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Abstract 

In item response theory, modeling the item response times in addition to the item responses may 

improve the detection of possible between- and within-subject differences in the process that resulted 

in the responses. For instance, if respondents rely on rapid guessing on some items but not on all , the 

joint distribution of the responses and response times will be a multivariate within-subject mixture 

distribution. Suitable parametric methods to detect these within-subject differences have been 

proposed. In these approaches, a distribution needs to be assumed for the within-class response times. 

In this paper, it is demonstrated that these parametric within-subject approaches may produce false 

positives and biased parameter estimates if the assumption concerning the response time distribution is 

violated. A semi-parametric approach is proposed which hardly produces false positives and parameter 

bias. In addition, the semi-parametric approach has approximately the same power to detect within-

subject differences in responses and response times as compared to the parametric approach.  

 

Keywords: Item Response Theory, Response times, Mixture Modeling;  
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The interest in response times in item response theory modeling (IRT) dates back to many decennia ago 

(Thorndike, Bregman, Cobb, & Woodyard, 1926). Since then, effort has been devoted to the 

development of IRT models for responses and response times (e.g., Roskam, 1987; Thissen, 1983; see 

Schnipke & Scrams, 2002, for a more comprehensive overview). Recently, the work in this area was 

boosted by the development of a general modeling framework for responses and response times (Van 

der Linden 2007; 2009). In this framework, measurement models are specified for the responses and 

response times separately, after which these models are connected by correlating the random effects 

across the models. Key characteristic of this framework is that the responses and response times are 

independent conditional on the underlying latent speed and latent ability variables. Various instances 

and extensions of the general approach have been developed since then, including, for instance: 

multilevel models (Klein Entink, Fox, & Van Der Linden, 2009), models for different distributions of the 

response times (Klein Entink, Van der Linden, & Fox, 2009; Loeys, Legrand, Schettino, & Pourtois, 2014; 

Wang, Chang, Douglas, 2013; Wang, Fan, Chang, & Douglas, 2013; Ranger & Kuhn, 2012; Ranger & 

Ortner, 2012a, 2013), and models for personality data (Ferrando & Lorenzo-Seva, 2007a; 2007b). Also, 

some of the earlier approaches (e.g., Roskam, 1987; and Thissen 1983) are special cases.  

 The main purpose to incorporate the response times as an additional source of information 

about individual differences in the existing IRT models has been twofold (see Molenaar, 2015). First, it 

has been shown that the response times may improve measurement precision of the latent ability in 

traditional IRT models (Ranger & Ortner, 2011; Van der Linden, Klein Entink, & Fox, 2010). Second, the 

response times may shed light on differences in the psychological process that resulted in the responses. 

That is, the response times have been used to detected aberrant responses (Van der Linden & Guo, 

2008; Marianti, Fox, Avetisyan, Veldkamp, & Tijmstra, 2014), guessing (Schnipke & Scrams, 1997), 

differences in the adopted solution strategy (Van der Maas & Jansen, 2003), item preknowledge 

(McLeod, Lewis, & Thissen, 2003), warming-up and slowing down effects (Van der Linden, 2009b), 
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effects related to testing (Carpenter, Just, & Shell, 1990), and faking on personality items (Holden & 

Kroner, 1992). 

 Although response times have been successfully used for the two purposes above, some 

challenges still remain. For instances, with respect to improving the measurement precision, it has been 

shown within the general framework that the benefits of adding the response times are limited and 

largely apply to the easier items only (Ranger, 2013). Furthermore, with respect to detecting differences 

in the response process, inferences have been hampered by the focus on models for between-subject 

inferences only (Molenaar, Oberski, Vermunt, & De Boeck, 2016). 

 With respect to the latter, effort has been devoted to develop IRT models that explicitly take 

into account the within-subject differences in responses and response times. The conventional 

between-subject approaches assume that the item and person properties are constant within a given 

respondent. In the within-subject approaches, this is not necessarily the case.  Specifically, item and/or 

person properties are allowed to be different for responses that differ in their response time. As a 

result, conditional independence between the responses and response times is violated.  

To model within-subject differences, research has focused on models with two item specific 

classes underlying the responses and response times (DiTrapani, Jeon, De Boeck, & Partchev, 2016; Jeon 

and De Boeck, 2016; Molenaar, Oberski, Vermunt, & De Boeck, in press; Molenaar, Bolsinova, Rozsa, 

and De Boeck, 2016; Partchev & De Boeck, 2012; Wang & Xu, 2015;). In one class the item properties of 

the faster responses are modeled, and in the other class, the item properties of the slower responses 

are modeled. Next, class membership may vary from item to item for each respondent. In this way, 

within-subject differences are captured by the class variables enabling inferences about differences in 

the underling response processes. Thus, in these approaches, within-subject differences arise because of 

discrete differences in the response process. These differences may reflect true discrete differences in 

the response process (e.g., guessing and non-guessing, two different solution strategies, or item 
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preknowledge on some of the items). However, the classes do not necessarily need to be substantively 

interpretable. They can also be seen a statistical tool to capture the heterogeneity of the responses with 

respect to the response times. That is, there may be more classes in the data, or the measurement 

properties may differ continuously across the response times (see Bolsinova, Tijmstra, & De Boeck, 

2016; Bolsinova, Tijmstra, & Molenaar, 2016; Fox, & Marianti, 2016), however, the two classes in the 

model are used to statistically capture the most important patterns in the data.  

In the models for discrete within-subject differences, Partchev and De Boeck (2012), DiTrapani 

et al. (2016), and Jeon and De Boeck (2016) operationalized the faster and slower classes by 

dichotomizing the response times to obtain the item class variables for each respondent. This approach 

results in deterministic classes with the class size chosen by the researcher (i.e., depending on the cutoff 

point that is used to dichotomize the response times). In addition, the amount of information in the 

continuous response times is reduced. To this end, Molenaar et al. (in press) proposed an approach 

based on mixtures modeling (see also Wang & Xu, 2015). In this approach, the classes are 

operationalized by a two component multivariate mixture distribution on the responses and response 

times simultaneously. As a result, the classes are stochastic with the class sizes estimated from the data. 

In addition, the continuous nature of the response times is retained. However, to enable such a mixture 

modeling approach, the distribution of the response times within each class needs to be specified. 

Molenaar et al. and Wang and Xu presented approaches for log-normal response time distributions 

within each class.  

The aim of the present study is twofold. First, it will be demonstrated that the within-subject 

mixture modeling framework is sensitive to violations of the assumed response time distribution. That 

is, if the response time distribution departs from the assumed distribution: 1) spurious classes may be 

detected if there are no classes underlying the data; and 2) parameter estimates are biased if there are 

truly different classes in the data. Key of the problem is the misspecification of the response time 
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distribution which can obviously be solved by specifying a more appropriate response time distribution 

for the data. However, doing so is challenging as it is hard to infer the true distribution within each class 

from the data. That is, the observed response time distribution will depart from the within-class 

distribution by definition because of the mixture of the two within-class distributions. For instance, if the 

within-class distribution is log-normal, the observed marginal response time distribution will depart 

from a log-normal distribution. Thus, it is unclear whether departures from log-normality reflect a 

mixture of two classes or whether the departures reflect a misspecified response time distribution . 

Therefore, it is hard to infer a plausible distribution for the within-class response time distributions from 

the marginal response time data.  

A second aim of the present study is that it will be shown that the problem outlined above can 

be remedied by adopting a semi-parametric within-subject mixture modeling approach. This is a 

practical but effective approach in which the distributional assumption on the response times is relaxed 

by categorizing the response times into an arbitrary number of categories. Next, to the responses and 

categorized response times, a suitable within-subject mixture model is applied that takes the categorical 

nature of the response times into account. We refer to this approach as ‘semi-parametric’ as the 

assumption on the response time distribution is less stringent as compared to the parametric (log-

normal modeling) approach. In a simulation study we show that the semi-parametric approach hardly 

results in false positives or parameter bias even if the response time distribution is truncated or highly 

skewed. In addition, it is shown that the power to detect the different classes in the data is not affected 

in the semi-parametric approach as compared to the parametric approach. 

The outline is as follows: First, we present the parametric within-subjects mixture model with 

log-normal response times within the classes. Next, in a simulation study we show that this model is 

associated with false positives and parameter bias if the assumption of log-normal response times is 

violated. Then, we present the semi-parametric alternative and we show on the same simulated 
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datasets as above that this approach does hardly suffer from false positives and parameter bias. Then, 

we apply the parametric and semi-parametric approaches to a real dataset pertaining to logical 

reasoning. We end with a general discussion. 

 

The Parametric Within-Subject Mixture Model 

In the parametric within-subject mixture approach, a latent class variable Cpi is assumed to underlie the 

response of respondent p on item i (Molenaar et al., in press; Wang & Xu, 2015). In principle, Cpi can 

have multiple levels, referred to as states. Here, we focus on two states, a slower state Cpi = 0, and a 

faster state, Cpi = 1, which are all collected in the state vector cp = [Cp1, Cp2, …, Cpn]. The probability of 

response vector xp = [Xp1, Xp2, …, Xpn] is then given by 

 

 𝑃(𝒙𝑝|𝜃𝑝 , 𝒄𝑝) = ∏ ω(𝛼𝑠𝑖 × 𝜃𝑝 + 𝛽𝑠𝑖)
𝑥𝑝𝑖

ω(−[𝛼𝑠𝑖 × 𝜃𝑝 + 𝛽𝑠𝑖])
1−𝑥𝑝𝑖

 𝒏
𝒊=𝟏    (1) 

 

where θp is the latent ability, ω(.) is the logistic function, α si is the discrimination of item i in state s = 0, 

1, and βsi is the easiness of item i in state s.  Next, within each state, the response times are assumed to 

have a log-normal distribution such that the vector of log-transformed response times,  

tp = [lnTp1, lnTp2, …, lnTpn] can be modeled using a conditional multivariate normal distribution with 

uncorrelated dimensions, that is, 

 

 𝑓(𝒕𝑝|𝜏𝑝 , 𝒄𝑝) = ∏
1

√2𝜋𝜎𝜀𝑖
2

exp [−
1

2

(𝑙𝑛𝑇𝑝𝑖 −𝜇𝑝𝑖|𝜏𝑝,𝐶𝑝𝑖)
2

𝜎𝜀𝑖
2

]𝑛
𝑖=1        (2) 

 

 

with 
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 𝜇𝑝𝑖|𝜏𝑝, 𝐶𝑝𝑖 = 𝐸(𝑙𝑛𝑇𝑝𝑖|𝜏𝑝 , 𝐶𝑝𝑖) = 𝜈𝑖 − 𝛿 × 𝐶𝑝𝑖 − 𝜏𝑝        with δ > 0    (3) 

 

where τp is the latent speed, σεi
2 is the residual variance, ν i is the time intensity, and δ is the difference in 

log-response time between the states Cpi = 0 and Cpi = 1. The constraint δ > 0 is imposed to ensure that 

state Cpi = 1 correspond to the faster state (i.e., response times in this state are smaller).  

In the model given by Equations 1, 2, and 3, it is assumed that the item effects are fixed and the 

subject effects are random (see Molenaar, Tuerlinckx, and Van der Maas, 2015; Ranger and Ortner, 

2012b; Van der Linden & Guo, 2008; Wang, Chang, & Douglas, 2013; Wang, Fan, Chang, & Douglas 

2013). For the random subject effects, θp and τp, a bivariate normal distribution is assumed with means 

μθ and μτ, with variances σθ
2 and στ

2, and covariance σθτ. For identification reasons μθ = μτ = 0 and σθ
2 = 1. 

No further constraints are needed to identify the model. The latent class variable, Cpi, is assumed to be 

distributed according to a Bernoulli distribution with success probability π, such that 

 

𝑃(𝒄𝑝) = ∏ 𝝅𝑪𝒑𝒊(1 − 𝜋)𝟏−𝑪𝒑𝒊𝑛
𝑖=1 .       (4) 

 

Thus, it is assumed that the item states are independent and time homogenous (i.e., the item states 

have equal state probabilities across items) with P(Cp=1) = π. It is possible to relax the independence 

assumption by introducing a time homogenous first-order Markov structure on the item states (e.g., 

MacDonald, & Zucchini, 1997; Vermunt, Langeheine, & Bockenholt, 1999), see Molenaar et al. (in press). 

We will refer to the model above as the Parametric Item States Model (ISM). Note that in data for which 

the model above holds, the assumption of conditional independence that is commonly imposed in the 

framework of Van der Linden (2007) is violated.   
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 The approach by Partchev and De Boeck (2012) to separate within-subjects from between-

subject effects in responses and response times can be seen as a special case of the ISM where the class 

variables, Cpi, are observed variables. That is, the observed response times are dichotomized to obtain 

Cpi. In this way, β0i, β1i, α0i and α1i from Equation 1 can be estimated using standard IRT packages (see De 

Boeck & Partchev, 2012; Jeon & De Boeck, 2016). As discussed above, this approach does not take into 

account the measurement error in the assessment of Cpi. In addition, π depends on the cutoff point used 

to dichotomize the response times.     

The free parameters in the parametric ISM include: α0i, α1i, β0i, β1i, δ, νi, σε
2 στ

2, σθτ and π for all i. 

If the parameters are collected in model parameter vector, η, then the log marginal likelihood of 

response vector xp and the log- response time vector tp for the parametric ISM is given by 

 

ℓ(𝒙𝑝, 𝒕𝒑;) = 𝑙𝑛 ∬ ∑ ∑ ⋯ ∑ 𝑃(𝒙𝑝|𝜃𝑝 , 𝒄𝑝)𝑓(𝒕𝑝|𝜏𝑝 ,𝒄𝑝)𝑃(𝐶𝑝)2
𝐶𝑝𝑛

2
𝐶𝑝2

2
𝐶𝑝1

∞

−∞ 𝑔(𝜃𝑝 , 𝜏𝑝)𝑑𝜃𝑑𝜏 (5) 

  

 

where 𝑃(𝒙𝑝|𝜃𝑝 , 𝒄𝑝) is given by Equation 1, 𝑓(𝒕𝑝|𝜏𝑝 ,𝒄𝑝) is given by Equation 2, and g(.) is the bivariate 

normal density function.  

Baseline model 

To enable inferences about the relative goodness-of-fit of the item states model, a baseline model is 

needed (see Molenaar et al., in press). To derive a baseline model, the slower state is assumed to be 

empty (i.e., π = 1) with equal discrimination and easiness parameters in both states (i.e., α i = α0i = α1i and 

βi = β0i = β1i). In addition, δ = 0. The resulting model is a latent variable model with a two parameter 

model for the responses and a linear model for the response times and correlated random subject 

effects. This model is identical to the hierarchical model for responses and response times of Van der 
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Linden (2007) with fixed item effects (see Molenaar, Tuerlinckx, & van der Maas, 2015; Ranger & Ortner, 

2012b). We will simply refer to this model as the Baseline Model or BM.  

 

Simulation Study 1A 

In simulation study 1A we show that 1) the parametric ISM model is viable if the response times are 

truly log-normal; 2) if the response time distribution departs from a log-normal distribution, the 

parametric ISM produces false positives and biased parameter estimates.  

Method 

Scenarios 

We simulated data according to 6 scenarios. The first 3 scenarios (S1b, S2b, and S3b) concern baseline 

scenarios in which the data do not include item states. The scenarios differ in the exact distribution that 

is used for the log-transformed responses times. These are either normal, truncated, or skewed. 

Specifically, we consider the following scenario’s: 

S1b: A normal BM. In this scenario, the data are generated using a baseline model with normally 

distributed log-response times. In this normal baseline model, we used α i = 1 for all i. For the easiness 

parameters, βi, we used increasing, equally spaced values between -2 and 2. The time intensity 

parameters are chosen to ν i = 2 for all i and the residual response time variances are chosen to σεi
2 = 0.2 

for all i. In addition, στ
2 = 0.0625 and σθτ = 0.1 such that the correlation between θp and τp equals ρθτ = .4. 

See the top row in Figure 1 for a normal QQ-plot and a histogram of the response times to an example 

item within this scenario. 

S2b: A truncated BM. In this scenario, the data are generated using the same setup as in S1b. However, 

instead of the normal distribution for the log-response times, a truncated normal distribution is used 

with truncation at the upper limit, lnTpi = log(12) such that the untransformed response time distribution 
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is truncated at 12 seconds. See the middle row in Figure 1 for a normal QQ-plot and a histogram of the 

response times to an example item within this scenario. 

S3b: A skewed BM. In this scenario, the data are generated using the same setup as in S1b. However, the 

normal log-response times are transformed using a Box-Cox transformation (Box & Cox, 1964). 

Commonly the Box-Cox transformation, X’ = (Xλ – 1) / λ, is used to transform skewed variables (X in this 

case), such that the transformed variable, X’, is closer to a normal distribution. Here, we use the 

transformation the other way around. That is, we transform the normally distributed log-response times 

using lnTpi’ = (λ × lnTpi +1)λ, such that the transformed log-response times, lnTpi’, are skewed. For 

transformation parameter λ we use 0.3. See the bottom row in Figure 1 for a normal QQ-plot and a 

histogram of the response times to an example item within this scenario.  

The remaining 3 scenarios (S1s, S2s, and S3s) are scenario’s in which the data do include 

different item states. The scenarios differ in the exact distribution that is used for the log-transformed 

response times. That is, each scenario corresponds to a baseline scenario above (S1b, S2b, or S3b). That 

is: 

S1s: A normal ISM. In this scenario, the data are generated using the ISM model given by Equations 1, 2, 

3, and 4. The true parameter values are chosen as follows. First, we chose δ = 0.5 and π = .5. For the 

discrimination parameters, we used α0i = 1 and α1i = 1.5. For the easiness parameters, we used 

increasing, equally spaced values between -2 and 0 for β0i and between 0 and 2 for β1i. These differences 

may seem large, but together with the other parameter choices above, these values resulted in residual 

correlations between the responses and the log-response times of around 0.11 which are reasonable. 

For instance, Molenaar et al. (2016) found residual correlations between 0.07 and 0.16 in the 

standardization data of the Hungarian WISC-IV block design test. The response time parameters ν i, σεi
2, 

στ
2, σθτ are given the same values as in the normal baseline scenario S1b. 
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S2s: A truncated ISM. In this scenario, the data are generated using the same setup as in S1s. However, 

similar as in baseline scenario S2b, we use a truncated normal distribution for the log-response times 

with truncation at the upper limit, lnTpi = log(12).  

S3s: A skewed ISM. In this scenario, the data are generated using the same setup as in S1s. However, 

similar as in baseline scenario S3b, the normal log-response times are transformed using a Box-Cox 

transformation, with the transformation parameter, λ, equal to 0.3.  

Procedure 

We conducted 100 replications of each scenario. For the data within each replication, the Parametric 

ISM is fit (P-ISM) together with its corresponding parametric baseline model (P-BM). Next, the model fit 

of the P-ISM and the P-BM are compared using the Akaike Information Criterion (AIC; Akaike, 1987), the 

Bayesian Information Criterion (BIC; Schwarz, 1978), the AIC3 (Bozdogan, 1993), the Consistent AIC 

(CAIC; Bozdogan, 1987), and the sample size adjusted BIC (saBIC; Sclove, 1987). We used 20 items and 

500 subjects. Models are estimated using marginal maximum likelihood estimation in the LatentGOLD 

software package (Vermunt & Magidson, 2013). We used 100 nodes to approximate the two integrals in 

the likelihood function (10 nodes for each dimension). Syntax to fit the different models is available 

from the website of the first author.  
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Results 

False positive and true positive rates.  

Table 1 contains the false positive and true positive rates of the P-ISM in the different scenario’s. First, 

the false positive rate is obtained by considering the acceptance rates of the P-ISM over the P-BM in the 

scenarios in which the data do not contain item states (S1b, S2b, and S3b). As can be seen from Table 3, 

for the P-ISM, there are no false positives in the case of a baseline model with normally distributed log-

response times. However, if the log-response time distribution is either truncated (S2b) or skewed (S3b) 

the P-ISM is never rejected (false positives rate of 1.00) despite the fact that the data do not include 

item states. Similarly, the true positive rate is obtained by considering the acceptance rates of the P-ISM 

over the P-BM in the scenarios in which the data do indeed contain different item states (S1s, S2s, and 

S3s). As can be seen from Table 3 the true positive rate is 1.00 in all cases.  

Parameter recovery 

See Table 2 for the means and standard deviations of the estimates for the class size parameter, π, the 

response time difference between the states, δ, the variance of τp, στ
2, and the correlation between 

speed and ability, ρ, in the scenario’s where the data truly contain different item states (S1s, S2s, S3s). 1 

As can be seen from the table, if the within-class distribution of the log-response times is normal (S1s), 

parameters are adequately recovered. However, in the case of truncation (S2s) or skewness (S3s) in the 

distribution of the log-response times, all parameters are biased except for ρ, the correlation between 

θp and τp. 

Box plots of the parameter estimates of the odd items in the P-ISM for the scenarios that 

include item states (S1s, S2s, and S3s) are depicted in Figure 2 for the item easiness parameters, β0i and 

β1i, and Figure 3 for the discrimination parameters, α0i and α1i. As expected, the parameters are 

                                                                 
1 We estimate the Cholesky decomposed covariance matrix of θp and τp. However, for the ease of presentation we 

transformed these parameters into στ
2 and ρ. In addition, we estimated logit(π) but we present the results for π.  
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acceptably recovered in the P-ISM if the data is generated according to the normal item states scenario 

(S1s; left plot in Figure 2 and Figure 3). However, if the data is generated according to the truncated 

item states scenario (S2s; middle plot in Figure 2 and Figure 3) or skewed item states scenario (S3s; right 

plot in Figure 2 and Figure 3), the parameters are systematically biased in the P-ISM. Specifically, the 

difference between the faster and slower states is underestimated: In the case of truncation, β 1i and α1i 

are recovered acceptably (i.e., bias seem small), but β0i and α0i are underestimated. In the case of 

skewness, β1i is underestimated and β0i is recovered acceptably. Parameter α0i and α1i seem to be hardly 

biased in the case of skewness but the estimates of α 0i have very large standard errors. 

 

A Semi-Parametric Item States Model 

As we showed in the simulation study above, the parametric model is sensitive to violations of the 

normality assumption in Equation 2. That is, if the distribution of the response times departs from the 

log-normal (e.g., the response time distribution is truncated due to an item time limit), spurious item 

states may be detected and parameters are biased. 

As a solution, we propose a semi-parametric item states model. The semi-parametric model 

differs from the model above in that the response times are categorized, that is,  the categorized 

response times, Tpi’, are obtained from the raw response times, Tpi, as follows: 

 

 𝑇𝑝𝑖
′ = 𝑧     if     𝑇𝑝𝑖 ∈ (𝑏𝑧𝑖 ,𝑏(𝑧+1)𝑖)     with   z = 0, 1, …, Z-1     (6) 

 

where bzi are the thresholds at which the response times are categorized with b0i = 0 and b(Z-1)i = ∞, and 

Z denotes the number of categories that is used. Both the thresholds bzi and the number of response 

time categories, Z, are chosen by the researcher. But as we illustrate in the real data application, 

multiple option can be considered to study the robustness of the results. 
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Next, within the semi-parametric item states model, the probability of the vector of categorized 

response times, tp’ = [Tp1’, Tp2’, …, Tpn’], is subjected to an adjacent categories model 

 

𝑃(𝒕𝑝
′ |𝜏𝑝 , 𝒄𝑝) = ∏

𝒆𝒙𝒑(∑ γzi−𝛿×𝐶𝑝𝑖−𝜏𝑝
𝑻𝒑𝒊

′

𝒛=𝟎
)

∑ 𝒆𝒙𝒑(∑ γzi−𝛿×𝐶𝑝𝑖−𝜏𝑝
𝒋
𝒛=𝟎

)𝒁−𝟏
𝒋=𝟎

𝒏
𝒊=𝟏            with δ > 0    (7) 

 

where γ𝑧𝑖 are response time category parameters for category z of the response times of item i. 

Category parameter γ0i is chosen in such a way that 

 

∑ −𝛿𝑠 − 𝜏𝑝
𝟎
𝒛=𝟎 + γ0i = 0.         (8) 

 

Equation 7 together with the model for the responses in Equation 1 and the bivariate normal 

distribution for θp and τp constitute the full model. The free parameters in the semi-parametric ISM 

include: α0i, α1i, β0i, β1i, γzi, δ, στ
2, σθτ, and π for all i and all z > 0. If these parameters are collected in 

model parameter vector, ζ, then the log marginal likelihood of response vector xp and the categorized 

response time vector tp’ for the semi-parametric ISM is given by 

 

ℓ(𝒙𝑝, 𝒕𝑝
′ ;𝜻) = 𝑙𝑛∬ ∑ ∑ ⋯ ∑ 𝑃(𝒙𝑝|𝜃𝑝 , 𝒄𝑝)𝑃(𝒕𝑝

′ |𝜏𝑝 ,𝒄𝑝)𝑃(𝐶𝑝)𝑔(𝜃𝑝 ,𝜏𝑝)𝑑𝜃𝑑𝜏2
𝐶𝑝𝑛

2
𝐶𝑝2

2
𝐶𝑝1

∞

−∞  (9) 

 

 

where 𝑃(𝒙𝑝|𝜃𝑝 , 𝒄𝑝) is given by Equation 1 and 𝑃(𝒕𝑝
′ |𝜏𝑝 ,𝒄𝑝) is given by Equation 7.  

Baseline model 

For the semi-parametric item states model, the baseline model can be derived in a similar way as was 

done for the parametric normal model above. The resulting model is a latent variable model with a two 
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parameter model for the responses and a partial credit model for the categorized response times and 

correlated random subject effects. This model can be seen as a generalization of the hierarchical model 

for responses and response times of Van der Linden (2007) for categorical response times and fixed item 

effects. 

Simulation Study 1B 

In this simulation study we analyze the same datasets as in simulation study 1A. We show in these data 

that 1) the semi-parametric approach as discussed above hardly suffers from the increased false positive 

rate or the parameter bias as was found for the parametric approach; while 2) the semi-parametric 

approach is still capable of detecting truly different item states in the data with acceptable true positive 

rates.  

Method 

Procedure 

We used the same 100 replications of the 6 scenarios as in simulation study 1a. To these data, we fit the 

three Semi-parametric ISMs with respectively Z=7, Z=5, and Z=3 response time categories (referred to as 

S-ISM7, S-ISM5, and S-ISM3). In addition, we fit the corresponding baseline models (S-BM7, S-BM5, and 

S-BM3). 

For the response time categorization in Equation 6, b0i and bZi are 0 and ∞ by definition. The 

remaining thresholds, b1i, b2i, …, b(Z-1)i are chosen at the Z-quantiles of the observed response time 

distribution of item i, where Z is the number of thresholds used to categorize the response times as 

defined above. We consider this specific procedure to categorize the response times as desirable 

because the thresholds depend on the shape of the response time distribution. In addition, by using this 

approach, it does not matter whether the raw response times or the log-response times are categorized 

as the resulting categorization will be equivalent.  
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For each dataset, the fit of the three item state models (S-ISM7, S-ISM5, and S-ISM3) is 

compared to its corresponding baseline model (S-BM7, S-BM5, S-BM3). All other details concerning 

model estimation and model fit (i.e., the fit indices used, the software, the estimation algorithm, and the 

number of nodes) are the same as in the simulation study 1a. Syntax to fit the different models is 

available from the website of the first author. 

Results 

False positives.  

In Table 3, the false positive rates are depicted for the item states models (S-ISM7, S-ISM5, and S-ISM3) 

in the scenarios in which the data do not contain item states (S1b, S2b, and S3b). As  can be seen from 

the table, the semi-parametric models do not suffer from false positives with false positive rates of 0.00 

for all fit indices except the AIC. The AIC fit index is associated with an increased false positive rate for 

the semi-parametric model with rates between 0.02 and 0.08.  

True Positives.  

In Table 4, the true positives rates are depicted for the item state models in the case of the scenarios in 

which the data truly contain item states (S1s, S2s, and S3s). True positive rates of 0.80 or larger are 

considered as acceptable. As can be seen from the table, generally, the true positive rate is acceptable 

for all models. An exception is the true positive rate of 0.54 for the CAIC of the semi-parametric item 

states model with Z=3 in the case of a truncated response time distribution (scenario S2s).  

Parameter recovery 

See Table 5 for the means and standard deviations of the estimates for the class size parameter, π, the 

response time difference between the states, δ, the variance of τp, στ
2, and the correlation between 

speed and ability, ρ, in the scenario’s where the data truly contain different item states (S1s, S2s, S3s). 

As can be seen from the table, π and ρ are recovered adequately in all scenario’s. However, the mean 

estimates of δ and στ
2 are not close to the true parameter value. However, this is not surprising as both 
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δ and στ
2 are dependent upon the scale of the categorized response times which differs for different 

number of response time categories and different thresholds, β zi. But note that ρ, the correlation 

between θp and τp, which is calculated from στ
2 is unaffected by this scale difference. This parameter is 

adequately recovered. 

Box plots of the parameter estimates of the odd items in the semi -parametric item state models 

(S-ISM7: top row; S-ISM5: middle row; and S-ISM3: bottom row) for the scenarios that include item 

states (S1s, S2s, and S3s) are depicted in Figure 4 for the item easiness parameters, β0i and β1i, and 

Figure 5 for the discrimination parameters, α0i and α1i. Note again that these models have been fit to the 

same simulated data sets as used for the parametric model in Figure 2 and Figure 3. As can be seen, for 

all scenarios and all semi-parametric models, the estimates tend to be unbiased with reasonable 

standard errors. That is, the parameters are acceptably recovered irrespective of the distribution of the 

response times.  

Overall conclusion  

As appears from the results of simulation study 1A and 1B above, if the log-response time distribution 

departs from normality but a normal item states model is applied nevertheless, spurious i tem states 

may be detected by the AIC, BIC, AIC3, CAIC, and saBIC if the data do not contain different item states. If 

the data do contain different item states, the normal item states model is still able to detect these, 

however, parameter estimates are biased. The proposed class of semi-parametric model with Z=7, Z=5, 

and Z=3 were shown to not suffer from these problems while the power to detect different item states 

in the data was hardly affected.    

Illustration 

Data 

The data comprise the responses and response times of 664 Dutch high school students to the 23 items 

of the so-called “puzzles” test. This test is based on the Raven progressive matrices test (Raven, 1962). 
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Each item consists of a matrix that constitutes a pattern but with one element missing. The respondents 

have to indicate which of 5 optional elements would complete the pattern. The items are administered 

using a 40 seconds deadline. As a result, the observed response times show truncation effects with the 

severity of the effect increasing for the later items because the items are of increasing difficulty. 36 

respondents are omitted from the analyses because they showed suspiciously small response times (1 

second or faster) resulting in a sample size of 628 respondents.  

To the data we fitted the same parametric and semi-parametric baseline and item states models 

as considered in the simulation study. We were interested to see whether the results (parameter 

estimates and model fit) are similar across the different approaches. Parameter estimation and 

assessment of model fit is conducted using the same procedure as outlined in the simulation study 

section. 

Results 

See Table 6 for the model fit indices of the different models. As can be seen, for all semi-parametric and 

parametric approaches, the ISM is the best fitting model according to the indices considered. One 

exception is the S-BM3 which is favored over S-ISM3 by the CAIC. However, in the simulation study, the 

CAIC was already shown to have poor power in the case of Z=3 and truncation, see Table 4. We 

therefore accept the ISM model and look into the parameter estimates within this model for the semi-

parametric and parametric approach. 

In Table 7 for the parameters estimates of the class size parameter, π, the response time 

difference between the states, δ, the variance of τp, στ
2, and the correlation between speed and ability, 

ρ, in the ISM models. As can be seen, in the parametric model (P-ISM), the estimate of the faster class 

size, π, is substantially smaller than in the semi-parametric models (S-ISM), .16 versus .38-.44. In 

addition, the estimate of π is relatively stable across the semi-parametric models. The estimate of the 
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response time difference, δ, fluctuates between the semi-parametric models. However, this is expected 

as the scale of τp on which δ is a parameter, depends on the number of response time categories. This is 

also reflected in the estimates of the variance of τp which differs across the semi-parametric models. The 

correlation between θp and τp (i.e., ρ, which we calculated from the estimates of σθτ and στ
2) is however 

stable across the semi-parametric models. In addition, the estimated correlation does not differ 

importantly between the parametric and semi-parametric approaches.  

 In Figure 6 parameter estimates of β0i, β1i,  α0i, and α1i are depicted for the different models. In 

the figure, the items are ordered according to the estimates in S-ISM3 for clarity. As can be seen, the 

estimates of the semi-parametric models are close to each other. The estimates of the parametric 

approach deviate most notably from the semi-parametric approach for β0i and α0i. This is congruent with 

what we found in the truncation scenario of the simulation study. 

To conclude, results seem to be stable between the semi-parametric approaches. That is, the 

exact number of response time categories does affect the results importantly. There are, however, 

notable differences between the semi-parametric approach and the parametric approach in the class 

size parameter, π, and the item parameters. Nevertheless, as we know from the simulation study that 

the semi-parametric models are less sensitive to violations of normality in the log-response times, and 

because the results of the semi-parametric models are largely insensitive to the number of response 

time categories, we trust the results from the semi-parametric better than those of the parametric 

model.  

Discussion 

In the simulation study we established that the parametric item states model is associated with a 

substantial false positive rate and parameter bias if the log-response times are not normally distributed. 

The proposed solution to this problem, a semi-parametric model for the responses and categorized 
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response times was shown to not suffer from this problem, while the true positive rates are still 

comparable to those of the parametric model. 

Generally, categorization of continuous variables is discouraged due to the loss of information 

about individual differences, smaller power, and the arbitrary nature of the thresholds (Cohen, 1983; 

MacCallum, Zhang, Preacher, & Rucker, 2002; Maxwell & Delaney, 1993). In the present mixture 

framework it can however be desirable to categorize the response times such that violations of the 

assumed distribution do not affect the results. In addition, we showed that although the power is 

indeed affected, for our parameter choices in the simulation study, this effect was not large. However, 

in other situations not covered by the simulation study, the loss of power may be larger. The present 

approach can therefore be seen as a conservative approach to the within-subject analysis of responses 

and response times. Furthermore, although the number and the location of the thresholds are indeed 

arbitrary, in the simulation study and the real data application, we showed that results are largely 

consistent across models with different numbers of response time categories. In practice we thus advice 

to always fit the semi-parametric approach using different numbers of response time categories to 

investigate the stability of the results. 

With respect to the exact categorization of the response times, we chose a quantile -based 

approach resulting in equal-distant scores that are uniformly distributed. This approach was shown to 

perform well in the simulation study in terms of parameter recovery and power. However, an 

alternative approach might be to use the mid-points within each category such that the categorized 

distribution resembles the observed response time distribution better. 

In the present paper, we demonstrated that if the data do not contain classes (item states) with 

different response and response time properties and a normal distribution is wrongfully assumed for the 

log-transformed response times, spurious classes may arise. The same will hold for the case where there 
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are two classes underlying the data, if a normal log-response time model is applied to these data, 

additional classes may be detected. 

In the present undertaking, we assumed the classes to be independent. However, it would be 

interesting to consider relaxing this assumption in future work by extending the present approach to 

include a Markov structure on the item states.  
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Table 1.  

False positive rates and true positive rates of the P-ISM as compared to its baseline model, P-BM for the 

different data scenario’s without item states (S1b, S2b, and S3b). 

 

 

 

 

 

 

 

 

Table 2. 

Means (me) and standard deviations (sd) of the parameter estimates in the P-ISM in the cases where the 

data truly contain item states (S1s, S2s, S3s). The true parameter values are in brackets.  

Scenario  π (0.50)  δ (0.50)  στ
2 (0.06)  ρ (0.40) 

  me sd  me sd  me sd  me sd 

S1s: Normal   0.50 0.04  0.50 0.05  0.06 0.01  0.40 0.05 

S2s: Trunc   0.29 0.02  0.67 0.01  0.03 0.00  0.38 0.05 

S3s: Skewed   0.84 0.01  2.53 0.08  0.38 0.03  0.39 0.05 
 

 

  

 Data BIC AIC AIC3 CAIC saBIC 

False positive rate S1b: Normal baseline 0.00 0.00 0.00 0.00 0.00 

 S2b: Truncated baseline 1.00 1.00 1.00 1.00 1.00 

 S3b: Skewed baseline 1.00 1.00 1.00 1.00 1.00 

True positive rate S1s: Normal item states 1.00 1.00 1.00 1.00 1.00 

 S2s: Truncated item states 1.00 1.00 1.00 1.00 1.00 

 S3s: Skewed item states 1.00 1.00 1.00 1.00 1.00 
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Table 3.  

False positive rates of the different item states models (S-ISM7, S-ISM5, and S-ISM3) as compared to 

their baseline models without item states (S-BM7, S-BM-5, and S-BM3) for the different data scenario’s 

without item states (S1b, S2b, and S3b). 

Note. Non-zero rates are in boldface 

 

 

Table 4.  

True positive rates of the different item states models (S-ISM7, S-ISM-5 and S-ISM3) as compared to 

their baseline models without item states (S-BM7, S-BM5, and S-BM3) for the different data scenario’s 

with item states (S1s, S2s, and S3s). 

Note. Rates smaller than 0.80 are in bold face 

Model Data BIC AIC AIC3 CAIC saBIC 

S-ISM7: Semi-par. item states with Z=7 S1b: Normal baseline 0.00 0.03 0.00 0.00 0.00 

 S2b: Truncated baseline 0.00 0.08 0.00 0.00 0.00 

 S3b: Skewed baseline 0.00 0.04 0.00 0.00 0.00 

S-ISM5: Semi-par. item states with Z=5 S1b: Normal baseline 0.00 0.01 0.00 0.00 0.00 

 S2b: Truncated baseline 0.00 0.06 0.00 0.00 0.00 

 S3b: Skewed baseline 0.00 0.02 0.00 0.00 0.00 

S-ISM3: Semi-par. item states with Z=3 S1b: Normal baseline 0.00 0.01 0.00 0.00 0.00 

 S2b: Truncated baseline 0.00 0.01 0.00 0.00 0.00 

 S3b: Skewed baseline 0.00 0.01 0.00 0.00 0.00 

Model Data BIC AIC AIC3 CAIC saBIC 

S-ISM7: Semi-par. item states with Z=7 S1s: Normal item states 1.00 1.00 1.00 0.99 1.00 

 S2s: Truncated item states   1.00 1.00 1.00 0.88 1.00 

 S3s: Skewed item states 1.00 1.00 1.00 1.00 1.00 

S-ISM5: Semi-par. item states with Z=5 S1s: Normal item states 1.00 1.00 1.00 0.99 1.00 

 S2s: Truncated item states   0.99 1.00 1.00 0.82 1.00 

 S3s: Skewed item states 1.00 1.00 1.00 1.00 1.00 

S-ISM3: Semi-par. item states with Z=3 S1s: Normal item states 0.99 1.00 1.00 0.91 1.00 

 S2s: Truncated item states   0.94 1.00 1.00 0.54 1.00 

 S3s: Skewed item states 1.00 1.00 1.00 0.95 1.00 
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Table 5. 

Means (me) and standard deviations (sd) of the parameter estimates in the P-ISM in the cases where the 

data truly contain item states (S1s, S2s, S3s). The true parameter values are in brackets.  

 

Model  Scenario  π (0.50)  δ (0.50)  στ
2 (0.06)  ρ (0.40) 

    me sd  me sd  me sd  me sd 

S-ISM7  S1s: Normal   0.50 0.04  2.32 0.76  0.16 0.05  0.40 0.05 

  S2s: Trunc   0.50 0.07  1.57 0.80  0.09 0.04  0.40 0.05 
  S3s: Skewed   0.49 0.04  2.30 0.78  0.16 0.05  0.40 0.05 

S-ISM5  S1s: Normal   0.50 0.05  1.09 0.36  0.26 0.08  0.40 0.05 

  S2s: Trunc  0.50 0.07  0.76 0.35  0.16 0.05  0.39 0.05 

  S3s: Skewed   0.49 0.04  1.09 0.37  0.26 0.08  0.40 0.05 

S-ISM3  S1s: Normal   0.49 0.06  1.03 0.32  0.50 0.12  0.40 0.05 

  S2s: Trunc   0.49 0.07  0.87 0.33  0.37 0.09  0.40 0.05 

  S3s: Skewed   0.48 0.05  1.04 0.33  0.51 0.12  0.40 0.05 

 

 

 

 

 

Table 6.  

Model fit indices for the different parametric and semi-parametric models in the illustration. 

 Z Model BIC AIC AIC3 CAIC saBIC 

Parametric - P-ISM 34752 34122 34264 34894 34302 

  P-BM 35493 35075 35169 35587 35194 

Semi-parametric 7 S-ISM7 68359 67320 67554 68593 67616 

  S-BM7 68493 67667 67853 68679 67903 

 5 S-ISM5 58826 57991 58179 59014 58229 

  S-BM5 58932 58310 58450 59072 58487 

 3 S-ISM3 44921 44290 44432 45063 44470 

  S-BM3 44959 44541 44635 45053 44660 

 Note. For each pair of ISM and BM models, the smallest fit indices are in bold face.  
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Table 7.  

Parameter estimates (est.) and standard errors (se) of the class size parameter, π, the response time 

difference between the states, δ, the variance of the latent speed variable, σ τ
2, and the correlation 

between speed and ability, ρ. 

Model  π  δ  στ
2  ρ 

  est se  est se  est se  est se 

P-ISM  0.16 0.01  -0.74 0.01  0.13 0.01  -0.52 0.02 

S-ISM7  0.44 0.04  -1.05 0.08  0.72 0.07  -0.48 0.04 

S-ISM5  0.44 0.04  -1.32 0.11  1.16 0.10  -0.46 0.04 

S-ISM3  0.38 0.04  -2.06 0.18  2.53 0.24  -0.49 0.05 
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Figure Captions 

Figure 1. Normal QQ-plots and histograms of the log-response time distribution for an example item 

within the baseline scenarios (S1b, S2b, and S3b).  

 

Figure 2. Box plots of the β0i (white) and β1i (grey) parameter estimates for the odd items in the 

parametric normal model (P-ISM) in the different scenarios that include item states (S1s, S2s, and S3s). 

The solid grey line denotes the true values of β0i (lower grey line) and β1i (upper grey line). 

 

Figure 3. Box plots of the α0i (white) and α1i (grey) parameter estimates for the odd items in the 

parametric normal model (P-ISM) in the different scenarios that include item states (S1s, S2s, and S3s). 

The solid grey line denotes the true values of α0i (upper grey line) and α1i (lower grey line). 

 

Figure 4. Box plots of the β0i (white) and β1i (grey) parameter estimates of the odd items in the different 

semi-parametric models (S-ISM7, S-ISM5, and S-ISM3) in the different scenarios that include item states 

(S1s, S2s, and S3s). The solid grey line denotes the true values of β0i (lower grey line) and β1i (upper grey 

line). 

 

Figure 5. Box plots of the α0i (white) and α1i (grey) parameter estimates for the odd items in the different 

semi-parametric models (S-ISM7, S-ISM5, and S-ISM3) in the different scenarios that include item states 

(S1s, S2s, and S3s). The solid grey line denotes the true values of α 0i (upper grey line) and α1i (lower grey 

line). 
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Figure 6. Plots of the β0i β1i, α0i, and α1i parameter estimates for the normal item states model (P-ISM; 

solid black line) and the semi-parametric item states model (S-ISM7, S-ISM5, and S-ISM3; striped grey 

lines). In each plot, the items are ordered on basis of the estimates in S-ISM3 for clarity.  
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