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Abstract. Parameter estimation in joint correspondence analysis (JCA) is typically performed by weighted least squares using the
Burt matrix as the data matrix. In this paper, we show how to estimate the JCA model by means of maximum likelihood. For that
purpose, JCA is defined as a model for the full K-way distribution by generalizing the correspondence analysis model for
three-way tables proposed by Choulakian (1988a, 1988b). The advantage of placing JCA in a more formal statistical framework
is that standard chi-squared tests can be applied to assess the goodness-of-fit of unrestricted and restricted models.
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Introduction

Correspondence analysis (CA) is a popular technique for
the exploratory analysis of two-way frequency tables.
Widely used statistical software packages such as SPSS,
SAS, and BMDP contain a CA routine. Two types of
related extensions have been developed for the analysis
of K-way frequency tables: Multiple correspondence
analysis (MCA) and joint correspondence analysis
(JCA; Greenacre, 1988, 1993). MCA is a form of princi-
pal component analysis, while JCA is factor-analytic
technique for categorical variables (Boik, 1996).

Similarly to standard factor analysis, the JCA model
is defined in terms of the second-order moments. Since
we are dealing with categorical variables, the second-or-
der moments are the two-way marginal frequencies. The
matrix with one-way margins on the diagonal and two-
way margins on the off-diagonal blocks is referred to as
the Burt matrix. Parameter estimation is typically per-
formed by weighted least squares (WLS; Greenacre,
1988; Boik, 1996) using this Burt matrix as data matrix.
Recently,  Tateneni  and Browne  (2000) presented  a
slightly different noniterative estimation procedure that
is also based on the Burt matrix. The main advantage of
ignoring higher-order moments is that it is possible to
deal with large numbers of variables, which is important
in exploratory data analysis. An important disadvantage
is, however, that there are no formal statistical tests to

assess whether a particular model fits the data. This
makes it impossible to use JCA in a more confirmatory
manner as can be done with standard factor analysis.

In this paper, we show how to estimate the JCA model
by means of maximum likelihood (ML). For standard
CA of two-way tables, ML estimation methods have
been developed, yielding what is known as a row-col-
umn correlation model (Goodman, 1985, 1987) or ca-
nonical analysis of two-way tables (Gilula & Haberman,
1986; De Leeuw & Van der Heijden, 1991). To be able
to estimate the JCA model by ML, it has to be defined as
a model for the full K-way distribution rather than as a
model for the bivariate marginal distributions. The for-
mulation we propose is a generalization to K-way tables
of the CA model for three-way tables proposed by Chou-
lakian (1988a, 1988b). An important feature of our new
model is that the bivariate marginal distributions are ex-
actly in agreement with the constraints implied by JCA.

An advantage of the proposed ML method compared
to the standard limited information WLS approach is that
JCA is placed in a more formal statistical framework. We
are now able to apply standard goodness-of-fit chi-
squared tests to assess the overall fit of a model, as well
as to compare competing models with one another in
order to check whether certain restrictions hold.

The next section describes standard JCA. In Section 3
we derive the formulation of JCA as a model for a K-way
table. Section 4 presents two empirical examples and
Section 5 concludes.
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Joint Correspondence Analysis

Let πy1y2 … yK
Y1Y2 … YK denote an expected cell proportion in the

K-way contingency table formed by the categorical vari-
ables Y1, Y2, ..., and YK. The number of levels of variable
Yk is denoted by Jk and a particular level by yk (i.e., yk =
1, ..., Jk).

JCA can be defined as a model for all bivariate mar-
ginal distributions πykyl

YkYl. For each variable pair Yk and Yl,

where k ≠ l, the R-dimensional JCA model states that
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Yl
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⎟
⎟
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Here, πyk
Yk denotes an entry in the univariate marginal dis-

tribution of variable Yk, ηryk
Yk is the quantification or scale

value of category yk of variable Yk for dimension r, and
λr is the singular value or the “average” correlation be-
tween the variables in dimension r.

It should be noted that with K = 2, the model described
in Equation (1) equals a standard CA model. In addition,
a MCA is obtained by dropping the condition that k ≠ l.

For identification purposes, several constraints have
to be imposed on the model parameters. The typical cen-
tering, scaling, and orthogonalization constraints are:

∑
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for all r and s ≠ r. As can be seen, each set of category
quantifications is assumed to be centered. To identify λr,
one has to impose one scaling constraint per dimension.
Furthermore, to uniquely determine the various dimen-
sions, one orthogonalization constraint must be imposed
per pair of dimensions. The scaling and orthogonaliza-
tion constraints involve a sum over all variables, as is
common practice in MCA. Similar to factor analysis,
other types of constraint can be used to identify λr, such
as, for instance, imposing the scaling constraint on a sin-
gle variable, say Y1. The same applies to the necessary
constraints to uniquely determine the various dimen-
sions. Alternative identification constraints are, for ex-
ample, equating r–1 scale values to zero in dimension r
or orthogonalizing the scale values of a single variable.

It is also possible to drop the scaling constraints and
absorb the λr parameters in the category quantifications.
In that case, we obtain

πykyl
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Yl
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(2)

for all pairs Yk and Yl, with

∑
yk=1

jk
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Yk∗ = 0,∑
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K

∑
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πyk
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Yk∗ηsyk

Yk∗ = 0

for all r and r ≠ s, respectively. It can easily be verified
that ηryk

Yk∗ = √⎯⎯λrηryk
Yk .

Estimation of the parameters is typically done by
means of weighted least squares (Greenacre, 1988; Boik
1996). The appendix provides more detail on parameter
estimation.

A Multivariate Correlation Model

The ML-variant of CA is called the row-column correla-
tion model (RCCM, Goodman, 1985, 1987) or canonical
analysis of two-way tables (Gilula & Haberman, 1986).
Several extensions have been proposed for tables with
more than two dimensions. Gilula and Haberman (1988)
suggested dividing the cross-classified variables into two
sets, each of which can be treated as a single polytomous
variable. A restricted canonical correlation model is
specified for this “two-way” table, where the category
quantifications are linear functions of the original vari-
ables.

Choulakian (1988a) proposed the following extension
of the RCCM for the trivariate case:
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⎥
. (3)

This trivariate correlation model (TCM) can also be for-
mulated in a slightly more compact manner as
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The meaning of the parameters is similar to the ones in
JCA: πyk

Yk denotes the marginal probability that Yk = yk, R

is the number of dimensions, ρr denotes the canonical
correlation in dimension r, and νryk

Yk is the quantification
of category yk of variable Yk for dimension r.

The constraints on the νryk
Yk parameters are the same as

the ones on the ηryk
Yk parameters in the JCA model de-

scribed in the previous section; that is,

∑
yk=1

Jk
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3

∑
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k=1

3

∑
yk=1

Jk

πyk

Ykνryk
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Yk = 0,

As can be seen, the quantifications are assumed to be
centered for each variable and each dimension. It is im-
portant to note that the centering constraints are not ar-
bitrary constraints needed for identification but real
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model restrictions. In fact, the centering restrictions are
necessary to guarantee that the univariate marginal dis-
tributions are reproduced by the model. In addition to the
centering restrictions, one scaling constraint has to be
imposed per dimension in order to identify ρr. Further-
more, in order to uniquely define the various dimensions
or solve the rotation problem, one orthogonalization con-
straint has to be imposed per pair of dimensions.

In the original paper, Choulakian (1988a) proposed
imposing the orthogonalizing constraints per variable,
Σyk=1

Jk πyk
Ykνryk

Yk νsyk
Yk = 0, but this was corrected in an Errata

(Choulakian, 1988b). Another minor difference is that he
imposed scaling constraints on each variable separately,
Σyk=1

Jk πyk
Yk(νryk

Yk )2 = 1, and was therefore able to identify dif-

ferent ρr per variable pair. Our representation and his are,
however, equivalent.

Although Choulakian’s TCM differs from JCA in that
it is a model for a trivariate distribution rather than for
the three bivariate distributions, it is strongly related to
JCA. The exact relationship becomes visible if we derive
the implications of Choulakian’s model for the bivariate
marginal tables. Let us take πy1y2

Y1Y2 as an example:
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The last simplification is based on the fact that Σy3=1
J3 πy3

Y3 =

1 and Σy3=1
J3 πy3

Y3νry3
Y3 = 0.

The above derivation shows that as far as the bivariate
marginals are concerned, the model proposed by Chou-
lakian is equivalent to JCA. In other words, the TCM can
be seen as the underlying model for the three-way table
when the JCA model holds for the two-way tables. Chou-
lakian proposed estimating his model by means of ML
yielding what could be called a ML variant of JCA for
the three-variable case.

Using the results on the relationship between Choula-
kian’s extended row-column correlation model and JCA,
we propose the following extension to K-way tables:
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. (4)

We label this model a multivariate correlation model
(MCM). The meaning of the parameters and the identi-
fying constraints are the same as in the trivariate case, of
course, with 3 replaced by K.

The proposed multivariate extension of the RCCM is
similar to the class of row-column association models
proposed by Anderson and Vermunt (2000). One of their
row-column association models has exactly the same set
of bi-linear terms as the model described in Equation (4).

As in JCA, it is possible to drop the scaling constraint
and absorb the λr parameter in the category quantifica-
tions. In that case, we obtain
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where νryk
Yk∗ = √⎯⎯σrνryk

Yk .

Because the MCM is a model for the joint distribution,
its parameters can be estimated by means of maximum
likelihood (ML) assuming a Poisson sampling scheme.
In the computation of the ML estimates it is important to
take into account the centering constraints, which are not
arbitrary constraints needed for identification but are real
model restrictions. Another important issue is that the
algorithm should guarantee that all estimated cell entries
are at least zero. The Appendix describes two algorithms
for obtaining the ML estimation, a simple unidimension-
al Newton method and a Fisher scoring method.

Comparison of JCA and the MCM

It can be verified that the JCA model and the MCM de-
fined in Equations (1) and (4) have the same number of
free parameters. With R dimensions, the number of free
parameters, TR, equals

TR = T0 + R · (T0 + 1) – R ·
⎛
⎜
⎝
1 +

(R−1)
2

⎞
⎟
⎠

= T0 + R ·
⎛
⎜
⎝
T0 + 1 −

(R+1)
2

⎞
⎟
⎠
.

Here, T0 denotes the number of parameters of the inde-
pendence model, the model with 0 dimensions: T0 =
Σk=1

K (Jk − 1).
Despite the fact that the bilinear structures appearing

in the JCAmodel and the MCM are similar, the important
difference is, of course, that the former is defined as a
model for all two-way tables while the latter is a model
for the K-way table. As in the trivariate case, collapsing
πy1y2 … yK

Y1Y2 … YK, as defined in Equation (4), over all variables
except for Yk and Yl yields

πykyl

YkYl = πyk

Ykπyl

Yl
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⎟
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. (6)

The bilinear terms involving variables other than Yk
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or Yl, say Ym, cancel because Σym=1
Jm πym

Ym = 1 and

Σym=1
Jm πym

Ymνrym
Ym = 0.

It will be clear that, apart from the notation, Equation
(6) is equivalent to Equation (1). This shows that a MCM
implies that the two-way tables are in agreement with a
JCA model. Consequently, a R-dimensional JCA will ex-
actly reproduce the Burt matrix obtained from the esti-
mated frequencies of a R-dimensional MCM.

The relationship between MCM and JCA shown in
Equation (6) also suggests how to obtain estimated cell
entries in the K-way table using the results from a JCA;
that is, how to derive the reversed relationship between
the two models: We may fill in the JCA parameters in the
MCM model; that is,
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In the WLS estimation method of JCA, there is no guar-
antee that all estimated cell probabilities will be at least
zero. Note that even some entries in the two-way tables,
πykyl

YkYl, may be smaller than zero. When all estimated

πy1y2 … yK
Y1Y2 … YK are in the permissible range, estimation of a

MCM using such a constructed K-way table as data ma-
trix will give a perfect fit, and with the same identifying
constraints also the same parameter estimates.

On the basis of the above comparison, it can be con-
cluded is that the proposed MCM can be regarded as a
full information ML-variant of JCA. The implication is
that the MCM formulation can be used to place JCA
within a more formal statistical framework. This makes
it possible to assess the goodness-of-fit of the specified
model using asymptotic chi-squared tests, as well as to

perform more confirmatory analyses. On the other
hand, JCA can seen as a limited information WLS-vari-
ant of the MCM. Actually, we are dealing with two
equivalent models that are estimated in different man-
ners.

Examples

Tables 1 and 2 present two small data sets that we will use
to illustrate the new MCM, as well as to compare it with
other factor-analytic techniques for categorical variables.
Table 1 cross-tabulates 5 dichotomous political attitude
variables from the Political Action Survey (Hagenaars,
1993). Table 2 is a four-way cross-tabulation taken from
McCutcheon (1987). The items from the General Social
Survey 1982 measure respondents’ (Y1 and Y2) and inter-
viewers’ (Y3 and Y4) evaluation of the survey.

Tables 3 and 4 present the testing results for the vari-
ous models we estimated using these two data sets. Be-
sides the independence model and MCM models with
different number of dimensions, we used Bock’s nomi-
nal response model (NMR), the latent class cluster model
(LCCM), the latent class factor model (LCFM), and the
multivariate association model (MAM). Bock’s (1972)
NRM is an IRT model that could be used for these types
of variables. The LCCM model was used because of the
similarity between JCA and latent class analysis pointed
out by Van der Heijden, Gilula, and Van der Ark (1999).
The LCFM (Magidson & Vermunt, 2001) is similar to
Bock’s NRM, except for the fact that the latent variables
are assumed to be dichotomous instead of continuous.
The MAM is a factor-analytic model that has the same

Table 1. Cross-tabulation of five variables from the Political Action Survey.

System Conventional
Responsive- Ideological Repression Protest Participation (Y5)
ness (Y1) Level (Y2) Potential (Y3) Approval (Y4) 1. Low 2. High

1. Low 1. Low 1. High 1. Low 109 8
2. High 59 44

2. Low 1. Low 28 18
2. High 48 54

2. High 1. High 1. Low 4 19
2. High 7 32

2. Low 1. Low 3 3
2. High 10 26

2. High 1. Low 1. High 1.Low 49 92
2. High 46 96

2. Low 1. Low 16 16
2. High 33 80

2. High 1. High 1. Low 7 38
2. High 10 63

2. Low 1. Low 3 12
2. High 8 55
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types of bilinear terms as the MCM described in this
paper (Anderson & Vermunt, 2000).

The measures reported in Tables 3 and 4 are the like-
lihood-ratio chi-squared (G2), its associated number of

degrees of freedom and p value, the Bayesian informa-
tion criterion (BIC), and the proportional reduction in G2

compared to the independence model (∆G2).
As far as the testing results are concerned, we see the

Table 2. Cross-tabulation of four variables from the 1982 General Social Survey.

Cooperation (Y4)
Purpose Accuracy Understanding 3.Hostile/
(Y1) (Y2) (Y3) 1. Interested 2. Cooperative Impatient

1. Good 1. Mostly true 1. Good 419 35 2
2. Fair/Poor 71 25 5

2. Not true 1. Good 270 25 4
2. Fair/Poor 42 16 5

2. Depends 1. Mostly true 1. Good 23 4 1
2. Fair/Poor 6 2 0

2. Not true 1. Good 43 9 2
2. Fair/Poor 9 3 2

3. Waste 1. Mostly True 1. Good 26 3 0
2. Fair/Poor 1 2 0

2. Not true 1. Good 85 23 6
2. Fair/Poor 13 12 8

Table 3. Testing results of the models estimated with the Political Action Survey data.

Model G2 df p BIC ∆G2

Independence 296.56 26 .00 113.19 .00
MCM(1) 105.09 21 .00 –43.02 .65
MCM(2) 29.39 17 .03 –90.51 .90
LCCM(2) 95.79 20 .00 –45.26 .68
LCCM(3) 24.28 14 .04 –74.46 .92
LCFM(1) 95.79 20 .00 –45.26 .68
LCFM(2) 11.73 14 .63 –87.00 .96
NRM(1) 98.46 21 .00 –49.64 .67
NRM(2) 15.92 16 .46 –96.92 .95
MAM(1) 98.49 21 .00 –49.61 .67
MAM(2) 16.21 17 .51 –103.69 .95

1. MCM = Multivariate Correlation Model; LCCM = Latent Class Cluster Model; LCFM = Latent Class Factor Model; NRM = Nominal
Response Model; MAM = Multivariate Association Model. 2. ∆G2 is the proportional reduction of G2 compared to the independence
model.

Table 4. Testing results of the models estimated with the 1982 Social Survey data.

Model G2 df p BIC ∆G2

Independence 257.26 29 .00 51.60 .00
MCM(1) 98.59 23 .00 – 64.54 .62
MCM(2) 28.57 18 .05 – 99.08 .89
LCCM(2) 79.34 22 .00 – 76.68 .69
LCCM(3) 21.89 15 .11 – 84.48 .91
LCFM(1) 79.34 22 .00 – 76.68 .69
LCFM(2) 10.93 15 .76 – 95.45 .96
NRM(1) 81.43 23 .00 – 81.68 .68
NRM(2) 12.40 17 .78 –108.16 .95
MAM(1) 80.34 23 .00 – 82.80 .69
MAM(2) 13.13 18 .78 –114.53 .95

1. MCM = Multivariate Correlation Model; LCCM = Latent Class Cluster Model; LCFM = Latent Class Factor Model; NRM =
Nominal Response Model; MAM = Multivariate Association Model. 2. ∆G2 is the proportional reduction of G2 compared to the
independence model.
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same kind of pattern in both data sets. Although the MCM
with two dimensions does not fit perfectly, it describes
around 90 percent of the association between the variables
(see∆G2). This means that there is clear evidence that there
are two underlying dimensions. This is confirmed by the
results obtained with the other four methods. However, the
two-dimensional NRM, LCFM, and MAM fit the data
somewhat better, which illustrates that working with odds-
ratios instead of correlations gives somewhat more flexi-
bility when modeling relationships between categorical
variables (Goodman, 1991).

Tables 5 and 6 report the parameter estimates and the
estimated standard errors for the two-dimensional MCM.
For both data sets, the unrotated solution shows a pattern
that is well-known from unrotated factor solutions: All
items are positively related to the first dimension, while
some are positively and others are negatively related to the
second dimension. The rotated solutions were obtained by
setting one category quantification equal to zero rather
than using the orthogonality constraint. In the model for
the Political Action data, ν11

Y3 was set to zero. It can now be

seen, that the other four items are strongly related to the
first dimension and that Y2, Y3 and Y4 are related to the
second dimension. After setting ν21

Y2 = 0 in the model for
the General Social Survey data, we obtained a solution in
which Y1, Y2 and Y4 are related to the first dimension and
Y3 and Y4 to the second dimension.

Because several parameter estimates reported in Tables
5 and 6 do not differ significantly from zero, it makes sense
to impose additional constraints. Setting ν21

Y1 = ν21
Y5 = 0 in

the first data set, for example, yields a very small increase
in G2 compared to the unrestricted MCM(2) model(i.e., G2

= 29.43 versus G2 = 29.39 on 2 degrees of freedom). A
similar small increase in G2 is found in the second data set
by setting ν11

Y3 = ν12
Y3 = ν21

Y1 = 0: G2 = 30.82 versus G2 =
28.57 on 3 degrees of freedom.

Conclusions

In this paper we developed a ML variant of JCA called
the multivariate correlation model. A nice feature of the

Table 5. Parameter estimates and standard errors for MCM(2) obtained with the Political Action data.

Unrotated solution Rotated solution
r = 1 r = 2 r = 1 r = 2

σr 0.145 (0.010) 0.089 (0.024) 0.129 (0.011) 0.105 (0.025)
νr1

Y1 –0.858 (0.167) 0.725 (0.216) –1.090 (0.133) 0.028 (0.151)
νr2

Y1 0.731 (0.142) –0.618 (0.184) 0.929 (0.113) –0.024 (0.129)
νr1

Y2 –0.613 (0.070) 0.238 (0.178) –0.655 (0.074) –0.199 (0.102)
νr2

Y2 1.751 (0.200) –0.678 (0.509) 1.870 (0.211) 0.567 (0.292)
νr1

Y3 –0.618 (0.359) –1.251 (0.160) 0.000 (0.000) –1.362 (0.275)
νr2

Y3 1.111 (0.646) 2.251 (0.288) 0.000 (0.000) 2.451 (0.495)
νr1

Y4 –1.245 (0.182) –0.877 (0.777) –0.728 (0.152) –1.464 (0.602)
νr2

Y4 0.900 (0.132) 0.634 (0.561) 0.526 (0.110) 1.058 (0.435)
νr1

Y5 –1.559 (0.301) 1.287 (0.258) –1.967 (0.170) 0.028 (0.185)
νr2

Y5 0.958 (0.185) –0.791 (0.158) 1.209 (0.105) –0.017 (0.114)

Table 6. Parameter estimates and standard errors for MCM(2) obtained with the 1982 General Social Survey data.

Unrotated solution Rotated solution
r = 1 r = 2 r = 1 r = 2

σr 0.182 (0.021) 0.119 (0.032) 0.170 (0.026) 0.131 (0.029)
νr1

Y1 –0.777 (0.164) 0.415 (0.132) –0.874 (0.113) –0.035 (0.102)
νr2

Y1 1.777 (0.465) –0.461 (0.520) 1.824 (0.503) 0.501 (0.453)
νr3

Y1 2.954 (0.678) –1.864 (0.569) 3.426 (0.441) –0.114 (0.394)
νr1

Y2 –0.915 (0.178) 0.536 (0.345) –1.046 (0.285) 0.000 (0.000)
νr2

Y2 0.991 (0.193) –0.581 (0.374) 1.133 (0.309) 0.000 (0.000)
νr1

Y3 –0.268 (0.229) –0.671 (0.377) –0.010 (0.070) –0.715 (0.422)
νr2

Y3 1.185 (1.010) 2.963 (1.662) 0.044 (0.311) 3.155 (1.863)
νr1

Y4 –0.364 (0.163) –0.434 (0.429) –0.184 (0.048) –0.558 (0.430)
νr2

Y4 1.615 (0.771) 1.978 (1.964) 0.798 (0.268) 2.523 (1.969)
νr3

Y4 3.134 (1.284) 3.500 (3.618) 1.671 (0.437) 4.604 (3.614)
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proposed ML variant of JCA is that it provides formal
tests to check whether a specified model fits the data.
Another improvement over WLS estimation is that it
seems to be more stable: For instance, Heywood cases as
reported by Boik (1996) are less likely to occur. A disad-
vantage of ML estimation is that it may take somewhat
longer, especially in large frequency tables.

In the empirical application, we compared the perfor-
mance of the MCM with other models that could be used
for the same types of data. Although the MCM yielded
the same conclusion in terms of number of dimensions,
models based on odds-ratios seem to be superior to the
MCM in terms of model fit.

A consequence of defining JCA as a statistical model
is that it can be applied in a more confirmatory manner.
As in confirmatory factor analysis, an interesting type of
constraint is to set the category scale values of variable
Yk on dimension r equal to zero, which is similar to set-
ting a factor loading equal to zero. A related extension
would be to allow for correlated dimensions. This was
illustrated in the examples. Constraints that make sense
with ordinal variables are fixed (equal-interval) or mono-
tone category scale values. Another interesting extension
is the inclusion of grouping variables or covariates influ-
encing the correlation parameters or the category quan-
tifications.
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Appendix: Estimation Issues
WLS Estimation of the JCA Model

The parameters of the JCA model are usually estimated
by weighted least squares (WLS); that is, by minimizing:

W = 1/2∑
k=1

K

∑
l≠k

∑
yk=1

Jk

∑
yl=1

Jl

(pykyl

YkYl − πykyl

ykYl)2

pyk

Ykpyl

Yl
. (8)

Here, pykyl
YkYl and pyk

Yk denote observed sample proportions.
It can easily be verified that the WLS estimates for the
marginal probabilities πyk

Yk are equal to their sample

equivalents pyk
Yk.

Using the formulation of JCA in which the λr param-
eters are absorbed into the category quantifications (see
Equation 2), the above loss function can also be written
as follows:

W = 1/2∑
k=1

K

∑
l≠k

∑
yk=1

Jk

∑
yl=1

Jl

pyk

Ykpyl

Yl

⎛
⎜
⎝

⎜
⎜
ξykyl

YkYl − ∑
r=1

R

ηryk

Yk∗ηryl

Yl∗
⎞
⎟
⎠

⎟
⎟

2

, (9)

where ξykyl
YkYl = ⎛

⎝
pykyl

YkYl − pyk
Ykpyl

Yl⎞
⎠

/ ⎛
⎝
pyk

Ykpyl
Yl⎞
⎠
. One of the algo-

rithms that has been proposed to obtain the category
score scale values ηryk

Yk∗ makes use of MCA; that is, it
performs a singular value decomposition on the matrix
collecting the elements √⎯⎯⎯⎯⎯pyk

Ykpyl
Ylξykyl

YkYl for all two-way ta-
bles (Greenacre, 1988). The difference with MCA is that
the diagonal elements of this matrix are updated at each
iteration cycle. More precisely, the diagonal elements are
estimated with the provisional parameter values from the
previous iteration:

ξ̂ykyk

YkYk(t) = ∑
r=1

R

η̂ryk

Yk∗(t−1) η̂ryk

Yk∗(t−1).

In a certain sense, this iterative algorithm is similar to an
EM algorithm; that is, fill in the expected values for the
missing data in one step and solve the “maximization”
problem in a second step.

Other more efficient algorithms have been proposed
that minimize W directly making use of its first and sec-
ond derivatives with respect to ηryk

Yk∗ (see Boik, 1996).
These derivatives equal

∇W(ηryk

Yk ) = ∑
l≠k

∑
yl=1

Jl

pyk

Ykpyl

Yl

⎛
⎜
⎝

⎜
⎜
∑
r=1

R

ηryk

YK∗ηryl

Yl∗ − ξykyl

YkYl

⎞
⎟
⎠

⎟
⎟
ηryl

Yl∗,

∇2W(ηryk

Yk ) = ∑
l≠k

∑
yl=1

Jl

pyk

Ykpyl

Yl(ηryl

Yl∗)2 .

A simple unidimensional Newton or alternating least

squares updating scheme for the category quantifications
ηryk

Yk∗ involves adjusting the parameters as follows:

η̂ryk

Yk∗(t) = η̂ryk

Yk∗(t−1) +
∇W(ηryk

Yk )
∇2W(ηryk

Yk )
.

After updating the rth set of scale values for variable Yk,
they should be centered. The orthogonalization of the
scale values for the various dimensions can be done af-
terwards, for instance, by performing one cycle of the
algorithm described above.

ML Estimation of the Multivariate
Correlation Model

For the ML estimation of the MCM, we use the formu-
lation of Equation (5) in which the σr parameters are
absorbed in the category quantifications. In order to deal
with the centering constraints, we simply write the cate-
gory quantification for the last category Jk as a function
of the quantifications for the other categories:

νrJk

Yk∗ = − ∑
yk=1

Jk−1
pyk

Yk

pJk

Yk
νryk

Yk∗.

Let I denote the number of cells in the contingency table
and i a particular cell entry. The observed cell frequen-
cies are denoted by ni, the total sample size by N, and an
expected cell proportion by πi(β), where β is the vector
of unknown parameters. Furthermore, let xiyk

Yk equal 1 if

Yk = yk, –pyk
Yk / pJk

Yk if Yk = Jk, and 0 otherwise. Let ziyk
Yk equal

1 if Yk = yk, –1 if Yk = Jk, and 0 otherwise.
Assuming Poisson sampling, ML estimation involves

maximizing the kernel of the log-likelihood function

L(β) =∑
i

I

[nilnπi(β) – Nπi(β)].

In order to simplify notation, we define πi(β) = πi
0γi,

where

πi
0 =∏

k=1

K ⎛
⎜
⎝

⎜
⎜
∑
yk=1

Jk

πyk

Ykziyk

Yk

⎞
⎟
⎠

⎟
⎟
,

and

γi =
⎡
⎢
⎣

⎢
⎢
1 +∑

r=1

R

∑
k=1

K

∑
l=k+1

K

∑
yk=1

Jk

∑
yk=1

Jl

(νryk

Yk∗xiyk

Yk ) (νryl

Yl∗xiyl

Yl )
⎤
⎥
⎦

⎥
⎥

.

The two algorithms described below use the first-order
derivatives of πi(β) with respect to the unknown param-
eters; that is,
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∇πi(νryk

Yk∗) = πi
0 ∑

l≠k

∑(
yl=1

Jl

νryl

Yl∗xiyl

Yl ) xiyk

Yk ,

∇πi(πyk

Yk) =
⎡
⎢
⎣

⎢
⎢
∏
l≠k

K ⎛
⎜
⎝

⎜
⎜
∑
yl=1

Jl

πyl

Ylziyl

Yl

⎞
⎟
⎠

⎟
⎟

⎤
⎥
⎦

⎥
⎥
γiziyk

Yk .

Goodman (1985) and Choulakian (1988a) proposed us-
ing a simple uni-dimensional Newton algorithm for ML
estimation of correlation models for two-and three-way
tables. This algorithm can easily be generalized to deal
with the MCM. The ML estimates for the πyk

Yk terms are

simply their sample equivalents πyk
Yk. The unidimensional

updating scheme for the νryk
Yk∗ parameter is defined as fol-

lows:

ν̂ryk

Yk∗(t) = ν̂ryk

Yk∗(t−1) −
∇L(νryk

Yk∗)
∇2L(νryk

Yk∗)
,

where the first and second derivatives of L(β) with re-
spect to νryk

Yk∗ equal

∇L(νryk

Yk∗) = ∑
i

⎛
⎜
⎝

ni−nπi(β)
πi(β)

⎞
⎟
⎠
∇πi(νryk

Yk∗) ,

∇2(νryk

Yk∗) = − ∑
i

ni

πi(β)2
∇πi(νryk

Yk∗)2.

One set of quantifications is updated at a time fixing all
the other parameters at their current values. The identi-
fying orthogonality constraints can be imposed after-
wards, for instance, by a singular value decomposition.
As was already mentioned, an alternative way to deal
with the rotation problem is to equate certain scale values
to zero.

Gilula and Haberman (1986) proposed obtaining ML
estimates for the parameters of the bivariate correlation
model by Fisher scoring. The same procedure can also
be applied in the context of the MCM. An important dif-
ference with a standard Fisher scoring algorithm is that
the identifying (orthogonality) constraints should be de-
fined as side constraints in the maximization problem.
We will denote these constraints by h(β) = 0. The task to

be performed is finding the parameter estimates β̂ that
fulfill the following two conditions:

g(β̂) = ∇L(β̂) + λ′∇h(β̂) = 0,

h(β̂) = 0,

where λ is a vector of Lagrange multipliers. The gradient
vectors for β and λ, g(β) and g(λ), and the Fisher infor-
mation matrix, F(β), are obtained by

g(β) =∑
i

πi(β)–1 [ni – Nπi(β)] ∇πi(β) + λ′∇h(β),

g(λ) = h(β),

F(β) = N∑
i

πi(β)–1 ∇πi(β) ∇πi(β)′.

After collecting β and λ into a single vector θ, the Fish-
er-scoring updating scheme can be defined as follows

θ̂(t) = θ̂(t−1) H(θ̂)–1 g(θ̂),

where

H(θ) =
⎡
⎢
⎣

F(β)
−∇h(β)

−∇h(β)
0

⎤
⎥
⎦
. (10)

The upper left part of the inverse of H(θ̂) contains the
estimated variances and covariances of the unknown pa-
rameters.

A problem with the ML estimation of the MCM model
is that there is no guarantee that all πi(β) ≥ 0. This prob-
lem may occur when some of the observed cell frequen-
cies are equal to zero. The Fisher-scoring method de-
scribed above can, however, easily be modified to in-
clude nonnegativity constraints on the expected cell
proportions: A term [πi(β)-ε] is added to the vector h(β)
for each i. Because we are dealing with inequality con-
straints, the corresponding Lagrange multipliers should
be at least zero, which means that the equality constraint
πi(β) = ε is only activated if the corresponding inequality
πi(β) ≥ ε would otherwise be violated. The value of ε can
be set very near to zero, say 10–8, but not exactly equal
to zero.
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