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Resumen
Este trabajo muestra cómo analizar datos categóricos longitudinales por medio del pro-
grama de computador �EM . En paralelismo con los conocidos modelos LISREL, los mo-
delos que se proponen consisten de una parte estructural y una parte de medida, donde
la parte estructural es un sistema de ecuaciones logit y la parte de medida es un modelo
de clase latente que puede ser no restringido o restringido. Los modelos de transición
de clase discreta que explican los cambios que ocurren a nivel latente se estiman simul-
táneamente con modelos de medida sofisticados como, por ejemplo, los modelos de rasgo
latente con variables discretas. El enfoque se ilustra utlizando una aplicación empírica.
Varios modelos de medida se someten a prueba para una escala que se supone que mide
el centrismo juvenil. También se analiza la influencia de covariantes sobre la posición
inicial y las probabilidades de transición entre puntos temporales.
Palabras clave: Análisis de clase latente, TRI con variables discretas, análisis de datos
categóricos, modelo de Markov latente, modelo de transición latente, análisis de datos de
panel, modelo de Rasch, enfoque Lisrel modificado

Abstract

This paper shows how to analyze categorical longitudinal data by means of the log-linear
path modeling approach implemented in the �EM computer program. Like the well-
known LISREL models, the proposed models consist of a structural and a measurement
part, where the structural part is a system of logit equations and the measurement part is
an unrestricted or restricted latent class model. Discrete-time transition models explai-
ning changes occurring at the latent level are estimated simultaneously with sophisticated
measurement models like, for example, discretized latent trait models.
The approach is illustrated by means of an empirical application. Several measurement
models are tested for a scale that is assumed to measure youth-centrism. In addition,
the influence of covariates on the initial position and the transition probabilities between
time points is studied.
Key words: Latent class analysis, discretized IRT, categorical data analysis, latent Markov
model, latent transition model, panel data analysis, Rasch model, modified Lisrel approach

Introduction

Longitudinal data obtained via panel studies is, together with event history data,
the best suited kind of data for detecting determinants of individual change. This
paper demonstrates how to analyze categorical longitudinal data by means of the
log-linear path modeling approach implemented in the �EM computer program (Ver-
munt 1997a, 1997b). The approach was originally proposed by Hagenaars (1990,
1993) and is, in fact, a categorical data variant of the well-known LISREL model for
continuous variables (Jöreskog and Sörbom, 1988). A path model specifying the re-
lationships among the structural variables is combined with a measurement model
for the latent variables. Because of the analogy with the LISREL model, Hagenaars
referred to it as a modified LISREL approach.

The structural part of a modified LISREL model consists of a system of logit
equations in which a variable that appears as a response variable in one logit equation
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can be used as an explanatory variable in the logit equation for one of its posterior
variables (Goodman, 1973). The measurement part has the form of a latent class
model (Lazarsfeld and Henry, 1968; Goodman, 1974; Haberman, 1979). It is used to
correct for measurement error in certain observed variables. As explained by Van
de Pol and De Leeuw (1986) and Hagenaars (1990, 1993), in panel data analysis, it is
extremely important to separate true change from spurious change resulting from
measurement error.

The log-linear path model with latent variable is strongly related to the discrete-
time latent Markov model (Wiggins, 1973; Van de Pol and Langeheine, 1990). Ac-
tually, the latter model for the analysis of longitudinal data is a special case of the
approach presented in this paper (see Vermunt, 1997b). As was shown by Vermunt,
Langeheine, and Böckenholt (1999), specification of the latent Markov model as a
log-linear path model may yield parsimonious logit regression models for latent
transitions. New in this paper is that it is shown how to combine such latent transi-
tion models with sophisticated latent class measurement models like the discretized
latent trait models proposed by Lindsay, Clogg, and Grego (1991) and Heinen (1996).

The next section discusses the log-linear path models without latent variables.
Then, unrestricted and restricted latent class models, as well as the log-linear LISREL
model are presented. The proposed methods are illustrated with an application to
a real world two-way panel study.

Log-linear path models

This section presents a path-analytic extension of the well-known logit model. Good-
man (1973) called this log-linear model which takes a priori information on the causal
or time ordering of the variables into account a modified path analysis approach.
As is demonstrated below, this model is very well suited for analyzing categorical
longitudinal data.

Specifying the probability structure and simple constraints

Suppose that we have data from a three-wave panel study, and that we want to
explain individual transitions in a particular categorical variable. Let W , Y , and Z
denote the dependent variable at the first, second, and third point in time. Let R,
S, and T indicate three categorical independent variables which are used to explain
the value of W , the transitions between W and Y , and the transitions between Y
and Z . Thus, the variables R, S, and T are exogenous variables, while W , Y , and Z
are endogenous, where Y is assumed to be posterior to W , and Z is assumed to be
posterior to Y .

Let πrstwyz denote the probability that R = r , S = s, T = t, W = w, Y = y ,
and Z = z. Using the a priori information on the causal or time order among the
variables, πrstwyz can be written as

πrstwyz = πrst πw|rst πy|rstw πz|rstwy . (1)

As can be seen, the joint probability is decomposed into a product of marginal and
conditional probabilities, which is a straightforward manner to express that the value



Longitudinal data analysis using log-linear path analysis with latent variables 3

on a particular variable can only depend on the preceding variables but not on the
posterior ones (Goodman, 1973). For instance, Y is assumed to depend only on the
preceding variablesR, S, T , andW , but not on the posterior variableZ . Therefore, the
probability that Y = y depends only on the values of R, S, T , and W , and not on the
value of Z . Note that the model given in Equation (1) is a recursive model. Although
non-recursive models for categorical data, which have recently been proposed by
Mare and Winship (1991), can also be handled within our approach, here we will
restrict ourselves to recursive models.

Decomposing the joint probabilities into a set of marginal and conditional pro-
babilities is only the first step in describing the relationships among the variables
under study. Generally, we also want to reduce the number of parameters in some
way, while the right-hand side of Equation (1) contains as many unknown (condi-
tional) probabilities as observed cell frequencies. In other words, the model given
in Equation (1) is a saturated model in which it is assumed that a particular depen-
dent variable is influenced by all its preceding variables, including all higher-order
interactions. One of the problems associated with such a saturated model is that
some of its probabilities may be inestimable because there are no cases in certain
categories of the conditioning variables.

The simplest way to specify more parsimonious models is via conditional inde-
pendence assumptions. Suppose that W depends on R and S, but not on T , that Y
depends on S, T , andW , but not on R, and that Z depends on S, T , and Y , but not on
R and W . These restrictions can implemented by replacing the unrestricted model
given in Equation (1) by

πrstwyz = πrst πw|rs πy|stw πz|sty . (2)

Conditional independence restrictions are well-known from the field of graphical
modeling (Whittaker, 1990). The model described in Equation (2) is a first-order
discrete-time Markov model with covariates. Note that these are all assumptions
that should be tested.

Specifying logit constraints

The above-mentioned procedure for obtaining more restricted models has one im-
portant disadvantage: The resulting model may still contain many higher-order in-
teractions. Higher-order can be excluded by using logit parameterization for the
marginal and conditional probabilities appearing in Equation (1), yielding what Go-
odman (1973) called a “modified path analysis approach”. In our example, we would
have four submodels: an unrestricted model for the exogenous variables R, S, and
T , as well as three logit models with W , Y , and Z as dependent variables.

The logit model in which Y appears as a response variable could, for instance, be
of the form

πy|rstw =
exp

(
uYy +uSYsy +uTYty +uWYwy +uSWYswy

)

∑
y exp

(
uYy +uSYsy +uTYty +uWYwy +uSWYswy

) ,

where the u terms are log-linear parameters subject to, for instance, ANOVA-like
restrictions. This model contains the effect of S, T , and W on Y , as well as the
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second-order interaction of S and W . Note that, as above, we are assuming that Y
does not depend on R; that is, πy|rstw = πy|stw . Similar logit constraints could
be specified for πw|rst and πz|rstwy . It will be clear that such a system of logit
equations makes it possible to specify more parsimonious models than with the
simple conditional independence restrictions of Equation (2).

By using a more general class of logit models, it becomes possible to specify non-
hierarchical models and to use continuous exogenous variables in the log-linear path
model. Suppose that k is the index for the dependent variable in a particular logit
equation, and that i denotes the index for the joint independent variable. In this
case, the logit model may be of the general form,

πk|i =
exp

(∑
j ujxikj

)

∑
k exp

(∑
j ujxikj

) , (3)

where uj is a log-linear parameter, and xikj is an element of the design matrix. This
logit model is equivalent to the multinomial response model proposed by Haber-
man (1979). When the index i is used to denote a particular individual instead of a
level of the joint independent variable, the model given in Equation (3) becomes a
multinomial logistic regression model (Agresti, 1990). In that case, it can be used
with continuous independent variables, where xikj denotes the value of person i on
variable j for level k of the response variable.

The �EM program

A program called �EM has been developed to estimate the log-linear path models
discussed in this section without the necessity to set up different marginal tables
(Vermunt, 1997b). In �EM specifying a log-linear path model is the standard way of
modeling an observed frequency table.

The standard estimation procedure implemented in �EM for hierarchical log-
linear models is the iterative proportional fitting algorithm (IPF). However, �EMcan
also be used to estimate more complex log-linear or logit models of the form given in
Equation (3), in which case the user has to specify a design matrix. It is also possible
to use log-multiplicative effects, such as the type II association models developed by
Goodman (Goodman, 1979; Clogg, 1982; Xie, 1992). Non-hierarchical log-linear mo-
dels and log-multiplicative models are estimated by means of the uni-dimensional
Newton algorithm (Goodman, 1979; Vermunt, 1997b).

Models with latent variables

So far, it has been assumed that all variables used in the analysis can be observed
directly. In social and behavioral sciences, however, we often use several observable
or manifest variables as indicators for concepts that are difficult or impossible to
measure directly. It is assumed that an individual’s score on an indicator is determi-
ned by the unobservable value of the underlying latent variable of interest. In latent
structure models, this principle is implemented statistically by the assumption of
local independence; that is, that indicators are independent of each other within le-
vels of the latent variable. The latent class model (LCM) is a latent structure model
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in which manifest and latent variables are categorical (Lazarsfeld and Henry, 1968;
Goodman, 1974; Haberman, 1979).

Latent class measurement models

Suppose there is a LCM with one latent variableW with indexw and three indicators
A, B, and C with indices a, b, and c. Moreover, let W∗ denote the number of latent
classes. The basic equations of the LCM are

πabc =
W∗∑

w=1

πwabc ,

where

πwabc = πw πa|w πb|w πc|w (4)

Here, πwabc denotes a probability in the joint distribution including the latent di-
mensionW . Furthermore, πw is the proportion of the population belonging to latent
classw. The other π parameters appearing in Equation (4) are conditional response
probabilities. For instance, πa|w is the probability of having value a on A given that
one belongs to latent class w.

The LCM was proposed by Lazarsfeld and Henry (1968) for dichotomous indica-
tors and extended by Goodman (1974) to polytomous variables. It can be seen that
the observed variables A, B, and C are postulated to be mutually independent given
a particular score on the latent variable W . Note that Equation (4) is very similar to
the log-linear path model discussed in the previous section: In fact, it is a log-linear
path model in which one of the variables is unobserved.

Restricted LCMs may be specified by imposing restrictions on the probabilities of
the LCM. Typical constraints are fixed-value and equality restrictions on the latent
and conditional response probabilities (Goodman, 1974; Vermunt, 1997b). Croon
(1990) proposed an ordinal LCM with inequality constrains on the conditional res-
ponse probabilities (see also Vermunt, 2001).

It is also possible to specify restricted LCMs by writing the conditional response
probabilities of Equation (4) as logit models (Formann, 1992; Heinen, 1996):

πa|w = exp
(
uAa +uWAwa

)
∑
a exp

(
uAa +uWAwa

) . (5)

Heinen (1996) showed how to obtain discretized variants of the most important
latent trait models by restricting the two-variable terms in a similar manner as in
Goodman (1979) and Clogg’s (1982) linear-by-linear, row, column, and row-column
association models.

Suppose we want to construct a Rasch scale using three dichotomous items A,
B, and C . The basic assumption of the Rasch model is that all items have the same
discrimination parameter or, in other words, that the item characteristic curves are
parallel (Rasch, 1960). The probability of a “correct” answer is postulated to depend
only on a person’s ability and on the difficulty of the item concerned. A discrete
variant of the Rasch model can be obtained by restricting

uWAwa = θw αxa , uWBwb = θw αxb , uWCwc = θw αxc . (6)
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The parameter α is the discrimination parameter, which is assumed to be equal for
all items. Furthermore, xa, xb, and xc are the scores for the categories of the items,
and θw denotes the score for categoryw of W . The category scores of the items are
fixed quantities. The standard scoring is 0 for the “incorrect” answer and 1 to the
“correct” answer. However, if one wishes to preserve the ANOVA-like restrictions,
one may also score the two categories of A, B, and C as 1 and −1. The scores for the
latent variable, sometimes called latent nodes, can be fixed or random quantities.
The model with random nodes is equivalent to the semi-parametric Rasch model
proposed by Lindsay, Clogg, and Grego (1991). When the latent scores are fixed and
equidistant, the two-variable terms in (6) have the form of uniform associations.
With random latent nodes, they have the form of row-association terms, where W
operates as the row variable.

A discretized two-parameter logistic (2PL) model is obtained by the following set
of restrictions:

uWAwa = θw αA xa , uWBwb = θw αB xb , uWCwc = θw αC xc . (7)

The only difference with the Rasch model is that now the discrimination parameters
are item specific. In other words, apart from the item difficulty parameters, which
depend mainly on the one-variable effects, the 2PL model contains item-specific pa-
rameters indicating the strength of the association between the latent variable and
the item concerned. With fixed and equidistant values for the θw ’s, the two-variable
effects have the form of uniform associations. On the other hand, with random sco-
res for W , the two-variable terms are bi-linear as in Goodman (1979) and Clogg’s
(1982) row-column association models.

The most general item response model for polytomous items is the nominal res-
ponse (NR) model. Assuming that A, B, and C are polytomous, a discrete variant of
the NR model can be obtained by

uWAwa = θw αAa , uWBwb = θw αBb , uWCwc = θw αCc .

Thus, the NR model contains one association parameter for each item category.
With fixed and equidistant latent scores, these are column associations, where the
latent variable acts as row variable. If the θw are treated as unknown parameters,
we obtain a model with bi-linear row-column association terms.

A more parsimonious latent trait model for polytomous items is the partial credit
model (Masters, 1982). Similarly to the Rasch model, it is obtained by the restrictions
described in Equation (6). A less restricted model for polytomous items is obtained
with the restrictions described in (7), yielding a variant of the partial credit model
having item-specific discrimination parameters.

Combining a structural model with a measurement model

Several important extensions of the standard LCM have been proposed, such as mo-
dels with several latent variables (Goodman, 1974; Haberman, 1979; Magidson and
Vermunt, 2001), models with covariates (Clogg, 1981), and local dependence models
(Hagenaars, 1988). These extension are all special cases of the log-linear path model
with latent variables proposed by Hagenaars (1990, 1993) and extended by Vermunt
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(1997b). This model combines a structural model with a measurement model for the
latent variables. Because of the analogy with the LISREL model for continuous varia-
bles (Jöreskog and Sörbom, 1988), Hagenaars called it a modified LISREL approach.
Here, we concentrate on its application to the analysis of longitudinal data.

Suppose that the endogenous variables in the log-linear path model given in Equa-
tion (1), W , Y , and Z , are now latent variables, and that each of them is measured
indirectly by three observed variables. The indicators for W are denoted by A, B,
and C , for Y by D, E, and F , and for Z by G, H, and I. Using the same structure
as in Equation (1), but with the endogenous variables as latent variables, yields the
following modified LISREL model:

πabcdefghirstwyz =
(
πrst πw|rst πy|rstw πz|rstwy

)

(
πa|w πb|w πc|w πd|y πe|y πf |yπg|z πh|z πi|z

)
, (8)

where the first part at the right-hand side is the structural model and the second
part is the measurement model.

I should be noted that the model described in Equation (8) is more restricted that
a standard latent class model. An important additional assumption is that the item
responses at different time points are independent of one another given the latent
variables. Another constraint is that the covariates have no direct effects of the
indicators. Both assumptions can be tested and relaxed when applying the model to
a data set.

As in models without latent variables, each of the conditional probabilities ap-
pearing at the right-hand side of Equation (8) can be restricted by a logit model. In
other words, the various types of constraints discussed above in the context of log-
linear path models and LC models can also be used here. Although it is implicitly
assumed that the measurement models for W , Y , and Z do not depend on R, S, and
T , it is not a problem to relax this assumption. For example, by replacing πd|y by
πd|ry , it can be tested whether R influences the relationship between Y and D.

The model described Equation (8) is an extension of the latent Markov model
described by Wiggins (1973), Van de Pol and De Leeuw (1986), and Van de Pol and
Lageheine (1990). On the one hand, it contains a more flexible way of including
covariates (see also Vermunt, Langeheine and Böckenholt, 1999); on the other hand,
it can be used to specify latent transition models with complicated measurement
structures, like the discretized latent trait models described above.

The �EM program

The �EM program (Vermunt, 1997b) is especially developed for estimating log-linear
path models with latent variables. Actually, in the model specification, latent and
observed variables are treated in exactly the same way by the program. Maximum
likelihood estimates of the parameters are obtained by means the EM algorithm
(Dempster, Laird and Rubin, 1977), which is a general iterative algorithm to estimate
models when there is missing data. Note that in the current application the latent
variables are the missing data.

The EM algorithm consists of two separate steps per iteration cycle: an E(xpectation)
step and a M(aximization) step. In the E step, estimates are obtained for the cell fre-
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quencies in the completed table (n̂abcdefghirstwyz), conditional on the incompletely
observed data and the parameter estimates from the last EM iteration; that is,

n̂abcdefghirstwyz = nabcdefghirst π̂wyz|abcdefghirst .
Here, nabcdefghirst is an observed frequency and π̂wyz|abcdefghirst the probability
that W = w, Y = y , and Z = z, given the observed variables, evaluated using the
“current” parameter estimates.

In the M step, as with completely observed data, �EM uses the IPF and uni-
dimensional Newton algorithms treating the completed data as if it were observed
data. In fact, the likelihood function in which n̂abcdefghirstwyz appears as data, so-
metimes referred to as the completed data likelihood, is maximized. The improved
parameter estimates are used again in the E step to obtain new estimates for the
complete table. The EM cycles continue till the increase of log-likelihood is less than
the specified convergence criterion.

Application

The approach to the analysis of longitudinal data that was presented in the previous
sections is illustrated by means of an application on the change in youth-centrism.
The data are taken from the 1992 Shell Youth Survey carried out in the summer
of 1991, and from a second wave which took place between July and September
1993. In this follow up study, which is part of a research project financed by the
German Research Foundation (DFG), a subsample of 288 persons was interviewed
together with their parents. Because of the German unification, the focus was on the
comparison between the East and West German youth.

An important common theoretical construct in various Shell Surveys is the con-
cept of youth-centrism (Georg, 1992). The attitude ‘Youth-Centrism’ describes the
orientation of young people to confine their own world and concept of life against
the one of adults and to mistrust societal authorities which are determined by adults.
In addition, young people persist in the right of having their own experiences, be-
cause the experiences of adults are not appropriate to solve their problems. This
results in feelings of powerlessness and aggression against the adult world. For the
example, we used the four items of the youth-centrism scale that proved to be scale
in an earlier analysis (Georg, 1992). The wording of these items is as follows: 1)
Very few adults really understand the problems of young people, 2) I do not think
much of the experience of adults; I would rather rely on myself, 3) I learn more from
friends of my own than from my parents, and 4) Parents are always interfering in
things that are none of their business. As covariates we used the dichotomous va-
riables East/West Germany, sex, and age in two categories (15-17 and 18-20). For
the three covariates it is hypothesized that boys and girls do not differ with respect
to the change in youth-centrism, that in East Germany there is an increase of youth-
centrism between 1991 and 1993 as result of substantive social change, and that
youth-centrism diminishes with age because of the gradual transition from youth to
adulthood.

The background variables East/West, sex, and age are denoted by R, S, and T ,
respectively. Furthermore, the time-specific latent youth-centrism variables are de-
noted by W and Y , the indicators for W by A, B, C and D, and the indicators for Y
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Figure 1: Modified Lisrel model

by E, F , G, and H. For the sake of simplicity and also because of sparseness of the
table to be analyzed, the youth-centrism items are dichotomized (disagree, agree).
Although this leads to some loss of information, the loss of information is not larger
than when performing a LISREL analysis, where the observed relationships among
variables are assumed to be described completely by means of some bivariate asso-
ciation measure. Here, the data used to estimate the model parameters consists of
the multivariate frequency table with observed cells entries nabcdefghrst .

The most general log-linear path model with latent variables we worked with is

πabcdefghrstwy = πrst πw|rst πy|rstw πa|w πb|w πc|w πd|w πe|y πf |y πg|y πh|y .
The Figure 1 depicts a model that is obtained by imposing certain constraints on this
general model. As can be seen, the latent variables W and Y have four indicators.
Furthermore, R and T are assumed to influence the initial position (W ), where there
is an interaction between these two covariates. The latent transition from W = w to
Y = y is assumed to be influenced by R, S, and T . Actually, the depicted model is
similar to the final model that was obtained for the Shell panel data.

Because of the complexity of the model, a step-wise procedure was followed.
First, the time-specific measurement models were investigated; that is,

πabcdw = πw πa|w πb|w πc|w πd|w ,
πefghy = πy πe|y πf |y πg|y πh|y .

Then, the stability of the measurement model over time was investigated by perfor-
ming an analysis using information on both time points, but without covariates. In
other words, we estimated models of the form

πabcdefghwy = πw πy|w πa|w πb|w πc|w πd|w πe|y πf |y πg|y πh|y .

This model also provides us with information on the latent change between the two
points in time. And finally, the relationships among the structural variables were
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Table 1. Test results for the estimated structural models assuming a homogeneous
two-class Rasch measurement model

Model L2 df p(L2) BIC
1. {W}{WY} 963.76 2032 1.000 -10543.38
2. {RSTW}{RSTWY} 938.79 2011 1.000 -10449.43
3. {RSTW}{WY} 953.93 2025 1.000 -10513.56
4. {W}{RSTWY} 946.49 2018 1.000 -10481.36
5. {RTW}{WY} 957.67 2029 1.000 -10532.47
6. {RTW 1}{WY} 958.24 2031 1.000 -10543.24
7. {W}{RWY, SWY,TWY} 949.82 2026 1.000 -10523.34
8. {W}{RWY 2, SWY 3, TWY 4} 952.74 2029 1.000 -10537.41
9. {RTW 1}{RWY 2, SWY 3, TWY 4} 948.76 2028 1.000 -10535.73
10. {RTW 1}{RSTWY 5} 948.76 2030 1.000 -10547.05
1: only an effect of T on W for R = 2
2, 3 and 4: only effects of R, S and T on πy|rst1
5: only an effect on πy|rst1 for R = 2, S = 1, and T = 1

investigated. More precisely, we tested whether R (East/West), S (sex), and T (age)
influence the amount of youth-centrism at the first point in time and the transition
probabilities between the first and the second point in time.

Separate measurement models

Table 1 reports the test results for the estimated measurement models for the two
points in time. As can be seen, we estimated unrestricted LCMs, Rasch models,
and 2PL models. We used both the likelihood-ratio statistic L2 and the Bayesian
information criterion BIC for model selection. The L2 follows asymptotically a chi-
squared distribution. The BIC , which is defined as 2L2+ log(N)df , weights model
fit and parsimony. The model with the lower (most negative) BIC value is the model
that should be preferred. This measure can also be used as an alternative to formal
chi-squared tests when asymptotics do not hold, as, for example, with sparse tables.

Let us first look at the two-class models. For both time points, the unrestricted
two-class models (Models 1a and 2a) perform quite well (L2 = 12.05, df = 6, p =
.061, and L2 = 9.40, df = 6, p = .152). The two-class Rasch models (Models 1b
and 2b) are obtained by restricting the two-variable terms to be equal among items.
Note that when a model has only two latent classes, it does not matter whether
one assumes fixed or random latent nodes. The conditional likelihood ratio tests
between Models 1a and 1b (∆L2 = 6.98, df = 3, p = .073) and between Model 2a and
2b (∆L2 = 6.89, df = 3, p = .075) show that for neither of the two time points, the
two-class Rasch models performs worse than the unrestricted two-class model.

The unrestricted three-class models (Models 1c and 2c) fit almost perfect for
both time points. It should be noted that an unrestricted three-class model with
four dichotomous indicators is not identified (Goodman, 1974). An identified model
with the same L2 value as the unrestricted three-class model can be obtained by
imposing one arbitrary restriction on the model parameters. For this reason, the
reported number of degrees of freedom for Models 1c and 2c is 2 instead of 1.
As a result of difficulties associated with parameter space boundaries (Titterington,
Smith, and Makov, 1985), the two- and three-class models cannot be tested against
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each other by means of an L2 test.

Several restricted three-class models were estimated, namely: Rasch models with
random latent nodes (Models 1d and 2d), Rasch models with fixed latent nodes (Mo-
dels 1e and 2e), and 2PL models with fixed latent nodes (Models 1f and 2f). For the
first point in time, both three-class Rasch models perform very badly. Models 1d
and 1e fit much worse than the unrestricted three-class model, and moreover, they
have almost the same L2 value as the two-class Rasch model. The 2PL model does
not fit significantly better than the Rasch model (∆L2 = 6.68, df = 3, p = .083),
and moreover, it fits significantly worse than the unrestricted three-class model
(∆L2 = 10.19, df = 3, p = .017). Thus, for the first point in time, the best fitting
three-class model is the unrestricted model (Model 1c).

From the restricted three-class models for the second point in time, only the
Rasch model with fixed latent models (Model 2e) fits worse than the unrestricted mo-
del (Model 2c). This can be seen from the conditional tests between Models 2c and
2e (∆L2 = 12.87, df = 6, p = .045), between Models 2c and 2d (∆L2 = 10.27, df =
5, p = .067), and between Models 2c and 2f (∆L2 = 3.31, df = 3, p = .364). Furt-
hermore, the Rasch model with fixed latent nodes does not fit worse than the Rasch
model with random latent nodes (∆L2 = 2.51, df = 1, p = .113). And finally, the 2PL
fits better than the Rasch model with fixed nodes (∆L2 = 9.47, df = 3, p = .024).
Thus, for the second point in time, the 2PL is the best fitting three-class model.

The last column of Table 1 reports the BIC values for all models. As can be seen,
according to the BIC criterion, the two-class Rasch model should be preferred for
both time points. In other words, if we do not only take into account model fit but
also parsimony, the most restricted measurement model comes out as the best.

Simultaneous measurement models

The second part of Table 1 reports the test results for the simultaneously estimated
measurement models for the two points in time. The main purpose of this analysis
was to test whether the measurement model is stable between the two time points. It
should be noted that when the measurement model cannot be assumed to be stable,
inference on latent change may be problematic.

The low p values obtained with all the estimated models indicates that the as-
sumption that item responses at different time points are independent given the
latent variables does not hold perfectly. This problem could be tackled by intro-
ducing direct effects between the item responses at different occasions (Hagenaars,
1988), which is something that can be done within the framework introduced in this
paper. For simplicity of exposition, we neglect this problem and concentrate on the
stability of the measurement model.

The stability of the measurement model between the two points in time was tes-
ted using unrestricted two-class models (Models 3a-3f). Comparison of the L2 values
of the completely homogeneous two-class model (Model 3a) and the completely he-
terogeneous two-class model (Model 3b) shows that the differences between the two
time points are just significant (∆L2 = 16.09, df = 8, p = .041). To see which items
are responsible for the differences in the time-specific measurement models, Models
3c-3f relax one by one the homogeneity assumption for the four items. Conditional
tests of these models against Model 3a show that only the fourth item (D/H) behaves
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Table 2. Test results for the estimated measurement models

Model L2 df p(L2) BIC
separate models for time point one
1a. 2 class 12.05 6 .061 -21.93
1b. 2 class Rasch 19.03 9 .025 -31.95
1c. 3 class (1 identifying restriction) 1.13 2 .288 -9.07
1d. 3 class Rasch (random nodes) 19.00 7 .008 -20.64
1e. 3 class Rasch 19.00 8 .015 -26.30
1f. 3 class 2PL 11.32 5 .045 -20.00
separate models for time point two
2a. 2 class 9.40 6 .152 -24.58
2b. 2 class Rasch 16.29 9 .061 -34.68
2c. 3 class (1 identifying restriction) 2.71 2 .258 -5.91
2d. 3 class Rasch (random nodes) 12.98 7 .073 -26.61
2e. 3 class Rasch 15.49 8 .050 -29.81
2f. 3 class 2PL 6.02 5 .304 -22.31
simultaneous models for time points one and two
3a. 2 class homogeneous 294.36 244 .015 -1087.40
3b. 2 class heterogeneous 278.27 236 .031 -1052.19
3c. 2 class πa|w ≠ πe|y 292.07 242 .015 -1078.36
3d. 2 class πb|w ≠ πf |y 291.21 242 .017 -1079.23
3e. 2 class πc|w ≠ πg|y 294.10 242 .012 -1076.34
3f. 2 class πd|w ≠ πh|y 284.10 242 .033 -1086.34
3g. 2 class Rasch homogeneous 298.62 247 .014 -1100.13
3h. 3 class homogeneous 271.30 235 .052 -1059.50
3i. 3 class Rasch homogeneous (random nodes) 281.39 241 .038 -1083.39
3j. 3 class Rasch homogeneous 281.91 242 .040 -1078.53
3k. 3 class 2PL homogeneous 277.24 239 .045 -1076.21

differently at the two points in time (∆L2 = 10.26, df = 2, p = .006). However, as is
demonstrated below, the transition probabilities are not strongly influenced by as-
suming homogeneity for all items. Therefore, we continued assuming homogeneity
of the measurement models.

As in the separate measurement models, the two-class Rasch model (Model 3g)
does not fit worse than the unrestricted LCM (∆L2 = 4.26, df = 3, p = .235). Furt-
hermore, some three-class models were estimated. From the three-class models
(Models 3h-3k), the Rasch model with fixed latent nodes performs best. It does not
fit worse than the unrestricted model (∆L2 = 10.61, df = 7, p = .157) nor the 2PL
model (∆L2 = 4.67, df = 3, p = .198). Since the two- and three-class Rasch model
cannot be compared by means of the likelihood-ratio statistic, we have to compare
them using, for instance, the BIC criterion. According to this criterion, the two-class
Rasch model should be preferred.

Table 2 gives the parameter estimates for the homogeneous two-class Rasch mo-
del (Model 3g). Let us first consider the measurement part of the model. It must
be noted that since the measurement model for Y is identical to the measurement
model for W , its parameters are not reported in Table 2. The conditional response
probabilities indicate that the first class is the non-youth-centristic class, while class
two is the youth-centristic class: Persons belonging to class one have a much higher
probability of disagreeing with the youth-centrism items than do persons belonging
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Table 3. Parameter estimates for the homogeneous
two-class Rasch model

πw W = 1 W = 2
0.4699 0.5301

πy|w Y = 1 Y = 2
W = 1 0.9596 0.0404
W = 2 0.5786 0.4214
πa|w A = 1 A = 2
W = 1 0.4833 0.5167
W = 2 0.0951 0.9049
πb|w B = 1 B = 2
W = 1 0.6911 0.3089
W = 2 0.2008 0.7992
πc|w C = 1 C = 2
W = 1 0.7229 0.2771
W = 2 0.2267 0.7733
πd|w D = 1 D = 2
W = 1 0.7338 0.2662
W = 2 0.2364 0.7636

to class two. For instance, respondents belonging to class one have a probability of
.7338 to disagree with item D, while for class two this probability is only .2364. It
can be seen that items B, C , and D have almost the same difficulty, while item A is
much easier than the other three items: Even persons belonging to the non-youth-
centristic class have a probability of .5167 to agree with item A.

The initial distribution of the latent variable youth-centrism, πw , shows that at
the first point in time the two latent classes have almost equal sizes. The transition
probabilities, πy|w , demonstrate that a great deal of change occurred between the
two time points, especially among persons belonging to the youth-centristic class at
time point one. Almost all respondents who are non-youth-centristic remain non-
youth-centristic. But, respondents who are youth-centristic at the first point in time,
have a probability of .5786 to change to the non-youth-centristic position. The result
is that the proportion non-youth-centristic persons increases from .4699 to .7626
(= .4699 · .9596+ .5301 · .5786) between the two time points.

The homogeneous nonrestricted two-class model (Model 3a) gives nearly the same
transition probabilities as the ones presented in Table 2. The model in which the
response probabilities for the last item (D/H), the item that did not pass the homo-
geneity test, are allowed to be different for the two points in time (Model 3g), gives
a lower transition probability from W = 2 to Y = 1, namely, .4981 instead of .5786.
Thus, not taking into account that the reliability of the fourth item differs between
the two time points leads to an overestimation of the amount of true change.

Combining the measurement models with a structural model

Table 3 gives the test results for the estimated structural models. In all these models,
a two-class homogeneous Rasch model was assumed for the relationships among the
latent variables W and Y and their indicators. First, we estimated some reference
models. In Model 1, both W and the transitions from W to Y are assumed to be
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independent of R, S, and T , while Model 2 is the saturated structural model. In
other words, Model 1 gives the upper limit L2 value and Model 2 the lower limit L2

value which can be obtained by including covariate effects in the model. Models 3
and 4 postulate a saturated model for πw|rst and πy|rstw , respectively, assuming
independence of R, S, and T for the other part of the model. These models give
the lower limit L2 values that can be obtained by separately explaining W and the
transition from W to Y by R, S, and T . Note that as a result of sparse data, the
L2 statistic reported in Table 3 will not be chi-squared distributed. Therefore, the
reported p values are, in fact, meaningless. However, conditional L2 tests can still
be used to compared nested models. As mentioned below, for the final model we
estimated the p value by means of parametric bootstrapping.

Then, we tested several unsaturated hierarchical logit models forπw|rst . The only
two-variable effect that improved the model fit significantly was the effect of T onW .
Although the two-variable term RW was not significant, including the three-variable
term uRTWrtw in the model, improved the fit again. Model 5 includes these three terms.
Inspection of the parameters of Model 5 showed that the three-variable term was
needed to describe the fact that age (T ) influences W only for persons living in East
Germany (R = 2). Model 6, is a non-hierarchical model that includes only this effect.
It does not fit significantly worse than Model 3 (∆L2 = 4.31, df = 6, p = .635) and,
moreover, it fits significantly better than Model 1 (∆L2 = 5.52, df = 1, p = .014). So,
only in East Germany there is some difference in youth-centrism between the two
age groups. This was the only significant covariate effect on W .

Next, we tested some simple hierarchical logit models for the effects of R , S, and
T on the transition from W to Y . Model 7, which contains the three-variable terms
RWY , SWY , and TWY , was the best fitting model. Like forπw|rst , we tried to specify
a more parsimonious model by allowing the logit model for Y to be non-hierarchical.
This resulted in Model 8 in which East/West, sex, and age influence the transition
from W = 1 to Y = y , but not the transition from W = 2 to Y = y . This model does
not fit worse than Model 4 (∆L2 = 6.25, df = 11, p = .856), and moreover, it does
fit better than Model 1 (∆L2 = 11.02, df = 3, p = .012). So, the transition out of the
state non-youth-centristic depends on covariate values, while the transition out of
the state youth-centristic does not.

Model 9 is a combination Models 6 and 8. It describes a large part of the variation
in the dependent variables W and Y that could be explained by the independent
variables. The difference between the L2 values of Models 1 and 9 is 15.00 using
4 additional parameters, while the maximum increase in L2 by including covariate
effects was 24.97 using 21 parameters.

The effect of age on W for East Germans is −0.2444. This indicates that in East
Germany, the youngest age group (T = 1) has a lower probability of being non-
youth-centristic (W = 1) than the oldest age group: that is, the younger group (15-
17) is more youth-centristic than the older group (18-20). The effects of R, S, and
T on the transition from W = 1 to Y = y are 1.9646, −2.3430, and −2.0496, res-
pectively. Note that these parameters are quite extreme. The parameters indicate
that persons with R = 1, S = 2, and T = 2, that is, West-German older females
have the highest probability of remaining in the position non-youth-centristic, while
East-German younger males have the highest probability of moving from non-youth-
centered (W = 1) toward youth-centered Y = 2.
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Inspection of the conditional probabilities πy|rstw obtained from Model 9 sho-
wed that for all combination of R, S, and T the probability of staying in W = 1 is
near to 1, except for East-German males belonging to the youngest age group. This
group has a probability of almost 50 percent of changing from non-youth-centered
to youth-centered. Apparently, the rather extreme logit parameters of Model 9 only
describe this “outlier”. Therefore, a logit model was specified for πy|rstw in which
the probability of leaving W = 1 was assumed to be equal for all levels of R, T , and
S, except for the group with R = 2, S = 1, and T = 1. As can been seen from the test
results for Model 10, this model has exactly the same L2 value as Model 9. Note that
according to the BIC criterion, Model 10 is the best model. Thus, in order to describe
the covariate effects on W and on the transition from W to Y , only two additional
parameters are needed compared to Model 1, namely, a parameter describing the
fact that among East-Germans the younger age group is more youth-centered than
the older age group and a parameter describing the fact that East-German youn-
ger males have a much higher probability of moving from non-youth-centered to
youth-centered than do other persons.

In order to deal with the sparseness problem, for the final model, we estimated the
p value by means of a parametric bootstrap. Using 1000 replications, we obtained
a p value of slightly more than 6 percent. This indicates that Model 10 can not be
rejected at a 5 percent significance level.

Discussion

This paper demonstrated how to the analyze categorical longitudinal data using log-
linear path models with latent variables. In the application on youth-centrism, we
used a restricted LCM to construct a semi-parametric Rasch model for the latent
variable youth-centrism that was measured at two points in time. The change in
youth-centrism between the two waves was described by means of a latent turnover
table. Furthermore, both the initial state and the transition probabilities between
the two time points were regressed on a set of covariates using quite complex logit
models.

It is interesting to compare the information on latent change obtained using the
approach presented here with the results that could have been obtained by means
of a LISREL analysis. It can be expected that the low stability in youth-centrism
can be detected using a LISREL model. This is confirmed by a LISREL analysis we
performed on the Shell panel data. Moreover, using a model with latent means
it is not a problem to detect the tendency towards less youth-centrism. However,
the description of the process of change by the log-linear path models with latent
variables is more informative since the latent turnover table gives exact information
on the direction of change for persons with different initial positions. In the current
application, it was found that, except for East-German younger males, persons with
a non-youth-centered attitude remained in the same position, while many youth-
centered persons moved towards the non-youth-centered position. The possibility
to detect such complicated interaction effects is specific for the presented approach.

The proposed model could be extended in several manners. Four interesting
extensions are the possibility to deal with partially observed data (Vermunt, Lange-
heine, and Böckenholt, 1999), the possibility to have ordered-restricted latent class
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measurement models similar to nonparametric item response models (Vermunt,
2001), the possibility to have dependent classification errors (Bassi et al., 2000), and
the possibility to specify constraints on marginal distribution (Vermunt, Rodrigo,
and Ato-Garcia, 2001).
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