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1 Introduction

Earlier chapters in this volume discussed linear mixed models for continuous
responses and generalized linear mixed models for dichotomous variables and
counts with binomial and Poisson errors at the lower level, respectively. This
chapter deals with multilevel models for discrete response variables with more
than two categories; that is, with the situation where these errors can be
assumed to come from a multinomial distribution, which can be seen as either
a multivariate extension of the binomial distribution or a restricted version
of the multivariate Poisson distribution. The dependent variables of interest
can have ordered response categories modeled using an ordinal regression
model or unordered response categories modeled using a multinomial logit,
a probit, or a discrete choice model for first choices, rankings, or other types
of choice formats.

While multilevel ordinal regression models are rather similar to models
for dichotomous responses, models for nominal responses are somewhat more
complex because they typically contain category-specific random effects. The
latter makes them computationally much more demanding. Possible ways
out of this problem are the use of factor analytic structures for the random
effects yielding models similar to item response theory (IRT) models, the use
of discrete approximations of the random effects using finite mixture models,
or combinations of these. These options will be discussed in more detail
below.

An issue that is getting more attention in the analysis of categorical
responses is the distinction between heterogeneity in location or preference
versus heterogeneity in scale. The latter concerns the error variance in an
underlying latent variable specification of the ordinal or nominal regression
model concerned. Taking into account heterogeneity in scale will usually
yield much simpler explanations for group differences. Below, I will pay
attention to this issue.

The remainder of this chapter is organized as follows. The theory is
presented by first providing a generic model formulation, and subsequently
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discussing models for ordinal responses and models for nominal responses.
Then attention is paid to factor analytic and to discrete specifications for
the random effects. After presenting the theory, I will illustrate multilevel
analysis with categorical responses with a rather simple three-level random
intercept model for an ordinal response variable and with a more complex
model for a combination of ordinal and nominal responses (ratings and best-
worst choices).

2 Generic model formulation

2.1 GLMMs for categorical response variables

Using the notation introduced in the previous chapters, I denote the response
of subject i by yi and the vector of predictors (which includes the constant)
by xi. The total number of response categories is denoted by M , implying
1 ≤ yi ≤ M . The probability that person i’s response equals m, P (yi =
m|xi), is denoted by πim, and the vector of response probabilities by πi.
Note that

∑M
m=1 πim = 1.

Generalized Linear Models (GLMs) for categorical response variables have
the following form (McCullagh and Nelder, 1989):

hm(πi) = x′iβm, (1)

for 2 ≤ m ≤ M . That is, M − 1 transformations hm(·) are defined for the
response probabilities πi and each of these is modelled via a linear predictor.
Each linear predictor may have its own parameter vector βm. The main dif-
ference compared to a univariate GLM is thus that we have M−1 such linear
equations instead of one. As is shown in more detail below, in GLMs for or-
dinal response variables, predictor effects may be assumed to be equal across
equations, eliminating the index m. Moreover, in discrete choice models for
nominal responses, the predictor values that vary across responses instead of
the regression coefficients; that is, hm(πi) = x′imβ.

A two-level variant of the model defined in equation (1) is obtained as
follows (Agresti, Booth, Hobert, and Caffo, 2000):

hm(πij) = x′ijβm + z′ijujm, (2)

where the index i refers to a lower (or level-1) unit and j to a higher (or level-
2) unit, and where ujm is the vector of random effects and zij the associated
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design vector. Note that different from univariate Generalized Linear Mixed
Models (GLMMs; Verbeke and Molenberghs, this volume), ujm contains an
index m, which indicates that the random effects may vary across response
categories. Extension to a third level is rather straightforward,

hm(πijk) = x′ijkβm + z′ijkujkm

where k refers a unit of a third level, and where ujkm = (u
(2)′
jkm,u

(3)′
km )′ or

ujkm = (u
(a)′
jm ,u

(b)′
km)′ for nested and crossed random effects, respectively.1

The above equations, show the form of the M −1 linear predictors. More
details about the link functions are provided below when I describe the mod-
els for the different types of categorical responses. Besides the link function
and the linear predictor, a GLMM requires specifying the distribution of
the random effects and the distribution of the responses conditional on the
random effects. The latter is modeled using a multinomial distribution. The
M−1 sets of random effects are typically assumed to come from a multivariate
normal distribution. Using these components, we can define the likelihood
for the GLMM interest, which contrary to the one for Linear Mixed Models
contains intractable integrals. Similar to other types of GLMMs, approxima-
tions are typically used, such as linear approximations yielding analytically
solvable integrals, numerical integration using quadrature, or Monte Carlo
integration methods (McCulloch and Neuhaus, this volume; Skrondal and
Rabe-Hesketh, 2004). Another option is to solve the parameter estimation
problem within a Bayesian MCMC framework (Train, 2003).

3 Models for ordinal responses

3.1 Underlying latent variable approach

A popular approach to the regression analysis of ordinal response variables
is to treat the ordinal responses as discretized continuous responses (Agresti,
2002). The continuous responses y∗ij are unobserved or latent variables for
which a linear regression model is defined. That is,

y∗ij = x′ijβ + z′ijuj + εij.

1The superscript denotes the level of the random effect to remove any ambiguity and
provide direct reference in this vector notation.
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The relationship between y∗ij and the observed discrete response yij is that
yij = m if δm < y∗ij < δm+1. The δm are the so-called thresholds, which
are parameters to be estimated for 2 ≤ m ≤ M , and with δ1 = −∞ and
δM+1 = ∞. Depending on the distributional assumptions about the error
term εij one obtains a specific type of ordinal regression model. The most
common specifications for εij are standard normal, logistic, and extreme
value, yielding a probit, logit, and complementary log-log model, respectively.

3.2 Cumulative link functions

The same models as can be defined using an underlying latent variable ap-
proach, can also be defined using a cumulative link function combined with
the assumption that predictor effects are equal across the M −1 linear equa-
tions. Let π+

ijm =
∑M

k=m πijm, or the probability that person i in group j gives
response m or higher. Note that this implies that πijm = π+

ijm − π+
ij,m−1.

The random-effects cumulative logit or proportional odds model is ob-
tained using a logit transformation for π+

ijm (Hedeker and Gibbons, 1994):

log
π+
ijm

1− π+
ijm

= αm + x′ijβ + z′ijuj,

or

π+
ijm =

exp(αm + x′ijβ + z′ijuj)

1 + exp(αm + x′ijβ + z′ijuj)
.

Here αm are fixed intercept terms which depend on the response category.
These are in fact the same as the thresholds defined above, but with a re-
versed sign: αm = −δm. The vector β contains the fixed slopes and uj the
random intercept and slopes. Note that these effects are constant across re-
sponse categories, a restriction that is usually referred to as the proportional
odds assumption when using a model with a logit link. Sometimes the pro-
portionality assumption is relaxed, yielding regression coefficients βm and
ujm which depend on the response category.

Alternatives to the logit transformation are among others inverse stan-
dard normal and inverse extreme value transformations, yielding a probit
and a complementary log-log model, respectively.
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3.3 Scale heterogeneity

The latent variable approach described above can be extended by allowing the
error terms εij to be heteroscedastic (Hedeker, Berbaum, and Mermelstein,
2006). This is usually achieved by defining a log-linear model for the standard
deviation of εij; that is,

σεij ∝ exp(−w′ijγ).

This amounts to expanding the cumulative logit model as follows:

hm(πij) = log
π+
ijm

1− π+
ijm

= (αm + x′ijβ + z′ijuj) exp(w′ijγ).

The term exp(w′ijγ) is sometimes referred to as the scale factor. Though
not shown explicitly here, it is also possible to include random terms in the
log-linear model for σεij .

3.4 Other link functions

Instead of a cumulative link function, it is also possible to use other types
of link functions, the most popular of which are the adjacent-category and
the continuation-ratio logit models (Agresti, 2002). As in cumulative logit
models, the linear term equals αm + x′ijβ + z′ijuj. The adjacent-category
model is a logit model for P (yij = m|m − 1 ≤ yij ≤ m), the probability of
selecting category m out of adjacent categories m−1and m. The two possible
variants of the continuation-ratio logit model concern P (yij ≥ m|yij ≥ m−1)
and P (yij ≤ m− 1|yij ≤ m), respectively.

4 Models for nominal responses

4.1 First choice

Also for the case of unordered or nominal responses it is possible to define the
regression model based on an underlying latent variable approach (Grilli and
Rampachini, 2007; Skrondal and Rabe-Hesketh, 2004; Swait and Louviere,
1993; Train, 2003). The utilities y∗ijm of the M categories (or alternatives) are
unobserved or latent variables for which linear regression models are defined.
That is,

y∗ijm = x′ijβm + z′ijujm + εijm.
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The relationship between y∗ijm and the observed discrete response yij is as
follows: yij = m if y∗ijm > y∗ijr for all r 6= m. In other words, the response
corresponds with the category for which the utility is largest. Depending
on the assumed distribution of the error terms εijm, one obtains another
type of regression model. Assuming εijm to be extreme value distributed
and independent across alternatives yield the multinomial logit model. The
multinomial probit model follows from the assumption that the εijm come
from a multivariate normal distribution. Here, I will use only the more
popular multinomial logit specification in which

πijm =
exp(x′ijβm + z′ijujm)∑M
r=1 exp(x′ijβr + z′ijujr)

.

As in models for ordinal responses, it may be useful to include a scale factor
model, which is a model for capturing heterogeneity in the standard deviation
of εijm (Swait and Louviere, 1993); that is,

σεijm ∝ exp(−w′ijγ).

This modifies the multinominal logit model into

πijm =
exp

[
(x′ijβm + z′ijujm) exp(w′ijγ)

]
∑M

r=1

[
exp(x′ijβr + z′ijujr) exp(w′ijγ)

] .
Below, I will provide an example in which the scale factor varies randomly
across (latent classes) of respondents.

The nominal response models presented above can be used when predic-
tor values vary across level-1 or level-2 units. Another related class of models
has been developed for the situation in which predictor values vary across
response categories or choice alternatives. These models are usually referred
to as discrete choice models or conditional logit models (McFadden, 1974;
Swait and Louviere, 1993). An example application is the analysis of trans-
portation mode choices, which may depend on characteristics of the mode,
such as the required time to reach the destination and the price. A model
with alternative-specific predictor values for both fixed and random effects
has the following form:

πijm =
exp(x′ijmβ + z′ijmuj)∑M
r=1 exp(x′ijrβ + z′ijruj)

.
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Also in this model one can incorporate a regression model for scale het-
erogeneity. Note also that it is straightforward to defining hybrids of the
multinomial and conditional logit model. This can be achieved by including
alternative-specific constants and/or interactions with individual-level pre-
dictors in the vectors xijm and zijm.

4.2 Other choice formats

When confronting individuals with choice tasks, it is often useful to obtain
more information than on just the first choice. For example, one may ask for
the best and second best alternative, the best and the worst alternative, the
complete ranking of the alternatives, or the best two alternatives (without
making a distinction between best and second best). These are all variants of
ranking tasks, which can be modelled using logistic regression models similar
to those for first choices (Skrondal and Rabe-Hesketh, 2003).

The simplest type of ranking model is obtained when it is assumed that
the rankings are obtained sequentially, that is, one first selects the best al-
ternative and subsequently selects the second best (or the worst) from the
remaining M − 1 alternatives. The probability of selecting alternative m1

as the best and alternative m2 as the second best (worst) can be written
as πij,m1,m2 = πij,m1πij,m2|m1 , where the conditioning on m1 implies that this
alternative can no longer be selected. Generalization to three choices yields
πij,m1,m2,m3 = πij,m1πij,m2|m1πij,m3|m1,m2 , etc. The logit model for the second
best alternative has the following form:

πijm2|m1 =
exp(x′ijm2

β + z′ijm2
uj)∑

r 6=m1
exp(x′ijrβ + z′ijruj)

, (3)

which is the same as a first choice model except for the sum in the denomi-
nator which excludes the previous choice. In a best-worst choice design, one
first selects the most preferred alternative and subsequently the worst alter-
native. The model for the worst alternative has the same form as the model
described in equation (3), but with the difference that the sign of the lin-
ear term changes since the alternative with the lowest instead of the highest
utility is selected (Magidson, Thomas, and Vermunt, 2009).

Rather than a sequential ranking mechanism, it is also possible to de-
fine ranking models based on a simultaneous ranking mechanism: best and
second best, best and worst, or the two best are selected simultaneous after
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evaluation all possible simultaneous choices. The model will be one for a
single choice out of an expanded set of joint choices and where the design
matrices are weighted to account for the mutual ranking (first choice get
weight of 2 and second choice of 1), if known. For example

πij,m1,m2 =
exp[2 (x′ijm1

β + z′ijm1
uj) + (x′ijm2

β + z′ijm2
uj)]∑M

r1=1

∑
r2 6=r1 exp[2 (x′ijr1β + z′ijr1uj) + (x′ijr2β + z′ijr2uj)]

.

5 Factor analytic restrictions on random ef-

fects

Random effects models for categorical response responses are strongly related
to item response theory (IRT) models, which are factor analytic models for
multivariate response data (Van der Linden and Hamilton, 1997). The latter
can, however, also be seen as two-level data with item responses nested within
persons. A simple unidimensional IRT model for nominal responses has the
following form:

hm(πij) = λim(θj − δim).

where θj represents the latent trait of person j, δim the difficulty parameter
for category m of item i, and λim the discrimination parameter (or factor
loading) for category m of item i.2

The link function is typically logit. Models for ordinal responses impose
the restriction that the discrimination parameter equals across response cat-
egories. Another possible restriction used in IRT is that the discrimination
parameter equals across items.

Using the multilevel notation introduced above, the same model can also
formulated as follows:

hm(πij) = βim + λimuj,

where uj = θj and βim = −δimλim. What can be observed is that a single
random term uj is used for modeling the random intercepts of all items and
all response categories, were a separate scaling term λim is estimated for

2The term difficulty comes from the application of IRT models with dichotomous re-
sponses from educational tests: the higher δ the more difficult to answer the question
concerned correctly. The term discrimination refers to the fact that the higher λ the
better the item discriminates (distinguishes) persons with different θ values.
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each item category. In fact, the random intercept for item i and category
m is specified to have a variance which is proportional to (λim)2 and the
correlation between the random intercepts equals either 1 or -1 depending
on whether the two λ parameters concerned have the same sign or not. A
multidimensional extension of an IRT model for nominal data can be defined
as follows:

hm(πij) = βim + λ′imuj,

where λim is a vector for discrimination parameters or loadings, and uj a
vector of latent variables.

Hedeker (2003) proposed using a lower-dimensional approximation of the
random effects distribution similar to IRT models for nominal data. For this
purpose, the general model defined in equation (2) is reformulated as follows:

hm(πij) = x′ijβm + z′ijΛmuj,

where Λm is a kind of factor loadings matrix scaling the random effects
variances (Skrondal and Rabe-Hesketh, 2004). The main advantage of this
approach is that the dimensionality of the integrals in the likelihood function
is reduced by a factor M−1. Factor analytic structures can not only be used
to impose simple structures for the random effects across response categories,
but also to impose simple structures across the random slopes of different
predictors, as is in fact done in the above IRT models.

6 Finite mixture specification of random ef-

fects

Rather than using a continuous random effects distribution, it is also possible
to use a discrete distribution for the random effects, either as an approxima-
tion of a continuous distribution or because one wishes to cluster level-2 units
based on differences in the regression coefficients (Aitkin, 1999; Browne and
McNicholas, this volume; Vermunt and Van Dijk, 2001; Wedel and DeSarbo,
1994). Let C denote the number of latent classes and c a particular latent
class; thus, 1 ≤ c ≤ C. The resulting two-level mixture regression model can
be formulated as follows:

hm(πij|c) = x′ijβm + z′ijucm,
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where ucm are free parameters to be estimated. These parameters indicate
the location of the effects of latent class c relative to the average effects βm.
The class membership is assumed to follow a multinomial distribution with
probabilities πc. The ucm and πc are sometimes referred to as mass point
locations and mass point weights. It should be noted that the computational
burden for such a finite mixture two-level regression model is much lower
than with continuous random effects since the likelihood contains a sum over
C classes (or mass points) instead of a multidimensional integral.

When using the model for clustering purposes, one will usually interpret
the terms βpm+upcm, which are the class-specific regression parameters for the
pth predictor. When using the model as an approximation for a continuous
random effects model, one will typically be interested in the fixed effects and
the random effects (co)variances. The βpm have the usual interpretation if the
upcm terms are centered across classes; that is, if

∑
c upcmπc = 0. The covari-

ance between two random effects can be obtained as follows:
∑

c upcmup′cm′πc.
As is shown in the second application below, it sometimes makes sense

to use a hybrid model combining discrete and continuous random effects.
Such an approach is rather popular in the field of longitudinal data analysis,
where these models are referred to as mixture growth models (Muthén, 2004;
Vermunt, 2007). The aim is to identify latent classes with different change
trajectories, while taking into account within class residual heterogeneity in
these trajectories.

7 Applications

7.1 A three-level random intercept regression model
for an ordinal response variable

The first application concerns the analysis of a three-level data set using
an ordinal regression model. The data come from the Television School
and Family Smoking Preventions and Cessation Project (TVSFP) and were
analyzed using a linear mixed model by Hedeker, Gibbons, and Flay (1994).
The multilevel data structure arises from the fact that the 1600 children
are nested within 135 classes which are themselves nested within 28 schools.
Consistent with the notation introduced above, the indexes i, j, and k are
used to refer to a child, a class, and a school, respectively.

Schools were randomized into four conditions obtained by crossing two
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experimental factors: media intervention present or absent (x1k) and social-
resistance classroom curriculum present or absent (x2k). The outcome is the
child’s tobacco health knowledge (yijk) measured on an ordinal scale with 8
categories, 1 ≤ m ≤ 8. Tobacco health knowledge was also measured before
the intervention (x3ijk). Taking into account the nesting of children within
classes and classes within schools, we define the following three-level ordinal
regression model:

log
π+
ijkm

1− π+
ijkm

= αm + β1x1k + β2x2k + β3x1kx2k + β4x3ijk + u
(2)
jk + u

(3)
k .

The question of interest is whether the treatment effects and their interac-
tion are significant. This was investigated using different specifications for
the random intercepts; that is, the full model containing both school and
class random effects, models with either class effects or school effects, and
a model without random effects. Table 1 reports the fit measures and pa-
rameters estimates for these four models. I obtained the parameters with
the Latent GOLD software (Vermunt and Magidson, 2008) using its default
settings for numerical integration. Other software can also be used, such as
the GLLAMM routine written for Stata (Skrondal and Rabe-Hesketh, 2003,
2004).

As can be seen from Table 1, the model with only a random intercept at
the class level should be preferred according to the BIC and AIC statistics.
In this model, the main effect of social-resistance classroom curriculum (β2)
is significant, but the main effect of mediation intervention (β1) and the
interaction (β3) are not. This is clearly different from the results of the
model that ignores the multilevel structure, in which all fixed effects are
significant.

7.2 A two-level model for a choice experiment combin-
ing best-worst choices with ratings

The second application concerns the analysis of data from an experimental
study done for Roche Diagnostics Corporation, a supplier of lab equipment,
with the aim to construct a “needs based segmentation” of the company’s
clients. The segmentation is based on the importance 305 lab managers
attach to 36 different features of lab equipment. The results of this study were
used in the training of sales people; that is, when selling to a lab manager,
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Table 1: Fit measures and parameters estimates (z values between braces)
for the tobacco health knowledge intervention study.

Model with Model with Model without
Full model only class effect only school effect random effects

α2 2.03 (10.33) 2.01 (11.21) 2.00 (10.42) 1.93 (12.24)
α3 0.05 (0.29) 0.03 (0.17) 0.05 (0.31) -0.01 (-0.06)
α4 -1.23 (-7.32) -1.25 (-8.51) -1.19 (-7.37) -1.23 (-10.16)
α5 -2.43 (-13.85) -2.46 (-15.72) -2.37 (-13.98) -2.39 (-18.18)
α6 -3.87 (-19.95) -3.89 (-22.04) -3.78 (-20.20) -3.79 (-24.65)
α7 -5.57 (-22.00) -5.59 (-23.29) -5.47 (-22.13) -5.47 (-24.57)
α8 -7.69 (-14.44) -7.71 (-14.65) -7.58 (-14.33) -7.59 (-14.64)
β1 0.23 (1.14) 0.20 (1.21) 0.27 (1.38) 0.26 (2.09)
β2 0.89 (4.35) 0.88 (5.13) 0.91 (4.63) 0.88 (6.92)
β3 -0.38 (-1.30) -0.32 (-1.32) -0.46 (-1.68) -0.39 (-2.21)
β4 0.43 (11.20) 0.44 (11.41) 0.43 (11.23) 0.45 (11.90)
σu3 0.20 (2.07) 0.26 (3.86)
σu2 0.39 (4.80) 0.44 (6.01)
loglik -2652 -2653 -2658 -2663
# of par. 13 12 12 11
BIC(N=28) 5348 5346 5356 5363
AIC 5331 5330 5340 5349
pseudo R2 0.19 0.19 0.14 0.12

they could get a feel as to which segment a manager belongs and therefore
emphasize which lab equipment best filled these needs.3

This study used a combination of best-worst choices and ratings. For
the choice task, 64 different choice sets were created, each consisting of 5
alternatives (M = 5). More specifically, each set contained 5 randomly
selected features out of the list of 36 lab equipment features. Each of the 305
lab managers participating in this study was confronted with 16 of the 64
choice sets and requested to pick the best (most important) and the worst
(least important) feature. The question asked was “Which of the following
criteria is most important and which is least important to you in choosing
a supplier of lab equipment?”. In addition, each lab manager provided an
‘importance’ rating on a 5-point scale for each of the 36 features (1=not
important, ..., 5=extremely important). The hybrid choice-rating model
described below was proposed by Magidson, Thomas, and Vermunt (2009).

Note that the data set has a two-level structure: the 16 best-worst choices

3For another multilevel market research application using preference data, see Sagan
(this volume).
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and the 36 ratings are nested within persons. The question of main interest
concerns the importance lab manager managers attach to the features and,
more specifically, whether segments can identified with different “needs”.
This means that it is most natural to model variation in feature effects using
a mixture regression specification with C latent “needs” classes, which we
index by c. The class-specific preference parameters are denoted by βpc, for
1 ≤ p ≤ 36 and 1 ≤ c ≤ C.

Various other issues need to be taken into account in the model specifi-
cation:

• Different types of regression models are needed for the 16 best-worst
choices and for the 36 ratings. For the former (1 ≤ i ≤ 16), I use a
sequential ranking model and for the latter (17 ≤ i ≤ 52) a proportional
odds model.

• The preference parameters can only be assumed to be proportional
to one another in the ranking and rating models. This is achieved
by using a different log-linear scale parameter in the ranking and the
rating model (γ1d and γ2d).

• Respondents may not only differ in preference but also in how certain
they are about their preferences. This is same as saying that the level-1
variances of the underlying latent variables are heteroscedastic. This
heterogeneity is modeled by allowing the log-linear scale parameters to
be vary across D latent scale classes index by d (γ1d and γ2d). An alter-
native would be to model scale heterogeneity using continuous random
effects.

• Ratings are affected by the fact that some persons tend to give higher
ratings than others irrespective of the specific content of the question
(the feature). We correct for such individual differences in scale use
which is unrelated to the important attached to the features by a ran-
dom intercept (uj). These differences in response style affecting the
ratings could also be modeled using a latent class specification (Moors,
2003; Morren, Gelissen, Vermunt, 2011).

The model used is formulated as follows:

πijm1|cd =
exp

[{∑36
p=1(βp + upc)xpim1

}
exp(γ1d)

]
∑M

r=1 exp
[{∑36

p=1(βp + upc)xpir
}

exp(γ1d)
]
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πijm2|m1cd =
exp

[{
−∑36

p=1(βp + upc)xpim2)
}

exp(γ1d)
]

∑
r 6=m1

exp
[{
−∑36

p=1(βp + upc)xpir
}

exp(γ1d)
] ,

for 1 ≤ i ≤ 16, and

π+
ijm|cd =

exp
[{
α0m + α1c +

∑36
p=1(βp + upc)xpi + uj

}
exp(γ2d)

]
1 + exp

[{
α0m + α1c +

∑36
p=1(βp + upc)xpi + uj

}
exp(γ2d)

] .
for 17 ≤ i ≤ 52. Note that xpim equals 1 if alternative m of set i of person
j corresponds to attribute p and otherwise 0, and xpi equals 1 if rating i
concern attribute p (if p = i− 16) and otherwise 0. The parameters of main
interest, the class-specific utilities upc, appear in both the best-worst and
the rating model. Note that these indicate how much class c deviates from
the average utility βp. The class-specific utilities βpc, which are the actual
parameters estimated in the mixture regression analysis, equal βp + upc.

Running a series of models for different values of C and D showed that
a model with five preference classes (C = 5) and two scale classes (D = 2)
performed best according to the BIC. To illustrate the impact of ignoring
differences in the use of the rating scale, in error variances, and in prefer-
ence, I also show the fit of restricted models in which either uj = 0, D = 1,
or C = 1, and the model in which all three restrictions are imposed simulta-
neously (see Table 2). For parameter estimation, I used the Latent GOLD
software, including its Choice module (Vermunt and Magidson, 2005, 2008).
The model can also be estimated using LEM (Vermunt, 1997).

Table 2: Fit measures for the segmentation of lab managers study.
Model Loglik. # of par. BIC AIC R2 choice R2 rating
Unrestricted -23157 192 47412 46698 0.23 0.46
σu = 0 -23618 191 48329 47618 0.22 0.39
D = 1 -23289 189 47659 46956 0.23 0.47
C = 1 -24170 44 48591 48427 0.17 0.39
Restricted -25080 40 50389 50240 0.17 0.24

As can be seen from the BIC and AIC values, ignoring any of the three
multilevel components deteriorates the fit significantly. However, the pseudo
R2 values for the choice and ranking variables show that ignoring the het-
eroscedasticity in the error variances (D = 1) does not deteriorate within
sample prediction.
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Table 3 reports the βpc parameters, the class-specific utilities (impor-
tances) of the 36 features. As can be seen, the are large differences in im-
portance across features and across latent classes. Some of the features are
considered to be important in all 5 segments, such as features 11 and 17,
whereas others are specific for one particular class. For example, features 24,
7, 12, and 16 are important only for sales managers belonging to classes 1,
3, 4, and 5, respectively. Both results are of interest; that is, which features
are important in all segments and which are important in specific segments
only.

8 Discussion

This chapter discussed multilevel regression models for ordinal and nominal
response variables. Special attention was paid to issues such as the distinc-
tion between location and scale heterogeneity, the specification of restricted
random effects using factor analytic structures, and the use of discrete spec-
ifications for the random effects, possibly combined with continuous random
effects.

In this chapter, I did not discuss models for multivariate categorical data.
However, recently various interesting multilevel models for multivariate cate-
gorical responses have been proposed. These models fit within the generalized
latent variable modeling framework described by Skrondal and Rabe-Hesketh
(2004). The most important special cases are multilevel latent class and mix-
ture models (Vermunt, 2003, 2008), multilevel IRT and factor analytic models
for categorical responses (Fox and Glas, 2001; Varriale and Vermunt, 2012),
and multilevel mixture growth models (Palardy and Vermunt, 2010).
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Table 3: Estimates of the importance of the 36 features for the 5 latent classes
of lab managers (βpc parameters), their average (βp), and their standard
deviation. Rows are sorted by decreasing average importance.

Feature number Class 1 Class 2 Class 3 Class 4 Class 5 Average Std. Dev.
11 2.80 1.94 3.05 2.45 2.35 2.42 0.41
17 2.60 1.81 2.44 3.24 2.16 2.34 0.50
26 2.76 1.96 2.31 2.28 1.75 2.15 0.31
13 2.36 1.13 0.75 1.22 2.43 1.47 0.64
10 1.65 0.75 3.25 1.54 0.63 1.44 0.94
15 1.87 1.11 1.25 1.51 1.63 1.40 0.27
36 0.35 1.28 0.17 1.41 1.62 1.04 0.55
28 1.52 0.13 1.85 0.71 1.30 0.93 0.67
21 0.82 0.62 0.73 1.69 0.47 0.83 0.41
9 0.67 1.04 -0.50 1.00 0.55 0.62 0.56
3 0.60 0.86 -0.02 1.00 0.11 0.56 0.40
33 0.57 0.84 0.16 0.55 0.17 0.51 0.28
24 1.05 0.15 0.59 0.26 -0.08 0.33 0.35
22 0.37 -0.30 -0.65 0.80 1.58 0.24 0.78
32 -0.23 0.53 -0.34 0.13 -0.09 0.09 0.34
30 -0.84 0.50 -0.65 0.16 0.52 0.06 0.55
1 -0.83 -0.15 0.89 -0.45 -0.24 -0.12 0.53
8 0.31 -0.39 0.45 0.67 -1.58 -0.17 0.77
19 0.25 -0.60 0.38 -0.83 0.05 -0.24 0.47
7 -1.34 -0.28 1.06 -0.33 -0.71 -0.26 0.71
16 0.44 -1.16 -0.95 -0.38 1.50 -0.31 0.98
2 -0.78 0.00 -1.03 -0.34 -0.25 -0.39 0.39
23 -0.44 -0.12 -1.06 -0.32 -0.58 -0.45 0.33
12 -0.97 -1.27 0.34 1.67 -1.51 -0.47 1.16
27 -0.88 -0.56 -0.53 -0.84 0.35 -0.48 0.41
25 -1.61 -0.19 -0.40 -0.70 -0.63 -0.58 0.45
6 -1.48 -0.19 -0.15 -0.50 -1.34 -0.61 0.54
18 0.40 -0.54 -1.67 -2.41 -0.19 -0.89 0.92
4 -1.78 -0.81 -0.04 -2.04 -0.23 -0.91 0.74
5 -0.20 -0.37 -1.30 -1.99 -1.36 -0.97 0.65
29 -1.99 -0.59 -1.13 -1.34 -0.91 -1.06 0.45
20 0.35 -1.32 -0.65 -1.65 -1.63 -1.09 0.65
14 -1.20 -1.43 -2.34 -1.20 -2.14 -1.65 0.45
31 -2.20 -1.13 -1.95 -2.01 -1.58 -1.65 0.42
34 -2.17 -1.39 -1.72 -2.41 -1.91 -1.82 0.37
35 -2.81 -1.85 -2.60 -2.58 -2.20 -2.30 0.37

Class proportion 0.13 0.34 0.18 0.17 0.18
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