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Abstract. In a short introduction on social network analysis, the main characteristics of social network data as well as the main goals of social
network analysis are described. An overview of statistical models for social network data is given, pointing at differences and similarities
between the various model classes and introducing the most recent developments in social network modeling.
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Introduction

Social network analysis is an interdisciplinary field of re-
search with a long history of input from sociology, anthro-
pology, statistics, mathematics, information sciences, edu-
cation, psychology, and other disciplines. It still is a very
active research area, as is evident from the many recent
publications on social network analysis.

The large interest in social networks can be understood
in view of the important theoretical and intuitively appeal-
ing research questions connected with social networks and
the challenging methodological problems associated with
the collection and analysis of social network data. This
fruitful combination of content and methodology has stim-
ulated lots of research in the past, described, for example,
by Wasserman and Faust (1994, chap. 1). Both aspects of
social network analysis involve theoretical as well as em-
pirical problems, which makes the challenge even greater
and the research more rewarding.

Wasserman, Scott, and Carrington (2005) note the rapid
recent developments in the analysis of social network data
but do not offer an explanation. We think that the increase
in computer and computing facilities is an important factor.
We expect the advances in social network analysis to con-
tinue and present examples of some of the most recent
developments in this special issue of Methodology.

Social Network Analysis

Social network analysis aims at understanding the network
structure by description, visualization, and (statistical)
modeling. Social network data consist of various elements.
Following the definition by Wasserman and Faust (1994,
p. 89), social network data can be viewed as a social re-
lational system characterized by a set of actors and their
social ties. Additional information in the form of actor at-
tribute variables or multiple relations can be part of the
social relational system.

Several types of social network data are distinguished.
The two main types, which are both present in this special
issue, are ego-centered or personal networks, and complete
or one-mode networks. Ego-centered network data are usu-
ally collected from a sample of actors (egos) reporting on
the ties with and between other people (alters). The rela-
tional system is then assumed to be composed of the sam-
pled egos and reported alters and their ties, as well as pos-
sible additional actor and tie information. Complete
network data, on the other hand, concern a well-defined
group of actors who report on their ties with all other actors
in the group. The ties reported by actors can usually not be
assumed to be independent, which makes personal and
complete network sampling nonstandard. Rather than dis-
cussing network sampling in more detail here, we refer to
Wasserman and Faust (1994) and Frank (2005) and the
references therein.

Social network data can be collected in various ways.
The most common approach is by means of questionnaires,
but interviews, observations, and secondary sources are
also frequently used network data collection methods (see
also Marsden, 2005). In research utilizing egocentered net-
work data, it is important to obtain as complete a picture
of the respondents’ networks as possible, which requires
special tools for helping respondents to delineate their net-
works. A commonly used tool for this purpose is the so-
called name generator, which provides a clear definition of
which persons known by ego qualify as a network member
(or alter) of ego. In a recent study, Van der Gaag and Sni-
jders (2005) developed a new instrument for the measure-
ment of ego’s social capital that was named the resource
generator. In this special issue, Gerich and Lehner (2006)
show how computer-assisted self-administered interviews
(CASI) with name generators can provide an improvement
in personal network data collection.

Tie variables are often, though not necessarily, dichot-
omous, indicating the presence or absence of a relationship.
This facilitates a nice depiction of the network in a graph
or sociogram. The accompanying mathematical represen-
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tation is an adjacency matrix with 0s and 1s, where the
diagonal is usually not defined (actors do not indicate ties
with themselves). If the graph is undirected (for instance
when relations between actors are observed instead of self-
reported) the adjacency matrix is symmetric.

From mathematical graph theory a variety of concepts
describing the properties of the network are available, such
as reciprocity (when two actors indicate the existence of a
tie between them), stars (when one central actor is con-
nected to a number of other, unconnected actors—personal
network data can be viewed as a collection of stars), and
cliques (when there is a group of at least three actors that
are all connected to each other). Many more concepts are
available, and the reader is referred to Wasserman and
Faust (1994) for a complete overview.

In the analysis of complete networks, a distinction can
be made between (a) descriptive methods, also through
graphical representations (see Freeman, 2005); (b) analysis
procedures, often based on a decomposition of the adja-
cency matrix; and (c) statistical models based on probabil-
ity distributions. Visualization by displaying a sociogram
as well as a summary of graph theoretical concepts pro-
vides a first description of social network data. For a small
graph this may suffice, but usually the data and/or research
questions are too complex for this relatively simple ap-
proach.

Often it is of interest to compare actors on the basis of
their tie variables, possibly also taking into account other
actor characteristics. The identification of subgroups is an
important area in social network analysis, for which visu-
alization tools can be very helpful. In this special issue,
Brandes, Kenis, and Raab (2006) make a strong case for
the explanatory power of network visualization, based on
complex mathematical algorithms implemented in special-
ized network visualization software called visone (Brandes
& Wagner, 2003).

Another important goal of social network analysis is the
modeling of ties between actors, so as to explain and/or
predict the observed network. Several modeling ap-
proaches exist that are discussed in more detail in the next
section. As is shown by four articles in this special issue,
the modeling becomes more complex for richer social net-
work data—that is, when actor attributes, multiple net-
works, and/or multiple observations of the same network
are available.

The availability of software is an important condition
for the feasibility of social network analysis, especially for
applied researchers. Some specialized software has been
available for a long time. As noted earlier, the development
of new or improved software for social network analysis
seems continuous. A recent overview of the state of the art
in software for social network analysis—focusing on anal-
ysis through computation rather than visualization—is pro-
vided by Huisman and Van Duijn (2005). Important free
software packages include Pajek (Batagelj & Mrvar, 2004;
see also De Nooy, Mrvar, & Batagelj, 2005) and StOCNET
(Boer, Huisman, Snijders, & Zeggelink, 2003). The Web
site of the International Network on Social Network Anal-
ysis (INSNA) contains a page with short descriptions of
and links to a broad range of available software for social
network analysis (see INSNA, 2004).

Statistical Models for Social Network
Analysis

The statistical models applied in social network analysis
are typically nonstandard because the common assumption
of independent observations does not hold: The multiple
ties to and from the same actor are related. Moreover, the
popular assumption of continuous normally distributed
variables does not hold when tie variables are binary, nom-
inal, ordinal, or count variables. Below, three sometimes
interrelated classes of statistical models for complete net-
work data are discussed: (a) dyadic interaction models,
(b) exponential random graph models, and (c) stochastic
actor-oriented models. But first we introduce several sta-
tistical models for the analysis of ego-centered network
data.

The dependence structure of personal network data is
least complex if there is no information on ties between
alters, and if at the same time egos have neither overlapping
networks nor are members of other egos’ networks. Then,
the data have a neat hierarchical structure, where alters are
ordered (or nested) in egos. If the tie variable can be treated
as continuous, standard linear two-level models (also known
as hierarchical, random effects, or mixed effects models)
for personal network data can be defined in a straight-
forward way (Van Duijn, Van Busschbach, & Snijders,
1999), distinguishing an ego-specific error (or random)
term in addition to the usual (dyadic) error term. For binary
data, a multilevel logistic model can be used, as was done
by Wellman and Frank (2001). The advantages of the mul-
tilevel modeling framework are that it is extremely flexible
and that it does not require balanced data, that is, the same
number of alters for each ego.

In this special issue, Vermunt and Kalmijn (2006) pro-
pose a related conditional logit modeling approach for the
modeling of categorical (nominal) personal network data
in the presence of categorical covariates. It deals with the
dependence between alters within egos using either a para-
metric or nonparametric random effects approach. The
parametric formulation leads to a model with a high-di-
mensional random structure, which Vermunt and Kalmijn
(2006) restrict by superimposing a factor-analytic model.
In the nonparametric formulation, egos are assigned to la-
tent classes.

Models for complete directed network data can be ob-
tained by extending the multilevel approach. In that case,
two observations instead of one are available for each pair
of actors, the dyad, and we no longer have a convenient
hierarchical structure but a cross-nested structure where the
two dyadic observations are nested in two actors. Snijders
and Kenny (1999) formulated the social relations model
(SRM) as a random effects model for continuous directed
tie variables for possibly incomplete social networks. The
multilevel SRM contains, apart from an intercept (called
density in social network analysis) and possibly fixed co-
variate effects, random sender and receiver effects. The
random effects represent the two different roles actors have
in dyadic relations and are assumed to be actor-wise cor-
related, taking into account the interdependence of these
roles through the dependence between the relation to and
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from the same actor (reciprocity in social network analysis
terminology). Because of the random effects formulation,
extensions to the analysis of multiple observations of com-
plete networks, possibly with specific configurations
(teams, families, or couples), are straightforward. The spe-
cial case of the SRM for networks consisting of only two
persons, say for couples, is known as the actor-partner in-
terdependence model (APIM; Kashy & Kenny, 2000).

For binary tie variables, the equivalent of the SRM is
known as the p2 model (Van Duijn, Snijders, & Zijlstra,
2004), which is a random effect variant of the p1 model of
Holland and Leinhardt (1981). The p1 model—defining the
first probability distribution for binary dyadic data—is a
model for the four possible dyadic outcomes, one mutual,
one null, and two asymmetric. It distinguishes density,
sender, receiver, and reciprocity effects, but unlike the
SRM, all effects are modeled as fixed effects. Holland and
Leinhardt (1981) showed that the p1 model is identified
with suitable restrictions and that it implies conditionally
independence between dyads given the sender and receiver
parameters. As in the SRM, in the p2 model, the sender and
receiver parameters are modeled as correlated random ef-
fects, a formulation that makes it possible to include actor-
and dyad-specific covariates as fixed sender, receiver, den-
sity, or reciprocity regression parameters.

In the current special issue, Zijlstra, Van Duijn, & Snij-
ders (2006) propose a multilevel extension of the p2 model
for the analysis of multiple social networks, which may
have different sizes. Instead of estimating a separate p2

model for each network, a single identical model is defined
for all networks, whose parameters are allowed to vary
across networks by introducing random effects at the net-
work level. Other interesting extensions of the SRM and
p1 model have been proposed (see Wasserman & Faust,
1994, sec. 15.5), several of which are developed in com-
bination with a Bayesian estimation framework (see, e.g.,
Hoff, 2005).

Next to the Bernoulli distribution of independent ties,
the p1 model can be regarded as one of the simplest forms
of a family of exponential random graph distributions (see
Wasserman & Faust, 1994, p. 528). Many of the extensions
of the p1 model belong to the family of exponential random
graph distributions. A very important category is formed
by the Markov random graph (Frank & Strauss, 1986) or
p* model (Wasserman & Pattison, 1996; see also Wasser-
man & Robins, 2005). This model defines the probability
of a complete—directed or undirected—social network as
an exponential family parameterized with sufficient statis-
tics based on the network, possibly conditional on covari-
ates. The dependence among network ties is implied by the
choice of the sufficient network statistics. For instance, the
p1 model is defined by an exponential random graph dis-
tribution with the indegrees, outdegrees, and number of
mutual dyads as sufficient statistics (Wasserman & Faust,
1994, p. 633). For the Markov random graph or p* model,
which assumes dependence between ties involving the
same actor, the number of possible statistics and accom-
panying number of parameters to be estimated is enor-
mous. This number can, however, be restricted by using
suitable homogeneity constraints.

It has turned out to be extremely difficult to get reliable
estimates for parameters of the p* models. The early pseu-
dolikelihood estimation approach proposed by Wasserman
and Pattison (1996)—following Strauss and Ikeda
(1990)—based on a conditional logistic model formulation
has been shown to yield incorrect estimates and underes-
timated standard errors because of disregarding the depen-
dence between dyads. As shown by Snijders (2002), an
alternative estimation method in the form of Markov chain
Monte Carlo maximum likelihood estimation may also
cause problems because certain, degenerate, model config-
urations cannot be sampled from adequately. Recently, ad-
vances have been made in the understanding of these es-
timation difficulties, which has resulted in improved model
definitions and estimation methods (Snijders, Pattison,
Robins, & Handcock, in press), and more developments in
exponential random graph modeling and estimation are to
be expected.

The latent space model used by Shortreed, Handcock,
and Hoff (2006)—which also belongs to the exponential
random graph family—handles the dependence between
ties to and from the same actor in a different way. More
specifically, actors are assumed to have latent positions,
conditional on which ties can be assumed to be mutually
independent, leading to a logistic regression model for the
tie probabilities. Instead of using fixed or random sender
and receiver effects as in the p1 and p2 models, respectively,
the (Euclidian) distances between actors (possibly condi-
tional on actor attributes) are the model parameters to be
estimated. The main difficulty of the latent space model is
not the estimation of the distances between actors or the
regression parameters corresponding to covariates, which
can be obtained with Markov chain Monte Carlo algorithm,
but the derivation of the latent positions of the actors from
the distances. Shortreed et al. (2006) propose using the
posterior mean of the Kullback-Leibler divergence instead
of more obvious choices such as the posterior mean or
posterior mode. An attractive feature of the latent space
model is that, in addition to estimates for actor attribute
effects, it provides a model-based visualization of the net-
work under study.

The final class of models discussed here are models for
longitudinal network data, that is, models for the evolution
of social networks over time. These models require mul-
tiple observations of a complete social network, where ac-
tors may join and/or leave the network. An important
model for longitudinal network data—the stochastic actor-
oriented model—was proposed by Snijders (1996); see
also Huisman and Snijders (2003) and Snijders (2005).
This is a continuous-time Markov model for network
“events” of single actors who may change their ties with
other actors at a certain rate, which induces changes in the
overall network structure. A multinomial logit model ex-
pressing the preferences of the actors determines the prob-
ability corresponding to a tie change with one of the other
actors. Note that the model is estimated using discrete-time
observations of the network. An extension of this model
for the analysis of the joint development of social networks
and behavior, acknowledging the simultaneous influence
of individual behavior on the network structure and of net-
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work structure on individual behavior, was recently pro-
posed by Snijders, Steglich, and Schweinberger (in press).
In this special issue, Steglich, Snijders, and West (2006)
provide a very nice, completely formula-free introduction
to the main model ingredients and assumptions of this com-
plex model using an application to teenager friendship net-
works and social behavior defined by alcohol use and mu-
sic taste. This illustration and the substantive applications
described in the other articles of this special issue provide
excellent examples of the usefulness of social network
methodology for the advancement of social and behavioral
sciences.

The powerful combination of methods and applications
makes social network analysis special. This is not to say
that there are no unresolved issues left. Apart from the
estimation difficulties outlined earlier, one important issue
is the assessment of goodness-of-fit of statistical models
for social networks. This entails both the issue of model
selection and the question of prediction accuracy of the
selected model. The complexity of the models used for
analyzing social network data makes both issues difficult,
as recently noted by Hoff (2005, p. 295) and Zijlstra, Van
Duijn, and Snijders (2005).

We expect that social network analysis will continue to
encourage researchers from different fields to explore its
special methodological and empirical challenges.
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