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GOODNESS-OF-FIT OF MULTILEVEL LATENT CLASS MODELS FOR 

CATEGORICAL DATA 

 

1. INTRODUCTION 

Latent class (LC) analysis is mostly used to detect and develop a latent, unobserved, 

classification of subjects based on multiple observed categorical characteristics. The 

usefulness of this application in many scientific fields combined with favorable 

properties, such as the ability to handle multiple dependent variables and measurement 

error, have recently caused a growing interest in LC analysis. This in turn has resulted in 

the development of several extensions to the regular model in an attempt to relax 

assumptions and make the method more widely applicable. An important extension that 

has gathered quite some attention is the multilevel LC model (e.g. Muthén and 

Asparouhov 2011, Vermunt 2003, Vermunt 2008). 

Substantively the major benefit of this multilevel extension is that it allows 

simultaneous classification of groups and individuals. The regular LC model may either 

be used to distinguish typologies of the units under study that are systematically similar 

(e.g. Harrell et al. 2012), or find the most common characteristics of predetermined 

classes (e.g. Laudy et al. 2005, Finch and Bronk 2011). The multilevel extension now 

makes it possible for nested categorical data in which a natural grouping is observed to 

also classify the groups based on the similarity of their members. For inherently nested 

data, such as pupils in a school, a separate classification of both the pupils as well as the 

schools can be obtained (e.g. Bennink et al. forthcoming, Mutz and Daniel 2012).  
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Additionally, the multilevel approach solves the statistical problem of dependent 

observations. Analogous to a multitude of statistical methods, LC analysis assumes that 

the units under study are independent of one another. However, this assumption does not 

hold when observing cases nested within a certain grouping, whether it are persons that 

belong to a particular group or repeated measures that belong to the same unit (Hox 2010, 

Snijders and Bosker 2012). An earlier solution to this dependency problem is the 

multiple-group approach (Clogg and Goodman 1984), but it requires all parameters to be 

estimated separately for all groups, causing the method to lose its value when a large 

number of groups is observed. 

Compared to the regular LC model, the multilevel LC model thus has additional 

substantive applications, and offers a solution for categorical data in which there is 

dependency between observations. However, testing whether or not the model is 

correctly specified and actually captures all the dependency is currently not possible in its 

own right, as inspecting model fit is limited to global tests, such as the chi-square (  ) or 

log-likelihood-ratio (  ), and model comparisons through information criteria, such as 

the Bayesian (BIC) and Akaike Information Criterion (AIC). Although these tests and 

criteria can identify a well-fitting model, or the best fitting out of a series of alternative 

models, their global nature limits the control they provide. Especially when models 

become increasingly complex, the information available on the cause of better or worse 

fit becomes obscured. This, in turn, does not only hinder the search for possible model 

improvements, but also limits substantive understanding of the data.  
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In order to gain insight, understand the result of model adjustments, and detect 

specific misfit or violations of assumptions, these global criteria should ideally be 

supplemented with local fit statistics that single out and test one particular area of the 

model. In a regular LC model, such local fit measures exist in the form of the bivariate 

residual (BVR) (Vermunt and Magidson 2005, see also Mavridis, Moustaki and Knott 

2007) and a score-test approach that leads to modification indices (Glas 1999, Oberski, 

Van Kollenburg and Vermunt 2013). Both test the local independence assumption that is 

central to the LC model and evaluate the degree to which the model captures the 

association between all pairs of observed variables. As such these measures indicate why 

one model fits better or worse, pinpoint violations of the local independence assumption, 

and facilitate the search for model improvements. For the multilevel LC model, however, 

there currently are no local fit statistics that give these insights on the group level.  

Here we propose two complementary diagnostic measures that enhance exactly 

these abilities to detect a particular type of model misfit and increase the understanding of 

the fitted model for multilevel LC analysis. Both take the form of a Pearson residual and 

relate to the higher level of a multilevel LC model. The first residual, BVRgroup, relates to 

the item distributions, and can be considered a between group measure. It can be used to 

evaluate the difference in responses between groups, and detect misfit that originates 

from the model not fitting particular groups as well as others. The second residual, 

BVRpair, is a within group measure in the sense that it can be used to evaluate the degree 

of similarity amongst cases within a group, and is indicative of misfit that originates from 

any leftover dependency amongst the units within groups.  
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The remainder of this paper is structured as follows. In section 2 the multilevel 

LC model is introduced. In section 3 the problems with model fit statistics are discussed 

more elaborately, the existing BVR is discussed, and the proposed residuals are 

introduced. In section 4 the use of the residuals as local fit measures is demonstrated by 

applying them to a data example. 

 

2. THE MULTILEVEL LC MODEL 

The multilevel LC model can be expressed using two equations; one for the lower level 

denoting the conditional probability of all responses given by a unit, and one for the 

higher level marginal probability of all response patterns per group (Lukočiené, Varriale 

and Vermunt 2010, Vermunt 2003). The expression for the lower level is essentially that 

of a LC model, but in the case of a multilevel structure is made conditional on the latent 

class membership of the group (Vermunt 2003, Vermunt 2008).  

Let the response of individual   in group   on item   be denoted as     , with a 

total of   groups, each having    individual members summing to  , and a total of   

items, each having    categories. All responses to the   items of person   in group   are 

denoted as the vector     with   referring to one particular answer pattern and    referring 

to a particular response to item  . The latent variable     that classifies the units within 

groups has   latent classes and the latent variable    that classifies the groups has   latent 

classes, with   and   referring to one of these classes. Assuming conditional 

independence, the lower level of the multilevel LC model is expressed as: 
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  (          )  ∑  (          )

 

   

∏  (                  )

 

   

  (1) 

Removing the conditioning on the group-level latent variable (  ) from Equation 

1 results in the standard LC model, in which the probability of observing a particular 

response pattern   is a combination of the prevalence of latent class   on the latent 

variable     and the probabilities of observing the combination of the responses    

conditional on the unit’s class membership. In the multilevel LC model, all these terms 

are made conditional on the latent class membership of the group a unit belongs to 

(    ), such that groups can be classified along   latent classes and the probability of 

an individual response pattern is affected by the group-level class membership.  

The expression for the higher level of the model then denotes the marginal 

probability of all response patterns of individuals within group   as    , with   denoting a 

particular combination of response patterns. Here an assumption of independence is 

required as well, but now the full response patterns of individuals rather than the 

responses to one item should be independent, that is, 

  (    )  ∑   (    )

 

   

∏  (     |    )

  

   

  (2) 

The probability of observing the vector    of all individual response patterns   in group   

is a combination of the prevalence, or size, of a particular group-level latent class   on 

the latent variable    and the probabilities of observing the combination of the individual 

answer patterns   conditional on the latent class membership of the group.  
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It should be noted that these two expressions result in a model where both the 

lower-level class prevalence, as well as the response probabilities can differ between all 

higher-level classes. Although a multitude of constraints are possible, two are most 

commonly used in practice, the first of which leads to the most used model that 

simultaneously classifies higher- and lower-level units. The first constraint 

  (       |          )     (       |     ) causes the response probabilities 

on the lower level to be independent of the higher-level class membership, but the class 

sizes to be estimated freely (Lukočiené et al. 2010, Vermunt 2003, Vermunt 2008). The 

second possibility is to constrain the model by setting   (     |    )    (     ), 

causing the response probabilities to be estimated freely, but the lower-level class 

membership to be independent of higher-level class membership (Lukočiené et al. 2010, 

Vermunt 2004). 

 

3. GOODNESS-OF-FIT 

In this multilevel LC model, there are several key issues relating to model fit. There are 

the two central assumptions, namely the local independence of item responses on the 

lower level and the conditional independence of response patterns of individuals on the 

higher level, and there are the goals of correctly reproducing the item distributions or 

observed frequencies for both the individual observations as well as for the groups. These 

latter goals relate to arriving at a correct classification on both levels, and obtaining the 

conditional probabilities of interest depending on the substantive goal and specification 

of the model (Goodman 2002). Improving the fit of this model can be achieved in a 
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multitude of ways that improve the quality of the prediction, or relax an assumption. A 

latent class or group-level latent class can be added, for example. Or, when keeping the 

same number of classes, a covariance between any combination of observed variables 

may be modeled, as well as any direct effect from the group-level latent variable to an 

observed variable.  

Unfortunately, despite these different sources of misfit and the many ways to 

adjust the model, there is little information available as to where model misfit originates 

and what the effects are of model adjustments. Currently only the local independence 

assumption on the lower level of the model, the independence of responses conditional on 

the latent variable, can be inspected through the BVR. The analogous assumption on the 

higher level, the independence of response patterns conditional on the group-level latent 

variable, the quality with which the model describes the individual responses, and the 

degree to which the model correctly describes the groups can only be assessed jointly 

through global statistics. That is, the fit of the model as a whole is considered, rather than 

any of the individual aspects of the model.  

As a result local misfit may go unnoticed, since even when a model shows 

adequate global fit the model may still be misspecified. In such cases, a type of local 

misfit averages out with other, correctly specified, areas of the model. This problem is 

reinforced when using information criteria, such as the Bayesian (BIC) and Akaike 

Information Criterion (AIC), which only compare estimated models. As long as all 

estimated models in such cases violate one or more assumptions, selecting the best one 
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will still result in using a model that does not fit the data correctly. Ultimately this may 

lead to a wrong classification and wrong substantive conclusions.  

To address this problem two local fit statistics for multilevel LC models are 

proposed in the following, which aim to test specific areas of the model individually. The 

first tests the reproduction of univariate item distributions in all the groups, and provides 

a partial test of how well the higher level of the model fits the data. The second is aimed 

at testing the conditional independence of response patterns, and in combination with the 

BVR allows a test of two central assumptions of the model. Both provide information on 

the location and extent of misfit. 

 

3.1. Bivariate Residual 

To show how the proposed statistics fit the LC framework, and for the sake of 

completeness, the existing BVR is briefly introduced. Vermunt and Magidson (2013) 

construct the BVR to test the assumption of local independence for all pairs of observed 

variables in a regular LC model, but it can be applied identically to the lower level of a 

multilevel model. The BVR assesses the difference between the observed frequencies 

(    ) and the model expected frequencies (    ) in the two-way cross-tabulation of 

items   and    by a Pearson statistic divided by its number of degrees of freedom (see 

also Bartholomew and Leung 2002, Vasdekis, Cagnong and Moustaki 2012), that is, 

       
 

(    )(     )
∑ ∑

(         ) 

    

 
  

    

  

   

  (3) 
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The expected frequencies follow from the LC model, which assumes conditional 

independence of item responses given latent class membership. More specifically, they 

are obtained by multiplying the class-specific probabilities of the response   on item   

and response    on item   , and summing these over the latent classes using the class 

membership probabilities as weight. For a LC model without a multilevel structure: 

     ∑∑  (            )   (              )   (           )

 

   

 

   

  (4) 

When no values are missing the same      can be obtained by using   (     ) as 

weight instead of   (           ), and multiplying by N rather than summing over N, 

since   (     ) equals the average   (           ) for the complete sample. 

However, in the case of missing values the observed frequencies only contain the cases 

for which both variables are observed. To obtain the corresponding expected frequencies, 

the class membership probabilities should be based on this subsample. That is, using 

  (     ) is not appropriate, and the frequency should be obtained by summing over 

the cases with both variables observed, using   (           ) as weight. 

The above formulation for      can easily be generalized to be applicable in a 

multilevel LC analysis. The sum over latent classes must then contain the joint posterior 

probability of the lower and higher level latent variables and the sum over individuals 

must be over both groups and individuals within groups: 
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  (          |          )   (                 )  

(5) 

Any deviation between the observed and the predicted frequency, which assumes local 

independence of items given latent class membership, is now contained in the residual. 

 

3.2. Group-Variable Residual 

In order to further deconstruct global misfit, we here propose a group-variable residual 

(BVRgroup). As can be seen from Equation 2, the response vector    containing all 

individual response patterns is a function of the size of the group-level class and the 

individual answer patterns. This implies that, among others, the univariate response 

frequencies within each group should be modeled correctly for the latent class solution to 

be correct. Because the observed group membership can be understood as a nominal 

covariate in a multilevel LC model, the BVR can be adapted to assess the response to a 

nominal dependent variable and group membership: 

           
 

(    )(   )
∑∑

(       )
 

   

  

   

 

   

 (6) 

The observed frequency here is simply the number of units in group   with 

response   . The expected frequencies     can be obtained from the individual 

probabilities   (       ): 
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  (       )  ∑   (       |    )   (    |    )

 

   

  (7) 

where 

  (       |    )  ∑  (       |          )  (     |    )

 

   

  (8) 

Then 

    ∑  (

  

   

       )  ∑∑   (       |    )   (    |    )

 

   

  

   

  (9) 

Thus, the probability of a particular response is summed over all group members to 

obtain its frequency within the group, and is itself a function of the group-class response 

probabilities and the group-class membership probabilities. It should be noted that for the 

class-membership on the group-level the posterior probability   (    |    ) is 

used . Because the interest lies in testing the group by variable relationships and 

aggregating these over the groups, all available information on the groups should be used, 

as contained in the posterior. 

The statistic itself is computed for all groups separately, and summed over the 

groups to test the assumption of correct model fit in each of the groups. This sum is 

additionally divided by (    )(   ). The BVRgroup now equals the average 

contribution to the residual per degree of freedom. That is, the dimension of the matrix to 

which Equation 6 is applied is     , resulting in (    )(   ) non-redundant 

parameters. Correcting for both    and   standardizes the BVRgroup such that it is not 

affected by the number of groups, nor the number of categories on the variable.  
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As can be seen from Equations 7 through 9, a special case exists when the nested 

structure of the data is ignored by estimating the multilevel LC model with only one 

group-level class. The results are identical to omitting the group-level latent variable 

altogether, and assures the BVRgroup is independent from the number of lower-level 

classes in order to obtain its baseline value, which is substantively indicative of the 

between-group heterogeneity, or the between-group variance. For this model, the residual 

is then broadly comparable to the empirical Bayes estimates as used in linear multilevel 

models. Although their common use is testing the normality assumption on the higher 

level, they can also be used to construct influence diagnostics (Snijders and Berkhof 

2008) and as such are indicative of misfit. 

 

3.3. Paired-Case Residual 

In a multilevel LC model, the higher level has a local independence assumption similar to 

that of the lower level. Where the assumption in Equation 1 is that the responses    are 

independent for all the   items per individual, in Equation 2 the response patterns   are 

assumed independent for all the    individuals per group. However, to capture this 

dependency amongst units within a group the responses of the individual members should 

be related to one another. This cannot be done as straightforwardly as is the case for the 

dependency between item pairs. Where the response frequencies for the latter can be 

cross tabulated directly, the cross tabulation of dependency amongst units requires all 

units within a group to be related. An intuitive approach to do so is to create all pairs of 
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units within every group and obtain the pairwise response frequencies. The expected and 

observed response frequencies can then again be compared: 

        
 

 

 

  (    )  
[∑ ∑

((           )  (           ))
 

           

 
  

    

  

 

 

 ∑
(         )

 

    
 

]  

(10) 

To illustrate, consider a group containing five observations, with responses to one 

of multiple variables as in Table 1. The residual can be understood as considering the 

combined responses   and    of cases   and    to item   as one element. To obtain the 

observed frequencies a square contingency table of which the order is equal to the 

number of categories on the variable of interest can then be made per pair. The cell that 

identifies the actual answer pattern of that pair of cases has a frequency of one and all 

else equals zero. 

Table 1. Illustration of obtaining the observed pairwise response frequencies 

 

Data 

Obs Var Group 

A 0 1 

B 0 1 

C 1 1 

D 0 1 

E 1 1 

F 0 2 

G 1 2 

H … … 

  B  

  0 1 

A 0 1 0 

 1 0 0 
 

  C  

  0 1 

A 0 0 1 

 1 0 0 
 

  D  

  0 1 

A 0 1 0 

 1 0 0 
 

  E  

  0 1 

A 0 0 1 

 1 0 0 
 

  C  

  0 1 

B 0 0 1 

 1 0 0 
 

  D  

  0 1 

B 0 1 0 

 1 0 0 
 

  E  

  0 1 

B 0 0 1 

 1 0 0 
 

  D  

  0 1 

C 0 0 0 

 1 1 0 
 

  E  

  0 1 

C 0 0 0 

 1 0 1 
 

  E  

  0 1 

D 0 0 1 

 1 0 0 
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The corresponding predicted probability of a certain pair of responses follows 

from the combined probability of person   giving response   and person    giving 

response    conditional on the group-level class: 

  (                
 )

 ∑   (       |    )   (        
 |    )   (    |    )

 

   

  

(11) 

where   (            ) can be obtained by Equation 8. Because these probabilities 

are only conditional on the group-level latent variable in a model without covariates, they 

are identical for identical patterns, and the order of the responses is interchangeable. That 

is, within a group only the probabilities on the diagonal and either the upper or lower off-

diagonal need to be obtained. Aggregating these probabilities to arrive at the expected 

frequencies then can be done by multiplying the probability of a pair with the number of 

pairs   (    )  : 

       ∑(  (    )  )

 

   

   (                
 ) (12) 

Again, as is done for the BVRgroup, the posterior probability is used in Equation 11 

to obtain this estimated frequency. In this case the main reason is that this weighting is 

more appropriate in cases where groups are of different size, and thus containing different 

numbers of pairs per group. As can be seen from Equations 10 and 12, in comparison to 

Equations 6 and 9, the BVRpair is not obtained for each group separately and only 

subsequently summed over the groups, but the aggregation already occurs when 

computing the expected frequencies. By weighting by the posterior probability 



  15 
 

  (    |    ) the expected frequencies account in the best manner for unequal group 

sizes. With equal group sizes, using posterior or unconditional class membership 

probabilities will give the same expected frequencies. 

The observed frequency of pairs can now be obtained by summing the pairwise 

tables from Table 1, as is done in Table 2. The probability of a pair follows from 

Equation 11, and the expected frequency from Equation 12. For the illustration, the 

probabilities from the first model in the application section are used. 

Here, the structure of Equation 10 also becomes clear. Note that because the order 

of the observations within a group is arbitrary, observing a 0-1 pair is in fact the same as 

observing a 1-0 pair. This is why the symmetric off-diagonal elements of the table are 

combined in the first summation in Equation 10. The latter part of Equation 10 adds the 

discrepancy between the observed and expected frequencies on the diagonal. 

Table 2. Illustration of obtaining the pairwise residual contribution per answer pattern 

 Observed 

  

 i' 

  0 1 

i 0 3 5 

 1 1 1 
 

 Probability 

  

 r' 

  0 1 

r 0 .415 .225 

 1 .225 .135 
 

 Expected 

  

 i' 

  0 1 

i 0 4.152 2.249 

 1 2.249 1.351 
 

 Residual Contr. 

  

 i' 

  0 1 

i 0 0.320 0.056 

 1 - 0.091 
 

 

        
 

 

 

 (   )  
(                 )        

To finally arrive at the BVRpair the resulting residual is divided in such a way that 

the statistic equals the contribution to the residual per degree of freedom, in this 

case   (    )   given the symmetry on the off-diagonals. Additionally the raw 
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residual is divided by the average group size to avoid extremely large values, which are 

likely to occur since the theoretical maximum value of the statistic increases as a 

triangular sequence with   .  

Unfortunately, the univariate marginal values for the resulting tables are not 

reproduced correctly when groups differ in size, in which case (           )  

(           ), which is also the case in the illustration. The cause is simply that an 

observation in a larger group is in more pairs than an observation in a smaller group. 

Differences between the observed ( ) and expected frequency ( ) would then not only 

reflect the degree to which the model captures dependency between cases, but the 

residual would also partly reflect the difference in the univariate distribution. This 

changes the interpretation of the BVRpair, and unnecessarily so because the univariate 

distributions are always correctly reproduced by the model.  

Therefore a number of iterative proportional fitting (IPF) cycles is used to equate 

the reproduced and observed marginal frequencies and reduce the BVRpair to zero when 

there is no residual dependency. The pairwise contingency table is made symmetrical 

first, such that answer patterns that only differ in respect to the order of the responses 

have the same frequency. As mentioned, the probability and thus the expected frequency 

of a certain pair of responses is identical regardless of order, but this is not necessarily the 

way in which they are observed. 

In the IPF procedure the cells in the expected frequency table are adjusted so that 

its marginals match the observed marginals. The subsequent iterations alternate between 

row and column adjustments where each cell is multiplied by the ratio between the 



  17 
 

observed and the expected row (column) marginal. This process converges to a table with 

marginals equal to the observed marginal frequencies whilst retaining the cross-product 

ratios within the table (Bishop, Fienberg and Holland 1975).  

Table 3. Illustration of Iterative Proportional Fitting cycles 

 

 Observed 

 i' 

  0 1  

i 0 3 (5+1)/2 6 

 1 (1+5)/2 1 4 

  6 4 10 

 

 Expected 

 i' 

  0 1  

i 0 4.152 2.249 6.401 

 1 2.249 1.351 3.599 

  6.401 3.599 10 

 

 IPF Cycle 1 – Row
a 

 i' 

  0 1  

i 0 3.892 2.108 6 

 1 2.499 1.501 4 

  6.391 3.609 - 

 

 IPF Cycle 1 – Column
b 

 i' 

  0 1  

i 0 3.654 2.336 5.990 

 1 2.346 1.664 4.010 

  6 4 - 

 

 IPF Cycle 2 - Row 

 i' 

  0 1  

i 0 3.660 2.340 6 

 1 2.340 1.660 4 

  6.000 3.999 - 

 

 IPF Cycle 2 - Column 

 i' 

  0 1  

i 0 3.660 2.340 6 

 1 2.340 1.660 4 

  6 4 10 

a. Row operation: Multiply cell with the ratio between the observed and expected row marginal;  

cell(observed row / expected row) 

b. Column operation: Multiply cell with the ratio between the observed and expected column 

marginal; cell(observed column / expected column) 

 

In the IPF procedure the cells in the expected frequency table are adjusted so that 

its marginals match the observed marginals. The subsequent iterations alternate between 

row and column adjustments where each cell is multiplied by the ratio between the 

observed and the expected row (column) marginal. This process converges to a table with 

marginals equal to the observed marginal frequencies whilst retaining the cross-product 

ratios within the table (Bishop, Fienberg and Holland 1975).  
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The resulting BVRpair statistic reduces to zero when the model captures all the 

dependency amongst cases within a group. Identical to the BVRgroup its baseline value can 

be obtained by estimating the model where the nesting of the data is ignored by modeling 

only one group-level class. The statistic is broadly comparable to the residual intra-class 

correlation (ICC) in mixed models, which is the degree of dependency that is not 

captured by the model when controlling for the independent variables (Snijders and 

Bosker 2012). The BVRpair is similarly related to the uncaptured dependency, and 

indicative of the homogeneity within groups that is ignored when the nested structure of 

the data is not, or only partially reproduced. 

 

3.4. Bootstrap 

The BVR, BVRgroup and BVRpair residuals are all obtained identically to Pearson 

residuals. However, for the BVR it is known that it does not follow the chi-square 

distribution, and the same is expected to be true for the two proposed measures. To still 

obtain p-values for the residuals, a parametric bootstrap can be used (Langeheine, 

Pannekoek and Van de Pol 1996), which is known to work for the BVR (Oberski et al. 

2013). Based on the maximum likelihood estimate, the bootstrap in this instance samples 

group-class membership, class membership conditional on group-class membership, and 

the responses conditional on the membership of both. This results in alternative data sets 

with the same structure as the original to which the model is fitted. For each of these 

refitted models the BVR values are obtained. The estimated p-value then is the proportion 

of replicated models in which the BVR residuals are larger than in the original model 
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(Vermunt and Magidson 2013). As such the BVRgroup and BVRpair are not compared to an 

asymptotic distribution, but rather to an empirical distribution constructed by simulation. 

The bootstrap p values can be used for hypothesis testing, that is, for determining whether 

or not potential assumption violations are statistically significant. 

 

4. APPLICATION 

To demonstrate their use and usefulness, the BVRgroup and BVRpair will be applied to a 

real data example. The data in this application were collected to investigate the 

relationship between task variety and the psychological well-being of employees. Since 

both team-level and individual task characteristics are expected to be of importance, 

Vermunt (2003) aggregates the data by classifying both teams and individuals through 

multilevel LC analysis. In a later stage these classes can then be related to an outcome 

such as well-being. For instance, to detect class characteristics that affect the outcome for 

better or worse (e.g. Mutz, Bornmann and Daniel 2013, Shim and Finch 2014).  

However, when the LC model is incorrectly specified or violates assumptions, not 

only is there a possibility of wrongly classifying the teams and employees, the 

relationship between an outcome and the classification is similarly unsound. This first 

step of classification then clearly is an important one, since a wrong classification may 

result in wrong substantive conclusions on the actual goal of the study. Here the 

classification will be re-examined using the proposed BVRgroup and BVRpair statistics to 

demonstrate their use. After excluding all cases with missing values and two teams with 

only one member, the data contains 848 cases in 86 teams, and is similar to that used by 
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Vermunt (2003, Vermunt 2005), as collected by Van Mierlo (2003). For all employees 

the perception of task variety in their job was measured with five categorical items of 

which the four categories are collapsed to make them dichotomous. The variable 

measuring task repetitiveness is coded inversely to the other variables such that a higher 

score reflects lower repetition and all scores are substantively in accordance. All models 

are estimated in LatentGOLD 5.0. The survey wording and LatentGOLD syntax are both 

provided in the appendix. The data set itself is included in LatentGOLD as example data. 

Since the BIC is currently the main criterion for model selection, selecting the 

best fitting from a series of alternative models, Table 4 depicts the BIC values for 29 

models with differing numbers of classes. All of these models assume conditional 

independence between the five items, contain one latent variable on both levels (  and  ), 

and only allow an indirect effect of the group-level latent variable   on the items through 

the lower level latent variable   (see also Vermunt 2003). It should be noted that these 

BIC values are computed using the number of groups as the sample size, rather than the 

number of cases, as this is found to be the more appropriate sample size to determine the 

number of classes in multilevel LC models (Lukočiené et al. 2010, Lukočienė and 

Vermunt 2010). 

Based on these values the model with two group-level and three low-level classes 

would be the best fitting, resulting in the profile as depicted in Table 5. On the lower 

level, the largest of the three classes is one where people report high levels of task 

variation and creativity. The second class is one in which people report having repetitive, 

uncreative, and unvaried tasks. The third is a class with highly creative tasks, yet quite 
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unvaried and repetitive. On the group level, the classes are less distinguished in their 

overall profile. Members of teams in the first group-level class are most likely to belong 

to the first individual-level class, and of the second higher level class to the second lower-

level class. Overall then the team profile of the first group-level class mostly is that of 

diverse, varied, and challenging tasks, whereas the second class have more repetitive 

tasks that allow less creativity. 

Table 4. BIC Values for 29 models assuming local independence of items and indirect 

effects of the group-level latent variable
a
 (N equals number of groups) 

 Lower-level Classes 

Group-level 

Classes 

 2 3 4 5 6 

1 4820 4818 4837 4861 .
b 

2 4786 4785 4799 4819 4844 

3 4794 4795 4794 4814 4836 

4 4802 4806 4809 4826 4850 

5 4811 4818 4822 4839 4865 

6 4820 4831 4838 4857 4880 

a. Constraint:   (       |          )     (       |     ) 

b. Unidentified 

 

However, the two problems laid out in section three would arise when this model 

would be accepted solely based on the BIC value. Firstly, the BIC identifies the best 

alternative out of the models presented, but it does not guarantee that no assumptions are 

violated, that is, that the model picks up all relevant aspects in the data. If this is not the 

case, the classification described in Table 5 could be faulty, and any further analysis to 

relate this classification to outcomes may also be affected negatively. Secondly, many 

alternative models can be specified, other than those with differing numbers of classes. 
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Table 5. Latent class profile for the 3-class, 2-group-class model. BIC=4785.3 

 GClass 1 

Diverse 

GClass 2 

Uniform 

Class 1 

Diverse 

Class 2 

Structure 

Class 3 

Creative 

Overall 

Non-Repetitive .428 .279 .515 .125 .225 .385 

Creative .631 .382 .707 .065 .914 .558 

Diverse .792 .480 .961 .146 .483 .700 

Capacity .730 .578 .837 .439 .350 .685 

Variation .754 .461 .964 .192 .000
a 

.668 

       

Class 1 .752 .371     

Class 2 .150 .537     

Class 3 .098 .092     

       

Prevalence .707 .293 .640 .263 .097  
a. Boundary solution 

 

In all the estimated models, conditional independence of the observed items is 

assumed, which can be relaxed by allowing one or more covariances between the 

observed variables. Furthermore, the effect of the group-level latent class on the observed 

variables is assumed to be fully mediated by lower-level class membership. This too can 

be relaxed by allowing direct effects from the higher-level latent variable on any of the 

items. The prohibitive difficulty of improving the model through trial and error, or even 

considering the option of estimating all possible models, now quickly becomes clear. 

When keeping the number of classes constant, there are 1024 different combinations of 

allowable covariances, and for each of these combinations another 32 possible 

combinations of direct effects. If the possibility of equating certain parameters to one 

another is also considered, this model can be adjusted in 17 factorial different ways.  

To illustrate how the local fit measures may largely resolve the problem of 

identifying misfit without the need to estimate many additional models, the residual 
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measures for the model with the lowest BIC are presented in Table 6 with bootstrapped 

p-values for all BVR measures in parentheses. The regular BVR indicates that the 

variable measuring the diversity of a person’s job shows some residual dependency with 

the variable measuring job variation, which substantively should come as no surprise. On 

the higher level, the BVRgroup and BVRpair also show assumption violations, whereby the 

repetitive and creative variables both show dependency between cases that is not captured 

by the model, as well as an incorrectly reproduced item distribution between the groups. 

So, even though it is the best alternative out of thirty models, the three individual-level, 

two group-level class model violates the three tested assumptions to some extent. 

Table 6. BVR, BVRgroup & BVRpair residuals for the 3-class, 2-group-class model. 

BIC=4785.3 

 Non-Rep. Creative Diverse Capacities Variation 

Creative 0.763 (.242)     

Diverse 0.248 (.282) 0.028 (.442)    

Capacities 0.183 (.570) 0.359 (.308) 0.504 (.106)   

Variation 0.010 (.706) 0.036 (.272) 0.153 (.016) 0.011 (.790)  

      

BVR-group 1.586 (.000) 1.051 (.058) 0.788 (.164) 1.072 (.132) 0.816 (.316) 

BVR-pair 1.740 (.000) 0.570 (.028) 0.123 (.296) 0.366 (.098) 0.000 (.974) 

 

From Table 4 it can be concluded that improving this model is not achieved by 

increasing the number of classes. Inspecting the BVR measures for these models leads to 

the same conclusion, as a combination of problems on both levels of the model persists 

when increasing either the number of classes on the lower level, the higher level, or both.  

Thus, to improve this model, a solution other than increasing the number of 

classes is required. Starting model improvements on the lower level of the model is often 

the most fruitful, as it is more likely that group-level dependency is introduced by having 
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a wrong specification on the lower level than the reverse (Lukočiené et al. 2010). This is 

due to the higher-level classification being partly determined by the classes on the lower 

level, as can be seen in Equation 2. 

Substantively, the significant dependency between the self-reported variation and 

diversity of work is sensible and including a covariance between these two variables 

seems justified. As shown in Table 7, adding this covariance removes any problematic 

bivariate dependency on the lower level of the model. 

Table 7. Residuals for the 3-class, 2-group-class model, covariance between Variation 

and Diverse. BIC = 4783.2 

 Non-Rep. Creative Diverse Capacities Variation 

Creative 0.101 (.642)     

Diverse 0.602 (.104) 0.022 (.514)    

Capacities 0.871 (.184) 0.001 (.938) 0.178 (.264)   

Variation 0.062 (.400) 0.042 (.316) 0.000 (1.00) 0.028 (.670)  

      

BVR-group 1.576 (.000) 0.973 (.140) 0.776 (.264) 1.037 (.194) 0.842 (.312) 

BVR-pair 1.523 (.000) 0.294 (.130) 0.128 (.296) 0.256 (.138) 0.011 (.780) 

 

Considering the BVRgroup and BVRpair statistics, the logical next step is to add a 

direct effect from the group-level latent variable on the repetitive variable. Such a direct 

effect is the most parsimonious solution in an attempt to capture more dependency and 

improve within-group model fit regarding the repetitive variable, adding only one 

parameter. Substantively too there is evidence that the differences in repetitive work 

between teams reflect on that of the individual tasks (Van Mierlo 2003).  

After adding this effect problems arise in all five variables as depicted in Table 8, 

causing the model to no longer describe the within-team item distributions correctly, nor 

does it adequately capture the dependency between cases. Yet, despite the large shift on 
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the group-level of the model, the lower level does not show any problems. The 

interpretations of the individual level classes (not reported) also do not change, indicating 

that the problems are largely the result of a failure to capture team differences correctly. 

Given that there are problems with all five variables on the group level of the model, 

adding an additional group-level class is the best option here. 

Table 8. Residuals for the 3-class, 2-group-class model, covariance between Variation 

and Diverse and direct effect from group-level latent variable on Repetitive.  

BIC = 4777.1 

 Non-Rep. Creative Diverse Capacities Variation 

Creative 0.004 (.922)     

Diverse 0.737 (.082) 0.068 (.204)    

Capacities 0.962 (.180) 0.026 (.732) 0.046 (.670)   

Variation 0.019 (.664) 0.034 (.212) 0.000 (1.00) 0.090 (.432)  

      

BVR-group 1.544 (.000) 1.405 (.000) 1.356 (.000) 1.194 (.040) 1.125 (.048) 

BVR-pair 1.657 (.000) 0.930 (.006) 1.325 (.002) 0.458 (.048) 0.280 (.070) 

 

Adding a third group-level class indeed solves most problems on the higher level 

of the model, as can be seen from Table 9. In this model the covariance between the 

variation and diverse variable, as well as the direct effect on the repetitive variable are 

retained. As a final adaptation a direct effect from the group-level latent variable on the 

creative variable is added, following the BVRgroup value, and the reasoning that the 

structure of a team and the overall packet of tasks it realizes may have a direct effect on 

the creativity an employee has in accomplishing their share of the teamwork. 
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Table 9. Residuals for the 3-class, 3-group-class model, with covariance between 

Variation and Diverse and direct effect from group-level latent variable on Repetitive. 

BIC = 4768.9 

 Non-Rep. Creative Diverse Capacities Variation 

Creative 0.073 (.720)     

Diverse 0.315 (.214) 0.054 (.362)    

Capacities 0.620 (.274) 0.170 (.536) 0.003 (.880)   

Variation 0.046 (.378) 0.114 (.154) 0.000 (1.00) 0.053 (.546)  

      

BVR-group 1.041 (.046) 1.185 (.012) 0.843 (.316) 1.150 (.054) 0.931 (.290) 

BVR-pair 0.138 (.214) 0.589 (.020) 0.051 (.496) 0.326 (.118) 0.092 (.454) 

  

In Table 10 the BVR, BVRgroup, and BVRpair residuals for the final model are 

presented. Further attempts to make this model more parsimonious, result in models 

where significant residuals are reintroduced.  

Table 10. Residuals for the three class, three group-class model, with covariance between 

Variation and Diverse and direct effects from group-level latent variable on Repetitive 

and Creative. BIC = 4775.3 

 Non-Rep. Creative Diverse Capacities Variation 

Creative 0.001 (.950)     

Diverse 0.530 (.108) 0.085 (.192)    

Capacities 0.837 (.186) 0.005 (.858) 0.090 (.454)   

Variation 0.003 (.890) 0.048 (.238) 0.000 (1.00) 0.023 (.716)  

      

BVR-group 0.771 (.260) 0.739 (.452) 0.927 (.112) 1.083 (.136) 0.914 (.216) 

BVR-pair 0.016 (.628) 0.011 (.696) 0.202 (.174) 0.280 (.150) 0.014 (.728) 

 

The profile of this final model is presented in Table 11. Comparing these results 

to those in Table 5, it becomes clear that the individual-level classification is practically 

identical to that obtained in the model with two group-level latent classes, and three 

individual-level latent classes. On the group-level the additions to the model, an extra 

latent class and two direct effects, led to splitting up the large first class from the initial 
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solution. The second group-level class in this model is similar to the second class in the 

model presented in Table 5. The first class from Table 5, however, is split up into two 

classes. These two classes are rather similar when compared to each other, as well as 

when compared to the class from the first model, but with a large difference in degree of 

task repetition reported by the team members. 

Table 11. Profile for the three class, three group-class model, with covariance between 

Variation and Diverse and direct effects on Repetitive and Creative. BIC = 4775.3 

 GClass 1 

Repetitive 

GClass 2 

Defined 

GClass 3 

Non-Rep. 

Class 1 

Diverse 

Class 2 

Structure 

Class 3 

Creative 

Overall 

Non-Rep. .301 .316 .613 .554 .130 .233 .400 

Creative .660 .348 .674 .731 .077 .844 .557 

Diverse .822 .521 .754 .953 .209 .526 .698 

Capacity .753 .590 .707 .851 .444 .342 .683 

Variation .786 .506 .704 .962 .263 .000
a 

.665 

        

Class 1 .784 .529 .678     

Class 2 .122 .382 .195     

Class 3 .095 .090 .127     

        

Prevalence .352 .345 .302 .613 .284 .103  
a. Boundary solution. 

 

The results from Table 11 clearly show the difficulty in capturing team 

differences using team-level classes, as the first and third class only differ with respect to 

the degree of task repetition. Given that the group-level classes in the initial model are 

only affecting the indicators indirectly through the lower-level latent class, such a 

relatively small difference between teams may become obscured between other 

characteristics that the teams do have in common. That is, detecting these specific 

characteristic on the team-level in a model without direct effects from the team-level 

latent variable also requires more classes on the lower level. Such an addition of latent 
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classes on either level is not warranted when inspecting the BIC values for these models, 

which are known to favor model parsimony. However, through the proposed BVRgroup 

and BVRpair this lack of a direct effect between the group-level latent class and the 

repetitiveness variable could be detected, as well as the subsequent need for an additional 

class on the group level. 

Maybe more importantly, due to the improved fit and the possibility to test 

assumptions, the model arrives at different substantive results. In this instance, the added 

group-level class causes a separation primarily based on task repetitiveness. Given that 

the interest lies on relating the classes to well-being as an outcome, the results may differ 

between the original model as depicted in Table 5, and the better fitting model arrived at 

in Table 11. When, for example, task repetitiveness on the team level is detrimental to 

employee well-being it would have been hard to distinguish as an important factor in the 

model with two group-level classes. It would however be visible in the model with three 

group-level classes where a comparison between group-level classes one and three would 

identify repetitiveness as an important factor. 

Using the residuals as additional guidance now results in a model with substantial 

better fit that would likely not have been found when only relying on the BIC or 

comparable criteria. Both the proposed BVRgroup and BVRpair, in combination with the 

BVR, allow detection of the initial assumption violations, and identify not only which 

part of the model, but also which specific parameters may prove problematic. Misfit can 

be pinpointed and tested, allowing for far more informed and directed model adjustments, 

which may lead to different, more thoroughly tested, substantive results. 
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5. DISCUSSION 

Several problems exist when solely using global fit statistics or information criteria for 

model selection in multilevel LC analysis. Due to the lack of local fit statistics potential 

model misfit may go unnoticed, and there is no information available as to how a model 

might be adjusted and improved. Therefore two new local fit statistics, the BVRgroup and 

BVRpair, are proposed, which test individual areas of the model and as such help in 

determining which areas of the model are problematic and how a model can best be 

improved. In conjunction with the standard BVR, they also allow the two local 

independence assumptions central to multilevel LC models to be inspected and tested. 

Computation of both the BVRgroup and BVRpair is already implemented in the user-

friendly LatentGOLD 5.0 software package. 

By using the BVRgroup and BVRpair as additional guidance to test and improve a 

multilevel LC model, it is shown that they enhance the ease with which fruitful model 

adjustments can be found. The model obtained by relying on the two residuals has better 

global fit and is known to better adhere to the local independence assumptions. The 

usefulness of the residuals is further emphasized by the change in substantive results 

between the initial model selected through the BIC, and the latter model as improved 

through the use of the proposed statistics. That is, the misfit that is detected in this 

instance is not a mere misspecification against which the model is robust, but actually 

distorts model based conclusions.  

In this case then the important sources of misfit that affect the results have been 

picked up by the two residuals. Still, this paper serves as an introduction and a more in-
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depth simulation study is lacking. Such a future study would not so much focus on the 

type I error rates, as the process of p-value bootstrapping is identical to that of the BVR 

for which it has been extensively tested (Oberski et al. 2013). Rather, it would focus on 

the consistency with which misspecification is detected under different circumstances and 

in more complex models, such as models incorporating covariates. 

An additional extension that does require future work is to develop a similar 

residual for LC models for longitudinal data, where dependencies can be assumed to take 

on the form for autocorrelation structures. Furthermore the use of the BVRgroup and 

BVRpair  may be studied for different methods and models that could also benefit from 

these statistics (see e.g. Varriale and Vermunt 2012). Where they are originally aimed at 

testing the local fit of multilevel LC models, they can be applied to all cases where 

categorical multilevel data is used, since the observed frequencies would be identical, and 

only the expected frequencies would need to be obtained from the alternative approach.  
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APPENDIX A. LATENTGOLD SYNTAX 

The full syntax is given for the first model, only the equations and latent variables change 

thereafter. The high number of starting value sets and EM and NR iterations were not 

required for these models, but used for convenience as not to have to revisit and tweak 

the values. 

 

First model, 3-class and 2-group-class without covariances or direct effects: 

options 

   maxthreads=all; 

   algorithm  

tolerance=1e-100 emtolerance=0,0001 emiterations=250000 

nriterations=5000; 

   startvalues 

      seed=0 sets=500 tolerance=1e-005 iterations=500; 

   bayes 

      categorical=0 variances=0 latent=0 poisson=0; 

   montecarlo 

      allchi2 seed=0 sets=0 replicates=500 tolerance=1e-008; 

   quadrature   

 nodes=10; 

   missing   

 excludeall; 

   output       

parameters=effect  betaopts=wl standarderrors profile 

probmeans=posterior bivariateresiduals estimatedvalues=model 

iterationdetails; 

 

variables 

   groupid  

 team; 

   dependent  

w_rep nominal, w_cre nominal, w_div nominal, w_cap nominal, w_var 

nominal; 

   latent 

      GClass  group nominal 2,  

      Cluster nominal 3; 

 

equations 

   GClass <- 1; 

   Cluster <- 1 | GClass; 

   w_rep <- 1 + Cluster; 

   w_cre <- 1 + Cluster; 

   w_div <- 1 + Cluster; 

   w_cap <- 1 + Cluster; 

   w_var <- 1 + Cluster; 

 

  



ii 
 

3-class, 2-group-class model, covariance between Variation and Diverse: 

equations 

   GClass <- 1; 

   Cluster <- 1 | GClass; 

   w_rep <- 1 + Cluster; 

   w_cre <- 1 + Cluster; 

   w_div <- 1 + Cluster; 

   w_cap <- 1 + Cluster; 

   w_var <- 1 + Cluster; 

   w_var <-> w_div; 

  

3-class, 2-group-class model, covariance between Variation and Diverse and direct effect 

from group-level latent variable on Repetitive: 

equations 

   GClass <- 1; 

   Cluster <- 1 | GClass; 

   w_rep <- 1 + Cluster + GClass; 

   w_cre <- 1 + Cluster; 

   w_div <- 1 + Cluster; 

   w_cap <- 1 + Cluster; 

   w_var <- 1 + Cluster; 

   w_var <-> w_div; 

 

3-class, 3-group-class model, covariance between Variation and Diverse and direct effect 

from group-level latent variable on Repetitive: 

Variables 

   … 

   latent 

      GClass  group nominal 3,  

      Cluster nominal 3; 

 

equations 

   GClass <- 1; 

   Cluster <- 1 | GClass; 

   w_rep <- 1 + Cluster + GClass; 

   w_cre <- 1 + Cluster; 

   w_div <- 1 + Cluster; 

   w_cap <- 1 + Cluster; 

   w_var <- 1 + Cluster; 

   w_var <-> w_div; 
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3-class, 3-group-class model, covariance between Variation and Diverse and direct 

effects from group-level latent variable on Repetitive and Creative: 

equations 

   GClass <- 1; 

   Cluster <- 1 | GClass; 

   w_rep <- 1 + Cluster + GClass; 

   w_cre <- 1 + Cluster + GClass; 

   w_div <- 1 + Cluster; 

   w_cap <- 1 + Cluster; 

   w_var <- 1 + Cluster; 

   w_var <-> w_div; 

 

APPENDIX B. SURVEY QUESTIONS 

The survey questions are part of the Questionnaire on the Experience and Assessment of 

Work [NL: Vragenlijst beleving en beoordeling van de arbeid (VBBA)].  

Repetition - In your work, do you repeatedly have to do the same things? 

Creativity - Does your work require creativity? 

Diversity - Is your work varied? 

Capacity - Does your work sufficiently require all your skills and capacities? 

Variety - Do your have enough variety in your work? 

 

Veldhoven, van, Marc, Theodorus F. Meijman, Jacobus P. J. Broersen, and R. J. Fortuin. 

1997. Handleiding VBBA: Onderzoek naar de beleving van psychosociale 

arbeidsbelasting en werkstress met behulp van de vragenlijst beleving en beoordeling 

van arbeid. [VBBA manual: An investigation of perceptions of psychosocial workload 

and work stress by means of the Dutch Questionnaire on the Experience and Evaluation 

of Work]. Amsterdam, NL: SKB. 

See also http://www.marcvanveldhoven.com/ques.html 

http://www.marcvanveldhoven.com/ques.html

