the results. Based on the

desired population model, LatentGOLD is used to generate a data set, which is
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subsequently analyzed with either a correctly or misspecified estimation model.

To obtain the p-value for the BVR-pair and BVR-group statistics a bootstrap is

conducted using the maximum likelihood values that follow from the estimation.

The bootstrap data is obtained by sampling group-class membership based

on the class prevalences, class membership conditional on the sampled group-

class membership, and finally the responses conditional on both the sampled

memberships. The p-value for the BVR statistics are then obtained by comput-

ing the proportion of bootstrap samples in which the residuals are larger than

in the original model. This process of generating data, analyzing the data, and

performing the bootstrap is repeated for the desired number of Monte Carlo

replications. The proportion of significant p-values of the total number of repli-

cations then is indicative of the power. For the null-models both the number

of bootstrap samples and Monte Carlo replications are set to 250. For the mis-

specified models both are set to 500 for the large majority of models, with the

exception of several conditions with a very large N and weak class separation

that are computationally extremely intensive.

Results

First the results for the null-models will be discussed, since estimations of power

cannot be interpreted when the nominal alpha levels are incorrect.

Type I Error

Table 2 depicts the average proportion of significant BVR values at the α = .05

level for the first indicator variable when a direct effect is present, and the third

when there is not, where the mean is computed over all conditions that satisfy

a particular factor. Note that this reverses the interpretation of the numbers in

the table, where all values lower than .05 are too liberal, since there are too few
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significant values indicating misfit. The reason for depicting the third indicator

is that, when present, direct effects from the group-level latent variable on an

indicator are on indicators one and/or two. L here refers to the number of

conditions that the average is based on, because not all factors occur equally

often due to the study design.

TABLE 2 ABOUT HERE

Overall, the BVR-group and BVR-pair statistics are very close to the nomi-

nal alpha level, regardless of the condition that the mean is computed over. The

BVR-group, however, is slightly too liberal, especially in the conditions with a

smaller N. This may for a large part be due to the statistic taking the form of

a X2 test, which becomes more conservative as sparseness increases, also when

a parametric bootstrap is used (Von Davier, 1997; Langeheine, Pannekoek, &

Van De Pol, 1996). That is, the X2 test is too conservative in that the null-

hypothesis that there is no misfit is not rejected, making the BVR-group too

liberal. In these conditions the number of groups is set to 50 or 100 with only

10 members, leading to relatively sparse frequency tables. This is in line with

the BVR-pair not showing any problems, as it is obtained on a R x R, rather

than a R x J table, in addition to the number of pairs being far larger than the

number of observations.

The left hand side of table 2 depicts the type I error for the first indicator

item and only for conditions in which a direct effect on the indicator is present. A

direct effect being present causes slightly more variation, but the overall results

are still good in terms of the type I error rate. The most problematic cases

are clearly those where little information per group is available, especially when

there are many small groups. This can for example be seen from the conditions
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N = 500 and N = 1000, both of which have 10 observed cases per group. Again,

this can largely be attributed to sparseness.

Inspecting the BVR that tests the local independence between items (not

reported) on the lower level of the model, does not indicate any problems with

the model itself either. Where it may have been possible that strong group-

level dependencies affect the fit or the fit statistics on the lower level, there is

no evidence of this occurring.

Power to Detect Ignored Nesting

The most fundamental type of misspecification considered in the simulation

study follows from specifying a model with too few classes on the group-level

when only two are present in population. This results in a model that ignores

the nested structure of the data altogether. As can be expected, the parameter

estimates and latent class solution in this situation are strongly biased, both in

the parametric (Kaplan & Keller, 2011) and non-parametric (Park & Yu, 2015)

multilevel LC model.

Table 3 depicts the power to detect the presence of an additional group-level

class when only one is specified in the analysis, which is identical to specifying

a regular latent class model. The full conditions are presented here, because

splitting on all factors would result in a largely empty table, whereas confound-

ing any of the factors would not provide the full picture. All conditions with a

larger sample size are omitted, as the power equals one.

Preferably the BVR-group and BVR-pair values should be significant for

each separate indicator item when detecting a missing class. The dependence

that is not captured by the model is namely affecting all of the indicators.

However, it is not necessarily the case that none of the group-level dependence

is modeled on the lower level, and the fit of some of the indicators may well be
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acceptable. Vice versa, if only one or two of the indicator items were identified

as not being reproduced correctly by the model, the conclusion of a missing class

would probably not be drawn, and model improvements would focus primarily

around these specific items. Therefore, what is reported in the table are three

proportions for the BVR-group. Namely, the power when only looking at the

first item, the proportion of Monte Carlo replications where at least one out

of the K residuals is significant, and the proportion of replications where 50%

or more of the BVR-group values are significant (so for 3 or 5 out of 6 or 10

indicator items). For conciseness, the BVR-pair values are not reported, because

they show an identical pattern, albeit slightly less powerful.

TABLE 3 ABOUT HERE

The power of the BVR-group to detect that something is wrong when com-

pletely ignoring the nested structure of the data, whilst there are two group-level

classes, is close to one in practically all situations. Judging from the second to

last column of Table 3 only in two extreme situations the combined power over

all indicator items drops below .90. In these two cases class separation on the

group-level is almost non-existent as shown in Table A2 and Table A3, with

an estimated entropy of 0.317 and 0.323 respectively. Combined with the small

sample size and associated uncertainty about the classification the dependence

can actually be modeled without a group-level class. The nested structure in

these situations is only detected with a truly large sample (power equals one in

the omitted conditions with N ≥ 12,500).

However, when misfit on any one of the items is detected, it is not necessarily

the case that misfit is found for all separate items. Generally more than half

of the items will be reported as problematic, but two remarkable discrepancies
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are the first N=1000 and N=5000 conditions. At least one BVR-group value

is significant for these conditions, but rarely more than half indicate misfit.

Inspecting these two conditions further the average number of significant BVR-

group values over all the Monte Carlo replications are 4.91 and 2.50 out of 10,

so it is still likely that misfit in multiple indicators is detected for these two

cases, although it may be too few to point to an unmodeled group-level class.

In practice, this means that the BVR-group will detect the nested

structure in more typical situations where N is not too small and

class separation at the group-level not too low. Situations with small

N and an extremely low class separation at the group-level should

already be cause for concern in the sense that there might not be a

nested structure strong enough to model. In all other situations, at

least one of the BVR-group values will generally be significant with

an N ≥ 1000. Given that this is a situation where one (identical to

no) group-level class is modeled, there is no other way to address this

dependence than adding group-level classes. The exact number of

significant BVR-group values is less relevant in this respect, but will

be returned to in the next section.

Power to Detect a Missing Group-level Class

A logical next step to consider is the situation in which too few, rather than no,

group-level classes are specified. From Table 4 it is evident that the power to

detect a third group-level population class as missing when two are specified is

markedly lower. Inspecting the conditions more closely the power of the BVR-

group is acceptable in conditions with larger separation between the classes.

Note here that separation on the lower level also directly affects separation on

the higher level, as can be seen by the conditional probabilities in the population
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models, illustrated by the group-level classes in Table A4 and A5. The stronger

dependence between group membership and the responses of its members in

turn leads to a higher residual dependence when not modeled correctly.

In case the classes are not as strongly separated, more information is required

to detect that the population may contain an additional class. However, this is

not achieved by simply having a larger sample, but requires the sample size at

either level to be sufficient. That is, enough information needs to be available

on both the higher and lower level to detect residual dependence on the higher

level. This is not too surprising given the model specification, whereby observed

groups are essentially classified based on the lower-level class membership of

their members. Although a similar sample size recommendation for multilevel

LC analysis is not readily available, the consistently high power in conditions

where group size is 50 is in line with previous research on multilevel logistic

regression (Moineddin, Matheson, & Glazier, 2007).

TABLE 4 ABOUT HERE

To further clarify the mutual effect between the number of groups and their

size several additional conditions were considered. The marked N = 2500 con-

ditions in Table 4 are identical to the conditions with an N of 1000. Comparing

these four conditions to the lower N ones clearly shows that increasing the num-

ber of groups when they are very small barely increases the power to detect the

correct nested structure, whilst the sample size more than doubles. The N = 500

conditions show that conversely increasing the group-size for a small number of

groups does not increase the power in a similar fashion. Whether this is due to

too little power of the multilevel LC model to detect the true structure, or the

power of the BVR-group to detect the failure of modeling the true structure is

20



hard to disentangle and both may be occurring.

A final remark on Table 4 is that the BVR-group residual is generally more

powerful with three, compared to two lower-level classes, even when the higher-

level classes are further apart in terms of conditional response probabilities.

This is a general trend, which can best be explained in terms of the population

data. When the group members belong to a higher number of distinct classes,

the classification of the groups is automatically more fine grained as well. That

is, there is a more diverse composition of the group members in terms of the

lower-level class that they belong to. This diversity will create a larger effect

of observed group membership on the probability to give a certain response,

and hence, failing to model the effect will create a larger residual. Related to

this, note that the number of indicator items in the condition are not further

discussed, because it causes no systematic differences in the power estimates.

The model here turns out to be quite good at redistributing the

residual dependence. The practical implication of these findings is

that for weakly defined classes or samples with small groups residual

dependence is not picked up by one particular item, or a large ma-

jority of the items. Although this implies that groups should have

around fifty members, it may not actually be extremely problematic

in terms of model adjustments. The dependence is truly redistributed

and generally ends up in one or two items that do show problems.

When these items are addressed, for example by allowing a direct

effect between the item and the group-level latent variable, it will

not resolve the problem and other indicators will show residual de-

pendence (for an example see the application in Nagelkerke et al.,

2015). This will either cause many BVR-group values to start indi-

cating problems, or iteratively cause a few to show problems until an
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additional group-level class is the best solution in terms of parsimony.

Of course, addressing problematic items blindly to merely reduce the

residual dependence does lead to capitalization on chance, and will

most likely not result in finding the population model. Given the re-

sults a good exploratory approach would be to use global fit statistic

or information criteria to determine the number of classes, attempting

to resolve any residual dependence with theoretically sensible param-

eters, and if the dependence returns in other indicators to increase

the number of classes.

Power to Detect Missing Effects

A second general type of misspecification concerns a missing direct effect from

the group-level latent variable to one of the indicators. This model mimics the

situation in which observed group membership is not conditionally independent

from the indicators, and the univariate item distributions are not properly re-

produced by the model. Here the ideal outcome is reversed from the detection

of a missing class in terms of the residuals, where the BVR-group and BVR-pair

should only detect misfit in the item to which the direct effect pertains.

In Table 5 the power of detecting a weak missing direct effect is presented,

that is, an effect that causes a small residual dependence between observed

group-membership and the first indicator item. With a few exceptions, the

BVR-pair has notably higher power to detect the misspecification. A quick

summary of the results is that power increases with sample size and is generally

higher for larger, rather than more, groups. The latter is also confirmed by

inspecting several additional conditions with ten groups with fifty members,

otherwise identical to the N=500 conditions presented, which all have slightly

higher, but still insufficient power. An extra set of conditions is also used for the
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effect of having more indicator items, which increases power slightly. However,

having four additional indicators primarily increases lower-level class separation,

which in turn only substantially affects group-level class separation when the

group-level effects are strong. That is, it primarily increases power in already

high-power conditions, and has a limited effect on low-power conditions.

TABLE 5 ABOUT HERE

For the other factors, the results are somewhat paradoxical. Firstly, it seems

that in small sample conditions a stronger separation of the classes generally

leads to lower power. However, this is an artifact of the importance of the

direct effect to separate the classes. When the effect is highly important for

class separation (i.e. creates a large discrepancy between the entropy of the

model and the population) it is picked up in conditions with weakly separated

classes as it creates very large residual dependencies. Furthermore, in conditions

with more classes the power is generally lower. The reverse at first seems more

likely, as there is more information on the correct specification. However, more

classes simply make it easier to model dependencies as there are a lot more

parameters that can be used to compensate for the missing direct effect.

It should be noted that the direct effect here is an effects-coded logit of 0.201,

which creates only very minor changes in conditional probabilities. The power

to detect a missing direct effect with a stronger effect of 0.511, presented in

Table B3, quickly approaches one for all conditions with an N ≥ 1000. Only the

conditions with two group-level and three lower-level classes remain an excep-

tion, but this is due to class separation being very low. See for example Tables

A2 and A3, where it is debatable whether there is a nested structure at all.
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TABLE 6 ABOUT HERE

TABLE 7 ABOUT HERE

In Table 6 the results are averaged for the different sample sizes. The aver-

age power seems relatively low, but this is due to a few conditions resulting in

a power close to zero to detect the weak effect that is missing (see also Tabel

5). The last four columns give some insight into how precise the residuals are

able to identify the problematic variable, as they should preferably not identify

other indicators as causing misfit. The BVR-group here does surprisingly well,

especially when considering that a direct effect from the group-level latent vari-

able to any of the indicators affects the latent class solution. See e.g. Table A6.

When the direct effect in the population is strong enough, excluding it from the

model will affect the conditional probabilities for all items in both the lower-

and higher-level classes. In such a case one group-level class, and thus the mem-

bers of the observed groups that are classified into that class, will systematically

resemble one another more, causing the residual to report uncaptured depen-

dence. This can readily be seen from the BVR-pair value for a strong direct

effect and large N. Here the power is large enough to identify the additional

dependence that is created between members of the same group by excluding a

direct effect from the model, since the BVR-pair residual has a power of close

to one to identify both the first and second indicator as problematic.

Yet, this does not occur as persistently as expected. In most of these condi-

tions the BVR-group does not identify the second item as causing misfit up to a

certain point. As explained, there is true uncaptured dependence in all indica-

tors due to a missing direct effect, so it can be expected that as the amount of

information to identify that dependence increases, such as having N = 62,500, it
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is indeed detected. Also, it cannot be expected that these residuals then remain

equal to the nominal alpha level. Nonetheless, even with a power to detect the

direct effect on the first indicator item of 0.9, mistakingly identifying the second

indicator as problematic only occurs in less than 30% of the replications.

Finally in Table 7 the average power of the more powerful BVR-pair is

shown for conditions where one direct effect is missing, but two are present in

the population. Comparing the power to that of the BVR-pair for Log(0.5)

effects in Table 6 it is clearly harder to detect this misspecification. Similarly

comparing Item 3 in Table 7 to Item 2 in Table 6 the false detection rates go

up slightly, which is not surprising given the stronger dependencies throughout

the data. In large sample studies it is even the case that the BVR-pair values

almost always indicate significant misfit on more than half of the indicator items,

which could lead to the conclusion that there are too few group-level classes.

This may, however, not be extremely problematic as it is unlikely that adding a

group-level class will be able to fully resolve the residual dependence problem,

and misfit will still be indicated for the first item. Furthermore, the absolute

value of the BVR-pair, rather than its p-value, is larger by quite a margin in

the majority of cases (42 out of 51). For a selection of single conditions from

these averages including absolute values see Table B4.

With respect to the practical use of the BVR-group and BVR-pair,

the power differences in the two different types of misspecification

may prove informative and can be used to identify potential model

improvements. Where the BVR-group generally has a higher power

to detect a missing group-level class, the BVR-pair is better able to

detect missing direct effects. Since a missing class has been shown

to sometimes cause only one or two BVR-group values to be signif-

icant, the conclusion may be drawn that only one or two items are
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problematic, rather than that an entire group-level class is missing.

However, when only one item is problematic it is more likely that

either the BVR-group and BVR-pair are both significant or only the

BVR-pair is significant. If there is a missing class it is more likely

that either both or only the BVR-group is significant. So, when only

one of the two measures shows residual dependence this may be in-

dicative of what the cause of the problem is. Of course, the wording

here is deliberate in that one is more likely than the other, but not

necessarily always the case.

Determining the Misspecified Level

Given the mutual influence of the lower- and higher-level classes, class separation

and sample size, the BVR-group and BVR-pair residuals may also indicate

group-level misfit, when the true problem is too few lower-level classes. Table

8 gives the values for the regular BVR and the BVR-group residuals when the

population consists of three lower-level classes and only two are present in the

estimation model. Note that the last column for the BVR values depicts the

proportion of replications where one third of the BVR values are significant

rather than half, thus 5 out of 15 or 15 out of 45 item pairs showing residual

covariance.

TABLE 8 ABOUT HERE

It is clear that the BVR detects residual dependence between indicator items

as soon as the information on the lower-level classes is sufficient, either by

having a large enough sample size, or by having well defined and separated

classes. Unfortunately the lower-level residual dependence is also detected by
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the higher-level residuals, due to the way in which they are obtained. Ideally

the latter would not occur and misfit would solely be detected on the lower level.

However, as noted by Lukočienė et al. (2010) the most fruitful strategy in

fitting multilevel LC models is assuring good fit of the lower level before making

adjustments to the higher level. This is also in line with studies concerning

per level fit in multilevel analysis (see e.g. Yuan & Bentler, 2007), where mis-

specification on the higher level does not systematically affect the lower level fit

when the levels are considered separately. Therefore the BVR-group and regular

BVR values are were contrasted for conditions with a missing higher-level class

to those with a missing lower-level class in Table 8. In doing so it becomes clear

that, although the BVR-group does report misfit when the source of that misfit

originates on the lower level, the reverse does not occur. That is, the regular

BVR values are very close to nominal alpha when the misfit originates on the

higher level (see Table B5 for the exact values), still allowing the location of

the misfit to be identifiable. Furthermore, the average proportion of significant

BVR values over all replications (not reported) is similarly close to 0.05 verifying

that significant values are solely due to type I errors.

Conclusion

Inspecting the properties of the two recently developed local fit statistics BVR-

group and BVR-pair shows that they work as intended in detecting different

types of misfit that cause residual dependence in a multilevel LC model. They

allow the level of misfit to be determined, are generally capable of identifying the

problematic items, and in combination with global fit statistics and the regular

bivariate residual for the lower level allow comprehensive testing and inspection

of the main assumptions and substantive goals of the model.

Nonetheless, there are several issues that should be noted. Firstly, in sit-
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uations where the measures fail to detect the residual dependencies, this may

have two different reasons. In cases where there is a fairly large sample on both

levels, but classes are not clearly separated in terms of conditional probabili-

ties, the residuals themselves lack power. This is not surprising, but should be

kept in mind. Both the BVR-group and BVR-pair, analogous to many other

fit statistics, merely test for discrepancies between model predicted and sample

observed frequencies. In situations where the classes in the population are very

hard to distinguish it is likely that existing dependencies can be modeled with

fewer than the true number of classes and parameters. This implies that the

problem is limited in that parameter bias and classification errors in these situ-

ations will be low. However, when a weakly defined class is highly relevant from

a theoretical perspective a substantive problem will remain. In turn this does

mean that the residuals can be used in an exploratory setting to see whether

the nested structure needs to be taken into account.

In a few, rather exceptional, situations, class separation is primarily deter-

mined by large between-group difference on only one item. The model is then

able to sufficiently approach the observed frequencies while misspecified as it

can redistribute the dependence throughout the classes. This implies that not

detecting misfit does not guarantee correct parameter estimation, which brings

us to an important point that cannot be stressed enough. As with any resid-

ual modification index, and despite the residuals working as intended when the

data is sufficient for multilevel LC analysis, they should not be used blindly.

As already discussed in Nagelkerke et al. (2015), simply trying to reduce the

residuals by addressing the area of the model they report to be problematic

will lead to capitalization on chance, and will hardly ever result in finding the

true population model. The residuals as they are applied here, only identify the

indicator items that are generally problematic. Since the different areas of the
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model are intertwined, they cannot point to a given solution, as any conditional

dependence may be modeled in many different ways.

For practical use the general conclusion is that the residuals do

provide relevant information and can help to improve model fit, but

should be used in conjunction with other available measures. Also,

it should be kept in mind that these are indeed residuals that detect

unmodeled dependence. The briefest summary would be that if sig-

nificant values are found, something is wrong in terms of capturing

dependencies. By using the BVR-group and BVR-pair residuals in

conjunction with global fit measures, the regular BVR, and plausible

alternative models, it is possible to determine at which hierarchical

level misfit occurs, identify which indicator items prove problematic,

and in most cases also point at the most parsimonious way to model

the uncaptured dependence. If no significant BVR-group and BVR-

pair values are found, one can be sure that the nested structure of

the data is captured adequately by the model. Yet, although this is

a valid conclusion, it does not always imply that the specified model

agrees with the true data generating process, meaning that evaluat-

ing and comparing alternative models may still be valuable; that is,

a better fitting or substantively more sensible solution can still be

found when no misfit is detected.

Finally, despite this being an extensive simulation study, several factors, such

as different class sizes or the addition of covariates to the model, have not been

taken into account here due to the already high computational intensiveness

of the current conditions. Furthermore, the relation between the detection of

misfit and actual bias in parameter estimation has not been investigated, and is

a valuable avenue for future research. Not in the last place, because currently
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little is known about the relation between these types of misspecification and

parameter estimation.

Still, for the extensive number of factors that were considered the overall

conclusion is that the measures work as intended, provided that the data are

sufficient for multilevel LC analysis to be viable. Although definitely requiring

further research, these results also bolster our expectation that they will work

for other analyses dealing with discrete nested data as well.
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Tables

Table 1: Logit parameters for the higher level: effects of the first group-level
class on the two or three lower-level classes a

2 lower-level classes 3 lower-level classes
Logit 1 Logit 2 Logit 3 Logit 1 Logit 2 Logit 3

2 group class (W) 0.424 -0.424 - 0.196 0.014 -0.209
3 group class (W) 0.424 0.000 -0.424 -0.514 1.027 -0.514
2 group class (S) 0.693 -0.693 - 0.928 0.341 -1.269
3 group class (S) 0.693 0.000 -0.693 -0.693 1.386 -0.693

a. For examples of the resulting conditional probabilities see Appendix A

Table 1
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Table 3: Power to detect ignoring the nested structure: The last three columns
respectively indicate the power to reject fit for item one, at least one item and
at least half of the items

Sample Class Separation BVR-group

N Groups
Group
Size

Items Lvl.1 Lvl.2 C Item 1 Min.1 50%

500 50 10 10 L L 3 0.062 0.476 0.002
500 50 10 6 H L 3 0.114 0.464 0.024
500 50 10 6 L H 3 0.654 0.992 0.830
500 50 10 10 H L 2 0.780 1.000 0.906
1000 100 10 10 L L 2 0.468 0.996 0.582
1000 100 10 6 L H 2 0.958 1.000 1.000
1000 100 10 10 H H 2 1.000 1.000 1.000
2500 50 50 10 H H 3 1.000 1.000 1.000
2500 50 50 10 L H 2 1.000 1.000 1.000
2500 250 10 10 L H 3 0.998 1.000 1.000
2500 250 10 6 H H 3 1.000 1.000 1.000
5000 100 50 10 L L 3 0.276 0.914 0.098
5000 100 50 6 H L 3 0.656 0.986 0.862
5000 100 50 6 H L 2 1.000 1.000 1.000

Table 3



Table 4: Power to detect a missing group-level class: The last three columns
respectively indicate the power to reject fit for item one, at least one item and
at least half of the items

Sample Class Separation BVR-group

N Groups
Group
Size

Items Lvl.1 Lvl.2 C Item 1 Min. 1 50%

500 50 10 6 L H 2 0.062 0.238 0.002
500 50 10 6 H H 3 0.568 0.998 0.962
500 10 50 6 L H 2 0.104 0.504 0.020
500 10 50 6 H H 3 0.476 0.972 0.956
1000 100 10 6 H L 2 0.044 0.224 0.004
1000 100 10 10 L H 2 0.046 0.434 0.000
1000 100 10 6 L L 3 0.220 0.806 0.120
1000 100 10 10 H H 3 0.560 1.000 1.000
2500 250 10 6 L L 2 0.040 0.242 0.004
2500 250 10 10 H L 2 0.052 0.414 0.000
2500 250 10 6 H H 2 0.110 0.476 0.016
2500 250 10 6 L L 3 0.440 0.984 0.540*
2500 250 10 10 L H 2 0.064 0.528 0.000*
2500 250 10 6 H L 2 0.036 0.248 0.004*
2500 250 10 10 H H 3 0.556 1.000 1.000*
2500 50 50 6 H L 2 0.202 0.728 0.124
2500 50 50 6 L H 3 0.530 1.000 1.000
2500 50 50 10 H H 3 0.542 1.000 1.000
2500 50 50 10 L L 3 0.554 1.000 0.998
5000 100 50 6 L L 2 0.106 0.498 0.018
5000 100 50 10 H L 2 0.326 0.958 0.274
5000 100 50 6 H L 3 0.496 1.000 1.000
5000 100 50 6 H H 2 0.982 1.000 1.000

Table 4
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