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Abstract

Probabilistic feature models (PFMs) can be used to explain judgements of persons about

binary object-attribute associations on the basis of latent features. More specifically, PFMs

assume that persons classify both objects and attributes in terms of binary latent features

and that the observed judgement is derived as a non-compensatory (e.g. disjunctive or

conjunctive) mapping of the object- and attribute classifications. In this paper we develop

multilevel latent class extensions of the PFM that allow to model heterogeneity in the

object-attribute association probabilities across persons by assuming that persons select

each of the latent features with a class-specific probability when making object-attribute

judgements. In addition, statistical dependencies between object-attribute associations

with a common element are modelled by assuming that a person relies on the same object

classifications for all attribute judgements with regard to that object (or, alternatively, on

the same attribute classifications for all object judgements with regard to that attribute).

Compared to existing PFM extensions, the model proposed in this paper has several

advantages. First, it allows the user to independently specify the number of features and

the number of latent person classes, leading to a more flexible modelling. Second, unlike

models with class-specific object- or attribute parameters the models presented in this

paper use a small set of parameters to model heterogeneity, leading to more stable

parameter estimates and models that are easier to interpret. As an illustration, the models

are used to analyze data on hostile behavior and psychiatric diagnosis.

Keywords: multilevel latent class model, latent feature, three-way three-mode data
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Probabilistic feature models with individual differences in feature selection

Introduction

The analysis of binary three-way data may be of substantive interest in several

domains. For instance, in personality psychology one may study the behaviors of persons

in different situations in order to identify person types with stable situation-behavior

relations (Mischel & Shoda, 1998; Mischel, Shoda, & Mendoza-Denton, 2002; Vansteelandt

& Van Mechelen, 1998). In psychiatric diagnosis one may analyze the symptoms assigned

to patients by different psychiatrists in order to study the implicit taxonomy used by

psychiatrists (Van Mechelen & De Boeck, 1990). In marketing one may study the

competitive structure of products by analyzing product-attribute judgements made by

consumers (DeSarbo, Grewal, & Scott, 2008; Torres & Bijmolt, 2009). In social network

analysis one may study the social structure of a group by analyzing friendship ties between

each pair of members as judged by each of the group members (Kumbasar, Kimball, &

Batchelder, 1994; González, Tuerlinckx, & De Boeck, 2009).

Probabilistic feature models (PFMs) have been introduced by Maris, De Boeck, and

Van Mechelen (1996) to analyze binary three-way data. Furthermore, the models have

been applied to several substantive domains such as marketing research (Candel & Maris,

1997; Meulders, 2013), cross-cultural research (Meulders, De Boeck, Van Mechelen,

Gelman, & Maris, 2001), and emotion perception (Meulders, De Boeck, Van Mechelen, &

Gelman, 2005). More specifically, with data on persons (i = 1, . . . , I) who indicate which

behaviors (k = 1, . . . , K) they would display in each of a set of situations (j = 1, . . . , J),

PFMs assume that persons classify both situations and behaviors in terms of F binary

latent features and that these classifications are combined, according to some prespecified

mapping rule, to derive the observed judgements. When modelling situation-behavior

judgements, the latent features could for instance represent latent situational encodings

that may elicit or suppress a certain behavior. For instance, when being angry at someone

of higher status, overt aggressive reactions are likely to be suppressed as they are considered
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to be inappropriate. Observed judgements are represented using the variable Dijk which

equals 1 if person i indicates that she would display behavior k in situation j, and 0

otherwise. The classification of situations is modelled with independent latent Bernoulli

variables Xjf
ki ∼ Bern(σjf ) which equal 1 if person i perceives feature f in situation j when

judging situation-behavior pair (j, k), and 0 otherwise. Likewise, the classification of

behaviors is modelled with independent latent Bernoulli variables Y kf
ji ∼ Bern(ρkf ) which

equal 1 if feature f elicits behavior k when person i judges situation-behavior pair (j, k)

and 0 otherwise. Finally, PFMs assume that observed situation-behavior associations Dijk

are a non-compensatory (i.e., disjunctive or conjunctive) function of situation- and

behavior classifications (Xjf
ki and Y kf

ji , f = 1, . . . , F ). For instance, using a disjunctive

model it is assumed that a person will display a behavior in a situation if the behavior is

implied by at least one of the latent features perceived in the situation, or formally,

Xjf
ki = Y kf

ji = 1 for at least one latent feature f .

A drawback of the basic PFM is that certain model assumptions may be unrealistic

in practice. First, as situation- and behavior parameters are the same for all persons,

PFMs imply that all persons have the same probability to display a certain behavior in a

certain situation. As this assumption may be unrealistic, latent class extensions of the

PFM have been developed to model heterogeneity in situation- or behavior parameters

(Meulders, Tuerlinckx, & Vanpaemel, 2013). Second, as the PFM assumes that each

observation is derived from a set of independent Bernoulli variables, it follows that all

observations are statistically independent. This assumption may be unrealistic because

situation-behavior associations with a common element are likely to be correlated. To solve

this problem, Meulders, De Boeck, and Van Mechelen (2003) developed PFMs with

adapted stochastic assumptions. In particular to model dependencies between

situation-behavior judgements with a common situation, one may assume that persons

classify situations only once (i.e., the classification of a situation remains constant within

persons). Likewise, to account for dependencies between situation-behavior judgements
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with a common behavior one may assume that persons classify behaviors only once (i.e.,

the classification of a behavior remains constant within persons). Finally, Meulders et al.

(2013) described multilevel latent class extensions of the PFM that allow to simultaneously

model heterogeneity in the situation- and/or behavior parameters and to model

dependencies among situation-behavior judgements with a common element.

As an alternative to including class-specific situation- and/or behavior parameters,

one may model heterogeneity of the situation-behavior probabilities across persons by

assuming that persons consider only a subset of the latent features when making

situation-behavior judgements. Meulders, De Boeck, Kuppens, and Van Mechelen (2002)

proposed a latent class extension of the PFM in which person classes consider a specific

subset of the latent features. In this model, accounting for a certain latent feature is

considered to be deterministic conditional on the latent class membership as it is assumed

that each latent feature is either considered or not considered by a person. A drawback of

the latter model is that the number of latent classes Q is directly related to the number of

latent features involved (i.e., Q = 2F ), leading to many small latent classes that are hard to

interpret if F becomes large. To account for the latter problem Meulders (2011) proposed

an alternative latent class extension of the PFM to model heterogeneity in

situation-behavior probabilities by assuming that persons, depending on the latent class

they belong to, consider each of the latent features with a certain probability when making

situation-behavior judgements. In other words, whether or not persons consider a latent

feature is assumed to be a probabilistic rather than a deterministic process.

In this paper we present a multilevel extension of the model proposed by Meulders

(2011) which makes it possible to account for dependencies between situation-behavior

pairs with a common element. The multilevel latent class model presented in this paper

has several advantages compared to existing models. First, compared to a model with

deterministic feature selection, it allows a more flexible modelling as the number of latent

classes and the number of latent features can be independently specified. Second,
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compared to a model with class-specific sets of situation- and/or behavior parameters, in a

model with class-specific feature weights the number of model parameters increases much

less rapidly with the number of latent classes, resulting in models with a better

complexity-fit balance (i.e., lower BIC) and that are easier to interpret.

In the following sections, we first present the latent class extension of the PFM in

which persons have class-specific probabilities to consider each of the latent features.

Second, we develop multilevel extensions of this LC-based PFM to model dependencies

between situation-behavior pairs with a common element. Third, we discuss the estimation

of the model parameters. Fourth, we will illustrate the models with applications to hostile

behavior and psychiatric diagnosis.

Latent class PFM with probabilistic feature selection

To model heterogeneity in the situation-behavior probabilities across persons we

propose a model in which persons consider each of the latent features with a certain

probability when making situation-behavior judgements. More specifically, the model

makes the following assumptions:

1. The latent variable Xjf
ik ∼ Bern(σjf ) (f = 1, . . . , F ) equals 1 if latent feature f (i.e., a

latent encoding of the situation) is perceived in situation j when person i judges

whether she would display behavior k in situation j, and 0 otherwise.

2. The latent variable Y kf
ji ∼ Bern(ρkf ) (f = 1, . . . , F ) equals 1 if behavior k is elicited

by the perception of feature f when person i judges whether she would display

behavior k in situation j, and 0 otherwise.

3. It is assumed that, depending on the latent class they belong to, persons have a

certain probability to consider a specific latent feature when making judgements. The

latent variable Giq (q = 1, . . . , Q) equals 1 if person i belongs to class q and 0

otherwise. Furthermore the latent variable Zf
ijk equals 1 if person i considers feature
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f when judging whether she would display behavior k in situation j. It is assumed

that p(zf
ijk|Giq = 1) ∼ Bern(γqf ) and that P (Giq = 1) = ξq with

∑

q ξq = 1.

4. It is assumed that the observed judgement of a person is obtained as a deterministic

mapping of the latent situation and behavior variables and of the specific subset of

features considered by the person, that is

Dijk = C(Xj1
ik , . . . , XjF

ik , Y k1
ji , . . . , Y kF

ji , Z1
ijk, . . . , ZF

ijk). For instance, using a disjunctive

rule, one assumes

Dijk = 1 ⇐⇒ ∃f : Xjf
ki = Y kf

ji = Zf
ijk = 1

Assuming a disjunctive mapping rule, the conditional probability that person i of

class q will display behavior k in situation j can be derived as follows:

πjkq = P (Dijk = 1|σ, ρ, γ, Giq = 1) (1)

=
∑

x

∑

y

∑

z
p(Dijk = 1|x, y, z)p(x|σ)p(y|ρ)p(z|Giq = 1, γ) (2)

= 1 −
∏

f

(1 − σjfρkfγqf ) (3)

Assuming independent persons and independent judgements given latent class membership,

the likelihood of the model reads as follows:

p(d|σ, ρ, γ, ξ) =
∏

i

∑

q

ξq

∏

j

∏

k

(πjkq)
dijk(1 − πjkq)

1−dijk (4)

In what follows, the model defined by (3) and (4) will be denoted as M1. Note that the

basic PFM of Maris et al. (1996) is equivalent to M1 with Q = 1 and γ1f = 1

(f = 1, . . . , F ).

Modelling statistical dependencies between pairs with a common element

The previously presented model, M1, is based on the assumption that persons renew

situation classifications (i.e., the perception of latent features in the situation) and

behavior classifications (i.e., whether or not perceived features elicit a certain behavior) at
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each new judgement. These stochastic assumptions imply that, conditional on the latent

class membership, all the judgements made by a person are conditionally independent.

However, this assumption may be unrealistic as situation-behavior judgements with a

common element (pairs with a common behavior or situation) often show stronger

dependencies than other situation-behavior pairs (Meulders et al., 2003, 2013).

To model statistical dependencies between situation-behavior pairs with a common

situation, one may assume that persons do not renew classifications, but rather use a

constant classification of each situation across all related situation-behavior judgements. In

other words, one may assume that the observed judgements Dijk (k = 1, . . . , K) are all

based on the same situation classification Xjf
i ∼ Bern(σjf ) (f = 1 . . . , F ). In the same way,

statistical dependencies between situation-behavior pairs with a common behavior can be

modelled by assuming that persons use a constant classification of each behavior across all

related situation-behavior judgements. In particular, one may assume that the observed

judgements Dijk (j = 1, . . . , J) are all based on the same behavior classification

Y kf
i ∼ Bern(ρkf ) (f = 1 . . . , F ).

For instance, for the probabilistic feature selection model with a constant situation

classification per person and a varying behavior classification, the likelihood reads as

follows:

p(d|σ, ρ, γ, ξ) =
∏

i

∑

q

ξq

∏

j

∑

xj
i

∏

k

p(dijk|xj
i , Giq = 1, ρk, γq)p(xj

i |σj) (5)

Assuming a disjunctive mapping rule, the conditional probability that person i of class q

will display behavior k given the situation classification x
j
i equals:

P (Dijk = 1|xj
i , Giq = 1, ρk, γq) = 1 −

∏

f

(1 − xjf
i ρkfγqf ). (6)

The probabilistic feature selection model with a constant situation classification and a

varying behavior classification as defined by (5) and (6) will further be denoted as M2.

Note that a probabilistic feature selection model with a constant classification of behaviors

and a varying classification of situations, further denoted as M3, is similar as it can be



9

obtained by switching the role of situations and behaviors in M2.

Finally, we note that M2 and M3 can be considered multilevel latent class models (see

Vermunt, 2003, 2007) that involve classifications at three levels: First, at highest level, both

models involve a classification of persons in Q classes so that persons have a class-specific

probability to consider a certain latent feature when making situation-behavior

judgements. Second, at the middle level, M2 involves for each situation a classification of

persons in 2F clusters based on the latent features persons perceive in the situation and M3

involves for each behavior a classification of persons in 2F clusters based on the latent

features that would elicit the behavior according to the persons. Third, at the lowest level

(i.e., the level of the observations Dijk), M2 involves a classification of behaviors in terms of

latent features and M3 involves a classification of each situation in terms of latent features.

Estimation

For PFMs and their latent class extensions the complete-data likelihood has a simple

structure because the observed variables are obtained as a deterministic mapping of

Bernoulli distributed latent variables. In particular, the complete-data likelihood reads as

follows:

p(d, x, y, z, g|σ, ρ, γ, ξ) =p(d|x, y, z)p(x|σ)p(y|ρ)p(z|g, γ)p(g|ξ)

As a result, maximization of the observed incomplete-data (log)likelihood is enhanced by

using an EM-algorithm (Dempster, Laird, & Rubin, 1977; Tanner, 1996). Furthermore, in

order to guarantee the existence of parameter estimates in the interior of the parameter

space (i.e., to prevent boundary estimates), it is convenient to impose a concave prior

distribution (Maris et al., 1996; Vermunt & Magidson, 2005, p. 44). More specifically, we
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will use the following conjugate prior distribution:

p(σ, ρ, γ, ξ) =
∏

j

∏

f

Beta(σjf |1 +
ασ

J
, 1 +

βσ

J
)

×
∏

k

∏

f

Beta(ρkf |1 +
αρ

K
, 1 +

βρ

K
)

×
∏

q

∏

f

Beta(γqf |1 +
αγ

Q
, 1 +

βγ

Q
) (7)

× Dir(ξ|1 +
δ1

Q
, . . . , 1 +

δQ

Q
)

Using positive values for the constants ασ, βσ, αρ, βρ, αγ , βγ and δq (q = 1 . . . , Q) we

obtain a concave prior distribution. In particular, we set ασ = βσ = αρ = βρ = αγ = βγ = 1

and δq = 2 (q = 1 . . . , Q). The complete-data posterior is now defined as:

p(σ, ρ, γ, ξ|d, x, y, z, g) ∝ p(x|σ)p(y|ρ)p(z|γ, g)p(g|ξ)p(σ, ρ, γ, ξ)

As models M1, M2 and M3 are actually constrained (multilevel) latent class models

they can be estimated using the syntax module of the standard latent class software Latent

GOLD (version 4.5) (Vermunt & Magidson, 2008). In Appendix A, we describe the

estimation of the models with Latent GOLD in more detail. In addition, we describe in

appendix B a derivation of the EM-algorithm for model M2. Derivations for the other

models are similar.

In addition to locating the posterior mode(s) of the model, it may also be interesting

to use a data-augmented Gibbs sampling algorithm to simulate a sample of the observed

posterior distribution (Gelfand & Smith, 1990; Tanner & Wong, 1987). In particular, the

posterior sample is a rich source of information which supports not only the computation

of point estimates of the parameters (e.g. posterior mean), but also the computation of

100(1 − α)% posterior intervals of (any function of) the parameters. These posterior

intervals are also valid in small samples whereas standard errors computed in the context

of the EM-algorithm are based on asymptotic theory. In Appendix C, we describe a

data-augmented Gibbs sampling algorithm for obtaining a sample of the posterior

distribution.
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Example 1: Analysis of individual differences in hostile behavior

Data

As a first illustration we analyze data of a study on hostile behavior conducted by

Vansteelandt and Van Mechelen (1999). In this study 316 persons indicated for all pairs of

4 behaviors and 14 situations to which extent they would display a certain behavior in a

certain situation (0=not, 1=limited, 2=strong). In this paper we analyze a subset of 6

situations and 4 behaviors (see also Meulders et al., 2003). Table 1 provides a description

of the situations and the behaviors which were taken from on S-R inventory (see also,

Endler & Hunt, 1968). To apply probabilistic feature models, the data were dichotomized

(0 versus 1 or 2).

Insert Table 1 about here

Analysis

Models M1, M2, and M3 with one up to five latent features (f = 1 . . . , 5) and with

one up to five latent classes (q = 1 . . . , 5) were estimated using an EM-algorithm. For each

model 20 runs using random starting points were conducted and the solution with the

highest posterior density was selected. Table 2 presents fit measures for the five models

(out of 75) with the lowest BIC value. Furthermore, for each of the models in Table 2 we

use a data-augmented Gibbs sampling algorithm to simulate a sample of the posterior

distribution.

Insert Table 2 about here

As can be seen in Table 2, the five models with lowest BIC value all assume a

constant behavior classification. To further investigate to which extent the models in Table
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2 can capture person differences we compare observed correlations between

situation-behavior (SB) pairs with expected correlations under the model. More

specifically, we use a posterior predictive check procedure based on 2000 replicated datasets

to compute the proportion of correlations among all observed SB-pairs that lie outside

their 99% posterior interval (PI) (i.e., pall). Furthermore, as SB-pairs with a common

situation or behavior may be expected to show stronger dependencies, we also compute the

proportion of correlations outside the 99% PI for SB-pairs with a common situation (i.e.,

psit) and with a common behavior (pbehav). As indicated by the results in Table 2, all the

models can capture dependencies between SB-pairs with a common behavior rather well:

only 2% of the correlations lie outside the 99% PI. Note that this result is in line with our

expectations as models assuming a fixed behavior classification directly focus on modelling

dependencies between SB-pairs with a common behavior. On the other hand, we see in

Table 2 that correlations between SB-pairs with a common situation are not fully captured

by the models and that increasing the number of latent classes (Q) can help to capture

these dependencies somewhat better. More specifically, four-feature models assuming 2, 3

and 4 classes can capture 69%, 81% and 89% of such correlations, respectively. As the

model with the lowest BIC can capture correlations among all SB-pairs rather well (94% of

the correlations are in their 99% PI), we will discuss the results of this model more in

detail. Note that for the selected model, the three classes contain 19%, 25% and 56% of the

persons respectively.

Interpretation of the selected model

Figure 1 shows the posterior mean and 95% PI for the parameters of the selected

model. In the present application, the features may be interpreted as latent situational

encodings that may elicit or suppress a certain behavior (see also Meulders et al., 2003).

More specifically, as Feature 1 is likely to be attributed to most situations (except the

situation in which you bang your shins against a park bench) it can be interpreted as a



13

general feature of frustration. Furthermore, this feature elicits the feeling of irritation

which is common in all frustrating situations.

Insert Figure 1 about here

Feature 2 reflects the fact that displaying aggressive reactions in a situation is

inappropriate because of the presence of another person. Indeed, this feature has a very

high probability of being perceived in the situation ‘you are unfairly accused of cheating on

an examination’ where showing aggression would be inappropriate due to the presence of a

high status person (i.e., a professor). On the other hand, Feature 2 has a very low

probability of being perceived in the situation ‘you bang your shins against a park bench’

where a verbal aggressive reaction such as cursing is allowed if you are alone. Otherwise,

Feature 2 elicits mainly covert reactions to being frustrated such as ‘becoming tense’ and

‘feeling irritated’ because overt aggressive reactions would be inappropriate in the situation.

Feature 3 can be interpreted as the fact that someone intentionally wants to hurt

your feelings ( ‘you have found out that someone has told lies about you’). Besides overt

reactions (‘become tense’, ‘feel irritated’), this feature is likely to elicit both ‘cursing’ and

‘wanting to strike’.

Feature 4 is mainly attributed to situations in which a verbal aggressive reaction is

allowed because there is nobody else present in the situation (‘you are driving to a party

and your car suddenly has a flat tire’, ‘you are waiting at the bus stop and the bus fails to

stop for you’, ‘you accidentally bang your shins against a park bench’). This feature

especially elicits ‘cursing’ but also ‘feelings of irritation’.

As can be seen in the lower part of Figure 1, persons in different classes have different

probabilities to attribute a certain feature to a situation, and to display the behaviors

which are typically elicited by the feature. In particular, persons in Class 2 are likely to

attribute each of the features to a situation. Persons in Class 3 have high probabilities to
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attribute each of the features to a situation, except Feature 3. Finally, persons in Class 1

are only likely to attribute Feature 4 to a situation, they have a moderate probability to

consider features 1 and 2 and they have a low probability to consider Feature 3.

To further illustrate how different feature selection probabilities per class (γqf ) affect

the situation-behavior profiles of these classes, Figures 2, 3, 4 and 5 visualize, for each

behavior, the probability that persons in a certain class will display a behavior in a

situation. As can be seen in Figures 4 and 5, persons in Class 2 are more likely to curse or

strike in any of the investigated situations than persons of other classes. Furthermore, as

shown in Figures 2 and 3, in all situations (except ‘when you accidentally bang your shins

against the park bench’) persons in Class 1 are less likely to become tense or to feel

irritated than person of other classes.

Insert Figures 2 to 5 about here

Fit of related models

To evaluate the performance of the selected model in terms of model fit, we compare

with previously developed PFM extensions. First, we estimate latent class PFMs with one

up to five features in which person classes consider a specific subset of latent features (i.e.,

a deterministic rather than probabilistic feature selection process) (see Meulders et al.,

2002). This analysis shows that a deterministic feature selection model with four features

has the lowest BIC value (7365), and hence that it is outperformed in terms of BIC by the

selected probabilistic feature selection model. Second, we estimate models with one up to

five latent features (f = 1, . . . , 5) and one up to five latent classes (q = 1, . . . , 5) with either

class-specific situation parameters (σjfq and ρkf ), or class-specific behavior parameters (σjf

and ρkfq) and using the same stochastic assumptions as in the selected model (i.e., varying

situation classification and constant behavior classification) (see Meulders et al., 2013).

The result of this analysis shows that, among models with class-specific situation
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parameters, models (F = 4, T = 1) and (F = 4, T = 2) have lowest BIC (7225) and that,

among models with class-specific behavior parameters, model (F = 4, T = 2) has lowest

BIC (7220). In other words, models with heterogeneity in situation- or behavior parameters

fit less well in terms of BIC than the proposed probabilistic feature selection model.

Example 2: Analysis of the structure of psychiatric syndromes

Data

As a second illustration, we analyze data of a study on psychiatric diagnosis gathered

by Van Mechelen and De Boeck (1990) (see also Gelman, Van Mechelen, Verbeke, Heitjan,

& Meulders, 2005; Leenen, Van Mechelen, De Boeck, & Rosenberg, 1999; Maris et al.,

1996). The data consist of the binary judgements of 15 clinicians (psychiatrists and clinical

psychologists) who indicated for each of 30 patients and 23 symptoms whether or not a

certain patient has a certain symptom. In addition, the clinicians also judged whether or

not patients have a substance use-, schizofrenic-, affective- or anxiety disorder. Note that

clinicians could attribute more than one disorder to a patient.

Analysis

Maris et al. (1996) used a disjunctive PFM (with stochastic independence

assumptions) to explain patient-symptom and patient-disorder associations. In particular,

this model assumes that observed judgements are determined by a set of implicit

syndromes which are shared by the clinicians. More specifically, when making a

patient-symptom judgement, it is assumed that clinicians evaluate, for each of the implicit

syndromes, whether the patient suffers from a certain syndrome and whether the symptom

is implied by the syndrome. Furthermore, using a disjunctive mapping rule, it is assumed

that clinicians assign a symptom to a patient if the patient suffers from at least one of the

implicit syndromes that implies the symptom.

Due to the involved stochastic assumptions, the model proposed by Maris et al.
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(1996) does not include any individual differences among the clinicians. In this paper we

will further investigate whether this assumption is realistic and evaluate whether clinicians

may have different probabilities to consider a certain implicit syndrome when making

patient-symptom judgements.

Models M1, M2 and M3 with one up to five latent features (f = 1, . . . , 5) and with

one up to five latent classes (q = 1, . . . , 5) were estimated using an EM-algorithm. For each

model, 20 runs using random starting points were conducted and the solution with the

highest posterior density was selected. Table 3 presents fit measures for the five models

(out of 75) with lowest BIC. In addition, a one-class five-feature PFM without rater

differences is included in the table as a comparison. For each of the models in Table 3, we

used a Gibbs sampling algorithm to simulate a sample from the posterior distribution.

As can be seen in Table 3, the three models with lowest BIC are five-feature models

that involve varying patient- and varying symptom classification in terms of implicit

syndromes and that assume 3, 4 or 5 latent classes with specific feature selection

probabilities. A five-feature model without rater differences (F = 5, Q = 1) has a

considerably higher BIC value than the other models in Table 3 (viz., 10664). Hence the

inclusion of class-specific feature selection probabilities clearly improves the global model

fit.

As a more specific model check, we evaluate to what extent the models can capture a

basic statistic such as the total number of symptoms a clinician assigns to patients, that is,

Si(d) =
∑

j

∑

k dijk. To evaluate whether this statistic is fitted well by the model we use a

posterior predictive check procedure (Gelman, Meng, & Stern, 1996) to simulate the

reference distribution of Si(d) (i = 1, . . . , 15) and we compute the number of clinicians for

which the observed value of Si lies below or above the simulated 99% posterior interval. As

can be seen, the models in Table 3 fit the total number of symptoms assigned by clinicians

to patients rather well. In particular, model (F = 5, Q = 3) underestimates this aspect for

two (out of 15) clinicians and the other models in Table 3 underestimate this number for
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one clinician only. On the other hand, it turns out that a model without rater differences

fails to fit the number of symptoms assigned by clinicians. That is, model (F = 5, Q = 1)

underestimates the assigned number of symptoms for 5 (out of 15) clinicians, and it

overestimates this aspect for 6 (out of 15) clinicians. As the model with lowest BIC is the

most parsimonious one and as it can rather well capture rater differences in the tendency

to assign symptoms, we will discuss the results of this model more in detail.

Insert Table 3 about here

Interpretation of the selected model

Figure 6 displays the posterior mean and the 95% posterior interval for the symptom

parameters and for the feature selection parameters of the selected model. Note that the

last four ‘symptoms’ in the Figure represent the four existing disorders that were included

in the study. As can be seen, some of the implicit syndromes extracted by the model

correspond to existing disorders, whereas other implicit syndromes represent a mixture of

existing disorders, or isolate symptoms that are not specific to any of the existing

disorders. More specifically, Feature 1 matches affective disorder (.98) which is very likely

to elicit symptoms of depression (.98), suicide/self mutilation (.69), social isolation (.86)

and role impairment (.59). Feature 2 corresponds with substance use disorder (.97), which

especially implies symptoms as narcotics/drugs abuse (.93), alcohol abuse (.52) and role

impairment (.61). Feature 3 does not correspond to any of the existing disorders that were

included in the study. However, this implicit syndrome matches to some extent with

‘disruptive, impulse-control and conduct disorders’ as it implies symptoms as antisocial

(.51), impulse control impairment (.92), and belligerence/negativism (.89). Feature 4

matches schizofrenic disorder, which implies symptoms as speech disorganization (.84),

inappropriate affect/behavior (.95), social isolation (.90), disturbance in daily routine (.91),

social dullness (.94) and role impairment (.97). Finally, Feature 5 is a mixture of anxiety-
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(.83) and affective (.63) disorders . This feature especially implies the symptoms anxiety

(.97), role impairment (.87), depression (.64), excessive somatic concerns (.49) and

disorientation/memory impairment (.46).

As can be seen in the lower part of Figure 6, clinicians in different classes clearly have

different probabilities to consider each of the implicit syndromes when judging

patient-symptom associations. More specifically, consideration probabilities for each of the

latent syndromes are highest for clinicians of Class 3, intermediate for clinicians of Class 2

and lowest for clinicians of Class 1, indicating that clinicians differ in the number of

symptoms they generally tend to assign to patients. Furthermore, clinicians of Class 1 have

a very low probability to consider Feature 3 (i.e., implicit syndrome linked to specific

symptoms) and Feature 4 (i.e., implicit syndrome related to schizofrenic disorder). As a

result, they are less likely to ascribe the symptoms implied by these implicit syndromes to

patients.

Insert Figure 6 about here

Discussion

In this paper we presented multilevel latent class extensions of the PFM that allow to

model heterogeneity in object-attribute (e.g., situation-behavior) association probabilities

by assuming that raters select each of the latent features with a certain probability when

making object-attribute judgements. In addition, the model allows to capture dependencies

between object-attribute judgements with a common element by assuming a constant

object- or attribute classification in terms of latent features. The proposed probabilistic

feature selection model has several advantages compared to previously developed

(multilevel) latent class PFMs. First, unlike models that assume a deterministic feature
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selection process, probabilistic feature selection models allow the user to independently

specify the number of rater classes and the number of latent features, leading to a more

flexible modelling approach and the selection of models with a better fit-complexity

balance (i.e., lower BIC). Second, models with probabilistic feature selection may be an

interesting alternative to models that involve class-specific object- and/or attribute

parameters because in the former models the number of parameters increases much less

rapidly with the number of latent rater classes, leading to the selection of less complex

models that are easier to interpret.

Several topics seem worthwhile to consider in future research. First, whereas previous

research has mainly focused on the development of latent class extensions of the PFM to

model rater heterogeneity in object-attribute association probabilities, it could also be

interesting to develop random-effects extensions of the PFM to model heterogeneity in the

object-attribute association probability across raters.

Second, in line with previous work on one-feature probabilistic feature models

(Meulders, De Boeck, & Van Mechelen, 2001), it could be interesting to further develop

confirmatory (multilevel latent class extensions of) probabilistic feature models for

applications in which useful design information is available. For instance, imagine

situation-behavior data in which seven pairs of behaviors are chosen to respectively

measure each of seven behavior types (i.e., anger-out, anger-in, social sharing, avoidance,

indirect behavior, assertive behavior, reconciliation) (see Kuppens, Van Mechelen, &

Meulders, 2004). In such case, it could be interesting to specify a seven-feature model in

which behaviors of a certain type have only a ‘loading’ on the corresponding latent feature

and that the behavior-feature probabilities for the other latent features are constrained to

be equal to zero. Another context where confirmatory PFMs could be of interest is in the

cognitive assessment of examinees’ skills. In particular, Maris (1999) used latent class

extensions of conjunctive PFMs to model the responses of examinees to a set of binary

items. Such PFMs assume that an examinee can solve an item if she masters each of the



20

skills required by the item. The model presented by Maris (1999) actually assumes that

examinees are classified with respect to the skills they master and that items, in order to

be solved, require each of the skills with a certain probability. However, many cognitive

diagnostic models used in practice include a skill by item binary incidence Q matrix that

specifies for each item which of the skills is required to solve the item (DiBello & Stout,

2007). Confirmatory PFMs could be useful to include the information of the Q matrix in

the analysis.

Third, in data from discrete choice experiments it has been recognized that subjects

may only attend to specific subsets of attributes when choosing between alternatives, and

that failure to account for such attribute processing heterogeneity may lead to an

underestimation of marginal willingness-to-pay estimates (Hensher, Rose, & Greene, 2012).

The standard approach to model attribute non-attendance is to use a latent class extension

of the conditional logit model in which respondents of each latent class only attend to a

particular subset of the attributes (Campbell, Hensher, & Scarpa, 2011; Carlsson, Kataria,

& Lampi, 2010; Hole, 2011; Collins, Rose, & Hensher, 2013). Similar to latent class PFMs

with deterministic feature selection, the standard latent class approach for modelling

attribute non-attendance suffers from the fact that the number of latent classes is a direct

function of the number of attributes used to define the alternatives, leading to complex

models if the number of attributes involved in the experiment increases. Therefore,

applying the same idea as in the present paper, an interesting alternative would be to

develop a stochastic attribute non-attendance model in which subjects consider each of the

attributes with a class-specific probability.
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Appendix A: syntax code for estimation with Latent GOLD

Data

To illustrate the estimation of models with Latent GOLD we consider the application

of M2 on situation-behavior judgements of raters for all pairs of 2 situations and 5

behaviors. To analyze the data with Latent GOLD one should structure the data as in

Table 4. The data should be sorted by person and within person by situation because M3

involves both a classification at the person level and a classification at the person-situation

level.

Insert Table 4 about here

Syntax code

1. model

2. title M2-Q3-F2;

3. options

4. algorithm tolerance=1e-010 emtolerance=0.01 emiterations=250 nriterations=50;

5. startvalues seed=0 sets=20 tolerance=1e-008 iterations=50;

6. bayes categorical=1 variances=1 latent=2 poisson=1;

7. output estimatedvalues parameters=last standarderrors probmeans=posterior profile

bivariateresiduals;

8. variables

9. groupID person;

10. caseID situation;
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11. dependent D nominal;

12. independent situation nominal, behavior nominal;

13. latent G group nominal 3, X1 nominal 2, X2 nominal 2, Y1 nominal 2 dynamic, Y2

nominal 2 dynamic, Z1 nominal 2 dynamic, Z2 nominal 2 dynamic;

14. equations

15. G <– 1;

16. X1 <– situation;

17. Y1 <– behavior;

18. X2 <– situation;

19. Y2 <– behavior;

20. Z1 <– G;

21. Z2 <– G;

22. D <– (b) 1 + (c) 1| X1 Y1 Z1 + (c) 1| X2 Y2 Z2;

23. b = -100;

24. c = 0;

25. c[8] = 200;

26. end model
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Comments
Lines 3-10 contain specific options used for estimation by Latent GOLD (for more

information see Vermunt & Magidson, 2008). Lines 9 and 10 indicate that the model

involves both a classification at the person level and a classification at the person-situation

level. Lines 11 and 12 are used to describe dependent and independent observed variables.

Line 13 is used to describe the latent variables and their classification level: The latent

variable G with the keyword ‘group’ is used to classify persons (=groupID variable) in 3

classes, the latent variables X1 and X2 are used to classify persons for each situation (=

caseID variable) in 2 × 2 clusters, and the latent variables Y 1, Y 2, Z1 and Z2 with the

keyword ‘dynamic’ are used to classify persons in 24 = 16 classes at the level of the

individual observations D. Lines 14-22 are used to describe the relationships between the

variables involved in the analysis. For instance, lines 20-21 indicate that the probability to

select a certain latent feature depends on the latent class the person belongs to. Line 22

indicates that observations D are obtained as a mapping of the latent variables X1, X2,

Y 1, Y 2, Z1 and Z2. In particular, P (D = 1|x, y, z) is put equal to

exp(b + c)/(1 + exp(b + c)) with b + c being a large positive number for latent data patterns

with X1 = Y 1 = Z1 = 1 or X2 = Y 2 = Z2 = 1 and with b + c being a large negative

number for all other latent data patterns (see lines 23-25).

Appendix B: Computation of the posterior mode

In this section we describe as an example the derivation of the EM-algorithm for

model M2. For this model, the complete-data likelihood is proportional to:
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Using the prior in (7) with ασ = βσ = αρ = βρ = αγ = βγ = 1 and δq = 2 (q = 1 . . . , Q),

except for a constant, the logarithm of the complete-data posterior reads as follows:

=
∑
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Using EM to estimate the parameters θ = (σ, ρ, γ, ξ) means that we maximize the

(logarithm of) the complete-data posterior as a function of the parameters, and that we

replace the complete data statistics by their conditional expected values given the observed

data. Maximization of the posterior distribution yields:

σ̂jf =
1
J

+ E(
∑

i xjf
i |d, θ)

2
J

+ I
(8)

ρ̂kf =
1
K

+ E(
∑

i

∑

j ykf
ji |d, θ)

2
K

+ IJ
(9)

γ̂qf =
1
Q

+ E(
∑

i

∑

j

∑

k zf
ijkgiq|d, θ)

2
Q

+ (JK)E(
∑

i giq|d, θ)
(10)

ξ̂q =
2
Q

+ E(
∑

i giq|d, θ)

I + 2
(11)

To update ξq one has to compute the conditional expected value of
∑

i giq which

equals:

E(
∑

i

Giq|di, σ, ρ, γ, ξ) =
∑

i

P (Giq = 1|di, σ, ρ, γ, ξ).
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The posterior probability P (Giq = 1|di, σ, ρ, γ, ξ) can be computed as follows:

=
P (Giq = 1|ξ)p(di|Giq = 1, σ, ρ, γ)
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To update σ̂jf we compute the conditional expected value of
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Finally, to update γ̂qf we compute the conditional expected value of
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Appendix C: computation of sample of the posterior distribution

In order to estimate a sample of the observed posterior distribution p(σ, ρ, γ, ξ|d) for

model M2 one can use a Gibbs sampling algorithm which iterates between the following

steps:

1. For each entity i draw the vector gi from

p(gi|di, σ, ρ, γ, ξ) ∝ p(di|gi, σ, ρ, γ)p(gi|ξ)
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To compute (16) we use
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with
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i , yk

ji, zijk) =
∏

q













1 −
∏

f

(1 − xjf
i ykf

ji zf
ijk)





dijk




∏

f

(1 − xjf
i ykf

ji zf
ijk)





1−dijk











giq

p(zijk|gi, γ) =
∏

q

∏

f

[

(γqf )z
f

ijk(1 − γqf )1−z
f

ijk

]giq

5. For each pair (j, f) draw σjf from

Beta

(

ασ +
∑

i

xjf
i , βσ +

∑

i

(1 − xjf
i )

)

6. For each pair (k, f) draw ρkf from

Beta



αρ +
∑

i

∑

j

ykf
ji , βρ +

∑

i

∑

j

(1 − ykf
ji )




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7. For each pair (q, f) draw γqf from

Beta



αγ +
∑

i

∑

j

∑

k

zf
ijkgiq, βγ +

∑

i

∑

j

∑

k

(1 − zf
ijk)giq





8. Draw ξ from

Dirichlet

(

δ1 +
∑

i

gi1, . . . , δQ +
∑

i

giQ

)

It can be shown that the subsequent draws (σ, ρ, γ, ξ) form a Markov chain which

converges towards the true posterior distribution (Tanner & Wong, 1987).
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Table 1

Description of situations and behaviors

type element

situation your instructor unfairly accuses you of cheating on an examination

you have just found out that someone has told lies about you

you are driving to a party and suddenly your car has a flat tire

you are waiting at the bus stop and the bus fails to stop for you

someone has opened your personal mail

you accidentally bang your shins against a park bench

behavior become tense

feel irritated

curse

want to strike something or someone

From "S-R Inventories of Hostility and Comparisons of the Proportions of Variance from

Persons, Behaviors, and Situations for Hostility and Anxiousness" by N.S. Endler and J.M.

Hunt, 1968, Journal of Personality and Social Psychology, 9, pp. 310-311. Copyright 1968

by the American Psychological Association. Adapted by permission of the author.
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Table 2

Number of features (F ), number of latent classes (Q), type of situation classification, type

of behavior classification, loglikelihood (LL), number of parameters (Npar), BIC value,

proportion of observed correlations between situation-behavior pairs outside the 99% PI

(pall), proportion of observed correlations between situation-behavior pairs with a common

situation outside the 99% PI (psit) and proportion of observed correlations between

situation-behavior pairs with a common behavior outside the 99% PI (pbehav), for the five

models with lowest BIC.

situation behavior

F Q classification classification LL Npar BIC pall psit pbehav

4 3 varying constant -3445 54 7200 .06 .19 .02

4 2 varying constant -3462 49 7206 .10 .31 .03

4 4 varying constant -3434 59 7207 .05 .11 .02

5 4 varying constant -3407 73 7217 .04 .14 .02

5 3 varying constant -3416 67 7218 .04 .11 .02
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Table 3

Number of features (F ), number of latent classes (Q), type of patient classification

(patient), type of symptom classification (symptom), loglikelihood (LL), number of

parameters (Npar), BIC value, number of clinicians for which Si lies below (Nbelow) or

above (Nabove) the 99% PI for the five models with the lowest BIC (first five models in the

table) and for a model without rater differences (last model in the table)

patient symptom

F Q classification classification LL Npar BIC Nbelow Nabove

5 3 varying varying -4738 302 10295 2/15 0/15

5 5 varying varying -4722 314 10295 1/15 0/15

5 4 varying varying -4736 308 10306 1/15 0/15

5 5 varying varying -4735 314 10320 1/15 0/15

5 4 varying varying -4743 308 10320 1/15 0/15

5 1 varying varying -4939 290 10664 5/15 6/15
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Table 4

Data structure for analysis with Latent GOLD 4.5. Observed judgements (D) are stored in

different records. The variables person, situation and behavior are added to describe each

observation.

person situation behavior D

1 1 1 1

1 1 2 0

1 1 3 1

1 1 4 1

1 1 5 0

1 2 1 1

1 2 2 0

1 2 3 0

1 2 4 0

1 2 5 1

2 1 1 0

. . .
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become tense

feel irritated

curse

want to strike

accused

lies

flat tire

bus stop

mail

shins

class 1

class 2

class 3
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Feature 1
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Feature 4
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Figure 1 . Posterior mean and 95% posterior interval for the situation parameters σ (upper

part figure), behavior parameters ρ (middle part figure) and selection parameters γ

(bottom part figure) of a three-class four-feature model (Q = 3, F = 4) with probabilistic

feature selection, varying situation classification and constant behavior classification.
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Figure 2 . Posterior mean and 95% posterior interval of the class-specific probability to

become tense in a situation for the three-class four-feature model (Q = 3, F = 4) with

probabilistic feature selection, varying situation classification and constant behavior

classification.
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feel irritated

situation
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Figure 3 . Posterior mean and 95% posterior interval of the class-specific probability to feel

irritated in a situation for the three-class four-feature model (Q = 3, F = 4) with

probabilistic feature selection, varying situation classification and constant behavior

classification.
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Figure 4 . Posterior mean and 95% posterior interval of the class-specific probability to

curse in a situation for the three-class four-feature model (Q = 3, F = 4) with probabilistic

feature selection, varying situation classification and constant behavior classification.
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want to strike
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Figure 5 . Posterior mean and 95% posterior interval of the class-specific probability of

wanting to strike in a situation for the three-class four-feature model (Q = 3, F = 4) with

probabilistic feature selection, varying situation classification and constant behavior

classification.
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speech disorganisation

agitation/excitement

hallucinations
inappropriate affect/behaviour

disorientation/memory impairment

depression

anxiety

suicide/self mutilation

excessive somatic concerns
narcotics/drugs

antisocial

retardation/lack of emotion

social isolation
disturbance in daily routine

alcohol abuse
belligerence/negativism

denial of illness
thoughts of grandeur

suspicion/persecution

intellectual impairment

impulse control/impairment

social dullness
role impairment

substance use disorder

schizofrenic disorder

affective disorder
anxiety disorder

class 1
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Feature 1
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Figure 6 . Posterior mean and 95% posterior interval for the symptom parameters ρ (upper

part figure) and selection parameters γ (bottom part figure) of a three-class five-feature

model (Q = 3, F = 5) with probabilistic feature selection and varying patient and symptom

classification.


