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Mixed-Effects Logistic Regression
Models for Indirectly Observed Discrete
Outcome Variables
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A well-established approach to modeling clustered data introduces random effects in
the model of interest. Mixed-effects logistic regression models can be used to predict
discrete outcome variables when observations are correlated. An extension of the
mixed-effects logistic regression model is presented in which the dependent variable is
a latent class variable. This method makes it possible to deal simultaneously with the
problems of correlated observations and measurement error in the dependent variable.
Asis shown, maximum likelihood estimation is feasible by means of an EM algorithm
with an E step that makes use of the special structure of the likelihood function. The
new model is illustrated with an example from organizational psychology.

In many regression applications, observations have some kind of clustering, with
observation within clusters tending to be correlated. Examples include observa-
tions obtained via repeated measurements, data collected by two-stage cluster
sampling designs, and hierarchical or multilevel data in which units are grouped at
different levels. A well established approach to modeling clustered data introduces
cluster-level random effects in the model of interest (Bryk & Raudenbush, 1992;
Goldstein, 1995; Snijders & Bosker, 1999). Such models are called mixed-effects,
random-effects, hierarchical, or multilevel models. Whereas most of the work on
mixed-effects models is for continuous outcome variables, recently models for cat-
egorical outcome variables have received more attention. This article deals with
mixed-effects models for dichotomous, ordinal, and nominal response variables
or, more precisely, with mixed-effects logistic regression (MELR) models
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(Agresti, Booth, Hobert, & Caffo, 2000; Hartzel, Agresti, & Caffo, 2001; Hedeker,
1999, 2003; Hedeker & Gibbons, 1996; Skrondal & Rabe-Hesketh, 2004; Wong &
Mason, 1985).

Existing MELR models assume that the discrete dependent variable is an ob-
servable variable, but in many social and behavioral sciences applications it is im-
possible to measure a variable directly. Examples of discrete outcome variables
that cannot be observed directly are the presence/absence of a mental or behavioral
disorder (depressed/not depressed), personality types, developmental stages, con-
sumer segments, etcetera. In such situations, one will typically have several imper-
fect indicators (items) that should be combined into a single scale or typology. An
elegant method to construct such discrete latent classifications from multiple
indicators is latent class (LC) analysis (Goodman, 1974; Hagenaars, 1990;
McCutcheon, 1987).

In this article, I propose a model that combines a MELR model with a LC type
structure for the (latent) dependent variable. This LC-MELR model makes it pos-
sible to simultaneously address the problems of dependent observations and mea-
surement error in the outcome variable. The presented approach is especially use-
ful in research settings in which it makes more sense to treat the latent variable of
interest as discrete rather than as continuous, a situation that often occurs in social
and behavioral research applications.

The proposed approach is related to the work of Raudenbush and Sampson
(1999), Fox and Glas (2001), and Goldstein and Browne (2002). A difference is
that these authors assume that the latent dependent variable is a continuous instead
of a discrete variable. The regression part of their models has, therefore, the form
of a standard mixed-effects linear model, and the measurement part has the form of
an item response theory (IRT) model. Another difference is that here we work
within a maximum likelihood (ML) framework, whereas these authors use either
approximate ML or Bayesian estimation procedures. In order to make ML estima-
tion of the LC-MELR model feasible, I propose an adapted version of the EM algo-
rithm that makes use of the conditional independence assumptions implied by the
LC-MELR model.

In the next section, I motivate the LC-MELR using an empirical example from
organization psychology. Then, I describe the various components of this model
and discuss estimation issues that are specific for this new model. Subsequently,
the results obtained when applying the model to the empirical example are pre-
sented. The article ends with a short discussion.

INTRODUCTION OF THE TASK VARIETY APPLICATION

The empirical application I use to illustrate the proposed method comes from a
Dutch study on the effect of team characteristics on individual work conditions



MIXED-EFFECTS LOGISTIC REGRESSION MODELS 283

(Van Mierlo, 2003). A questionnaire was filled in by 886 employees from 88 teams
of two organizations, a nursing home and a domiciliary care organization. Various
aspects of the work condition were assessed, one of which was the perceived task
variety, which was measured by five dichotomous items. Besides these five ques-
tionnaire items, there is information on various individual-level covariates.

The model proposed in this article is useful in situations in which the researcher
desires to build a latent typology or taxonomy from a set of observed item re-
sponses. Thus, rather than working with a continuous underlying latent variable as
in factor analysis and latent trait models, the purpose should be to construct a dis-
crete typology. For this purpose, we can use latent class analysis, a method that is
becoming more popular in social and behavioral research. Often, it is more natural
to summarize the information on multiple items, indicators or symptoms into a dis-
crete typology instead of a continuous scale, especially in a diagnostic context. Ex-
amples are instruments to determine presence of a mental or behavioral disorder,
personality type, developmental stage of a child, mastering of certain school tasks,
and presence of certain unfavorable work conditions.

The second element of the proposed method is that it is suited for the analysis of
nested data structures: for example, children belonging to the same family or the
same school, patients treated at the same clinic, consumers living in the same
neighborhood, or employees working in the same team. More specifically, a multi-
level regression model with random effects is used to take the dependencies be-
tween observations from the same group into account. This technique can also be
used to build multilevel explanations for individual-level outcome variables and to
determine the relative importance of group-level and individual-level factors in the
prediction of these outcome variables.

The purpose of the analysis of the task variety data is twofold. On one hand, we
desire to construct a diagnostic instrument for task variety yielding a discrete clas-
sification into two—or possibly three—categories. On the other hand, we are inter-
ested in detecting whether there are team differences in the perceived individual
task variety, that is, whether the lack of variation in the work is systematic within
certain teams or whether it mainly depends on individual characteristics. The indi-
vidual-level covariates are used to describe the within-group differences, as well as
to correct for possible composition effects.

Using certain simplifying assumptions, the analysis could be performed with
standard multilevel logistic regression methods. A simple sum score with a certain
cutoff point could be use to obtain a two-category classification of task variety.
Disadvantages of such a procedure are among others that the cutoff point is always
somewhat arbitrary in the sense that it can be anything, that measurement error is
not taken into account, and that it cannot easily be used with missing values on the
items. Another option might be to perform a standard latent class analysis without
taking the nesting into account, and use the latent class assignments as an observed
outcome variable in a subsequent (multilevel) regression analysis. Such a two-step
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procedure has two important disadvantages: it introduces measurement errors
leading to attenuated effects and it does not take the nested data structure into ac-
count when building the latent typology, which may result in biased parameter es-
timates and test results.

LATENT CLASS MIXED-EFFECTS LOGISTIC
REGRESSION MODEL

Model for an Observed Nominal Outcome Variable

Let x;; denote the response on a dichotomous or nominal dependent variable of in-
dividual or level-1 unit / within cluster or level-2 unit j. A particular response is de-
noted by ¢, and the number of possible responses by 7. The total number of level-2
units is denoted by J and the number of level-1 units within level-2 unit j by n;. Let
w;; and z;; denote the design vectors associated with S fixed and R random effects,
respectively.

The MELR model proposed by Hedeker (1999, 2003) is defined as

exp (”ﬂi jt )
Tij , o)

Zz:l exp (nlﬂ)

P(xy =twj,z;,B; )=

with
! !
Nijr = WijQ; +Ziij,.

Here, «; is the vector of unknown fixed effects corresponding to response cate-
gory t, and 3 is the vector of unknown random effects for level-2 unit j and re-
sponse category t. It should be noted that, as in standard multinomial logistic re-
gression analysis, with T response categories, only 7 — 1 sets of effects can be
identified. For identification purposes, we may, for example, set the fixed and ran-
dom effects corresponding to the first category equal to zero—aot; = 31 = 0—which
amounts to using dummy coding with the first category as reference category. An
alternative to dummy coding is effect coding, implying that parameters sum to zero
across the categories of the response variable; that is,

erzla’ - erzlﬁf’ =0.

As is most common, we assume the distribution of the random effects B;; to be
multivariate normal with zero mean vector and covariance matrix ;. For parame-
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ter estimation, it is convenient to standardize and orthogonalize the random effects.
For this, let Bj; = C0;, where C ,C, =3, is the Cholesky decomposition of 3. The
reparameterized model is then

"‘]ijt = W,(j()t, +Zl‘/]Ct0]' (2)

Hedeker’s formulation of the MELR model assumes that the random effects be-
longing to the different categories of the dependent variable are perfectly corre-
lated. More specifically, the same random effects 0; are scaled in a different man-
ner for each ¢ by the unknown C,. This formulation, which is equivalent to Bock’s
nominal response model (Bock, 1972), is based on the assumption that each nomi-
nal category is related to an underlying latent response tendency.

Another formulation of the MELR is

! /
Nijr = Wi + ZU[CO

In this specification, which is more common in the econometric literature, the de-
sign vectors may be category specific whereas the parameters vector need not be
category specific (Hartzel et al., 2001).

Indirectly Observed Nominal Dependent Variable

Suppose that the outcome variable x;; cannot be observed directly, but only indi-
rectly by means of a set of K categorical items. Let y;ix denote the response of indi-
vidual i within cluster j on item k. A particular level of item k is denoted by dj and
its number of categories by Dy. For the response variable of interest, we keep the
notation of the previous subsection. A difference is, of course, that it is now a latent
instead of an observed variable.

The indirectly observed response variable is related to the item responses by
means of a LC model (Goodman, 1974; Hagenaars, 1990; McCutcheon, 1987). Let
P(yijx=dilx;;=1t) denote the probability that individual i of cluster j gives response d
on item k given that (s)he belongs to latent class ¢. The basic assumption of the LC
model is that the observed item responses are mutually independent given class
membership. If we combine the MELR model with a LC model, we obtain the fol-
lowing probability structure for the joint conditional distribution of x;; and y;;:

P(xj =ty; =dIwy,z;,0,)=
K
P (= t1wy,2;,0, ) [ [P (v = di 135 =1). )
k=1
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Here, the product

=

P(y,'jk =d Ix,_-,- :t),

k=1

defines the local independence structure of the LC model. The term P(x;; = ¢ |
wij, i, 0)) is restricted by the MELR model defined in Equation 1. The response
probabilities P(y;jx = di | x;; = t) can be parametrized by logistic functions of the
form

P(yijk =di | xj = t): exp(adk +'det) '

ZZ{:I exp (8dk + Y )

As is shown below, such a linear logistic parametrization will prove useful in more
advanced models.

Collapsing Equation 3 over the 7 categories of the discrete latent variable yields
the marginal conditional distribution of the observed variables y;;,

P(y,j :d|W,‘j,Z,‘]‘,0]‘):ZP(xij Zl‘,y,:]' :d|W,‘j,Z,‘j,0]‘). (4)

t=1

The model described in Equation 3 is not only an extension of the MELR
model, it is also an extension of the concomitant variable LC model
(Bandeen-Roche, Miglioretti, Zeger, & Rathouz, 1997; Dayton & Macready,
1988). This is a LC model in which class membership is regressed on covariates
using a logistic regression model. The new element of our approach is that this lo-
gistic regression model for the latent classes can now contain random effects and
can thus also be used with clustered observations.

MAXIMUM LIKELIHOOD ESTIMATION

Log-likelihood Function

The parameters of the LC-MELR model described in the previous section can be
estimated by maximum likelihood (ML). The likelihood function is based on the
probability densities of the level-2 observations, denoted by P(y;|w;,z;). Note that
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these are independent observations whereas observations within level-2 units can-
not be assumed to be independent. The log-likelihood to be maximized equals

J
logL = ZlogP(yj lw;.z;),
=

where
P(y, ij,zj):j;P(yj lw;.2;,0)/(0)d0

:,j; HP(yij |wij’zij,9) f(ﬂ)dﬂ, (5)
i=1

Notice that O denotes the vector of orthonormalized random effects. As can be
seen, the responses of the n; level-1 units within level-2 unit j are assumed to be
independent of one another given the random effects 0. Of course, the contribu-
tions of the level-1 units have the form of the LC-MELR model described in
Equations 1-4.

The integral on the right-hand side of Equation 5 can be evaluated by the
Gauss-Hermite quadrature numerical integration method (Bock & Aikin, 1981;
Hedeker, 1999, 2003; Stroud & Secrest, 1966), in which the multivariate normal
distribution of the random effects is approximated by a limited number of M dis-
crete points. More precisely, the integral is replaced by a summation over M quad-
rature points,

M
P(yj ij,zj)% ZP(yj ij,zj,ﬁm)ﬂ(ﬁm)

m=1

M
m=I

i=1

nj
[1P(yi ! wiz;.0, )}v(ﬁm). (6)

Here, 0,, and m(0,,) denote the quadrature nodes and weights corresponding to the
(multivariate) normal density of interest. Because the R random effect are
orthogonalized, the nodes and weights of the separate dimensions equal the ones of
the univariate normal density, which can be obtained from standard tables (see, e.g.,
Stroud & Secrest, 1966). Suppose that each of the R dimensions is approximated
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with Q quadrature nodes. The M = QR R-dimensional weights are then obtained by
multiplying the weights of the separate dimensions. The integral can be approxi-
mated to any practical degree of accuracy by setting Q sufficiently large.

The preferred algorithm for obtaining ML estimates in LC analysis is the
well-known EM algorithm. In the Appendix, I discuss the problems associated
with the implementation of a standard EM algorithm in the case of the LC-MELR
model and show how these can be resolved by making use of the conditional inde-
pendence assumption implied by the model. The Appendix also discusses compu-
tation of standard errors, identification problems, and software for estimating the
LC-MELR model.

Intraclass Correlation

A measure that is often of interest in random-effects modeling is the intraclass cor-
relation. It is defined as the proportion of the total variance accounted for by the
level-2 units, where the total variance equals the sum of the level-1 and level-2
variances. Hedeker (2003) showed how to compute the intraclass correlation in lo-
gistic regression models containing only a random intercept; that is,

o7

=5 53 (N

y .
i o7 +m2/3

This formula makes use of the fact that the level-1 variance can be set equal to the
variance of the logistic distribution, which equals w%3 @ 3.29. The other
term—o > —is the level-2 variance corresponding to the intercept of latent class z.
Notice that 7 — 1 independent intraclass correlations can be computed, which
means that the cluster influence is allowed to vary across contrasts between (latent)
response categories.

Cluster-Specific Effects

One of the objectives of random-effects modeling may be to obtain estimates of the
cluster-specific parameters. A simple estimator for ; is the expected “a posteri-
ori” (EAP), posterior mean, or empirical Bayes estimator Ej, (Bock & Aikin,
1981). Recalling that B;; = C,0;, B, can be defined as

[ CP(y;1w;2,.0)/(0)d0
Bjt = .

P(y.,‘ |Wj,Zj)
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As in the model estimation, Gauss-Hermite quadrature can be used to approximate
the multidimensional integral. This yields the following approximation:

M
Bji ~ > C0,P(0, ly;w;.z;), (8)

m=1

where the marginal posterior probabilities P(0,, | y;jw;, z;) are obtained by Equation
10. Similarly, approximate posterior standard deviations can be obtained by

M
std(Bj,)m\/Z(C,Bm —ﬁj,)zP(ﬂm lyjw;.z;).

m=1

These express the degree of reliability of the estimates of the random effects.

ANALYSIS OF THE TASK-VARIETY DATA

As mentioned earlier, the empirical application I use to illustrate the proposed
method comes from a Dutch study on the effect of team characteristics on indi-
vidual work conditions (Van Mierlo, 2003). A questionnaire was filled in by 886
employees from 88 teams of two organizations, a nursing home and a domicili-
ary care organization. Various aspects of the work condition were measured, one
of which was the perceived task variety. The item wording of the five dichoto-
mous items measuring perceived task variety is as follows (Van Veldhoven, De
Jonge, Broerson, Kompier, & Meijman, 2002; translated from Dutch):

Do you always do the same things in your work?

Does your work require creativity?

Is your work diverse?

Does your work make enough usage of your skills and capacities?
Is there enough variation in your work?

Nk e =

The two answer categories are disagree and agree. Besides these five questionnaire
items, we had information on four individual level covariates: year of birth (4 lev-
els), number of years in the current job (3 levels), number of working hours per
week (3 levels), and gender. A small portion of our sample (57 cases) had missing
values on one or more of these items and covariates. These cases can, however, be
retained in the analysis.
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The data set on task variety was analyzed with the methods described using ver-
sion 4.0 of the Latent GOLD program (Vermunt & Magidson, 2000). Missing data
on the items was dealt within the ML estimation framework assuming that the
missing data is missing at random (MAR). Whereas it is straightforward to obtain
ML estimates of the parameters of a LC model with missing data on the item re-
sponses, missing data on covariates has to be dealt with in a more ad hoc manner.
One option is, of course, to delete cases with missing values. Although the number
of cases with one or more missing covariate values was rather small (35), I pre-
ferred to retain them in the analysis. For the four categorical covariates in the ex-
ample, I assumed that the effect of the missing value category is equal to zero, Un-
der effect or ANOVA-like coding, this amounts to assuming that a case with a
missing value equals the average case as far as the covariate effect is concerned.

Table 1 reports the testing results—Ilog-likelihood (LL), number of parameters,
and Bayesian information criterion (BIC)—for the models that were estimated with
the task-variety data. The models with random effects were estimated using 10 and
24 quadrature points, which in all cases yielded almost identical results. The BIC
values for the standard one- to three-class models (Models A1, A2, and A3) show
that a solution with two classes suffices. Model B2 is a two-class model without
covariates but with a random intercept. From the comparison of the BIC values of
Models A2 and B2, it can be seen that there is clear evidence for between-team varia-
tion in the latent distribution. This conclusion is not changed when including
covariates in the model (compare Models C2 and D2). According to the BIC values,
the models without covariates should be preferred over the models with covariates.
The reason for this is that some of the fixed effects are not significant.

The model selection strategy I followed was to first determine the number of
classes in a model without random effects nor covariates, and subsequently expand
that model (in this case the two-class model) by including random effects and
covariates. Though in most situations this will be a proper strategy, it cannot be ruled
out that more latent classes are needed in the more extended models containing ran-

TABLE 1
Testing Results for the Estimated Models With the Task-Variety Data
Model Log-Likelihood ~ # Parameters — BIC Value
Al. I-class -2797.0 5 5627.9
A2. 2-class —2458.3 11 4991.2
A3. 3-class —2443.9 17 5003.1
B2. 2-class with random intercept —2436.0 12 4953.5
B3. 3-class with random intercept -2418.4 19 4965.8
C2. 2-class with covariates —2438.0 19 5005.0
C3. 3-class with covariates —2417.2 33 5058.3
D2. 2-class with random intercept and covariates —2420.4 20 4976.4
D3. 3-class with random intercept and covariates —2388.1 35 5013.8

Note. BIC = Bayesian information criterion.
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dom effects and/or predictors of class membership. Thatis the reason why I also esti-
mated the three-class models B3, C3, and D3. Comparison of their BIC values with
the ones of their two-class variants shows that there is no need to increase the number
of classes from two to three according to this criterion. I also investigated whether in-
clusion of random effects for the four covariates (random slopes) improved model
fit. The increase of the log-likelihood turned out to be very small (0.1, 1.9, 0.9, and
0.0, respectively), indicating that these random slopes are nonsignificant.

Table 2 reports the parameter estimates obtained with the estimated two-class
models: Models A2, B2, C2, and D2. For identification, I fixed the parameters of

TABLE 2
Parameter Estimates Obtained With the Estimated Two-Class Models
Model A2 Model B2 Model C2 Model D2
Effect Est. SE Est. SE Est. SE Est. SE
MELR part
Intercept .61 .10 .76 .16 .86 18 90 22
Year of Birth
Before 1951 -39 17 -.34 .19
1951-1960 =23 13 -17 15
1961-1970 13 .14 .10 .16
After 1970 49 17 41 .20
Years in Current Job
Less than 11 -43 .14 -33 15
11-20 -.03 15 —11 17
More than 20 47 .20 44 22
Working Hours
Less than 21 -45 12 -52 13
21-30 33 .14 34 .16
More than 30 12 .14 .19 .16
Gender
Male -.09 17 -.13 .20
Female .09 17 13 .20
SD of the .96 15 91 15
intercept
LC part
Item 1, Class 1 15 .02 .14 .02 .14 .02 .14 .02
Item 1, Class 2 Sl .02 51 .02 .52 .02 Sl .02
Item 2, Class 1 .28 .03 27 .03 .29 .03 27 .03
Item 2, Class 2 1 .02 71 .02 71 .02 1 .02
Ttem 3, Class 1 21 .04 .19 .03 22 .04 .20 .03
Item 3, Class 2 97 .01 .96 .01 97 .01 .96 .01
Item 4, Class 1 42 .03 42 .03 42 .03 41 .03
Item 4, Class 2 .83 .02 .83 .02 .83 .02 .83 .02
Item 5, Class 1 17 .03 .16 .03 17 .03 17 .03
Item 5, Class 2 94 .02 93 .02 94 .02 93 .02

Note. MELR = mixed-effects logistic regression; LC = latent class.
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the first latent class to zero (dummy coding), and restricted the category-specific
covariate effects to sum to zero (effect coding). Let us, however, first look at the pa-
rameters of the LC part of the model, which take on nearly the same values in all of
the estimated two-class models. The reported conditional response probabilities
describing the relationship between the latent variable and the five items corre-
spond to the high task-variety response (disagree for item 1 and agree for the oth-
ers). As can be seen, the first latent class can be labelled “low task-variety” and the
second “high task-variety.” Despite of the fact that there are only five items, the
measurement part of the model is quite strong: the estimated proportion of classifi-
cation errors is no more than 5% in each of the two-class models.

The estimate of the random effect in Model B2 shows that there is quite some
between-team heterogeneity in the log odds of belonging to latent class two rather
than to class one: the standard deviation of the random intercept equals .96. To get
an impression of the meaning of this number on the probability scale, one can as-
sign a value for 0; in Equation 2 and substitute the obtained value for m;;» in Equa-
tion 1. For example, with 6; equal to—1.28 and 1.28—the z values corresponding to
the lower and upper 10% tails of the normal distribution—we get latent class prob-
abilities of .38 and .88, respectively. These numbers indicate that there is a quite
large team effect on the perceived task variety: In the 10% “worst” teams, less than
38% of their employees perceived enough variation in the work, whereas this num-
ber is more than 88% in the 10% “best” teams. The intraclass correlation obtained
with Equation 7 equals .22, which means that 22% of the total variance in per-
ceived task variety can be explained by team membership.

The size of the standard deviation of the random intercept remained more or
less the same when we included covariates in the model (compare Models B2 and
D2), which indicates that team differences can not be explained by composition ef-
fects related to the four predictors. The covariate effects are similar in the models
without (Model C2) and with (Model D2) a random intercept. The substantive in-
terpretation of the fixed effects is as follows: The probability of belonging to the
high task-variety class increases with Year of Birth (is higher for younger employ-
ees), increases with the number of Years in Current Job, is higher than average for
persons working 21-30 hours per week and lower than average for the persons
working less than 21 hours, and is slightly lower for males than for females.

Despite the fact that the substantive interpretation of the fixed effects are similar
in Models C2 and D2, the significance tests for these effects are quite different. We
determined the significance of the four predictor effects by means of
multiparameter Wald tests. Table 3 reports the Wald values and their asymptotic p
values obtained with Models C2 and D2. As can be seen, the Year of Birth and
Years in Current Job effects that were significant at a 1% significance level in
Model C2 were no longer significant when we included a random intercept. This
illustrates the well-known phenomenon that p values may be underestimated when
correlations between observations are not taken into account.
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TABLE 3
Wald Statistics for Fixed Effects in Models C2 and D2
Model C2 Model D2
Covariate Wald df P Wald df P
Year of Birth 11.92 3 .01 6.19 3 .10
Years in Current Job 11.23 2 <.01 5.29 2 .07
Working Hours 15.62 2 <.01 15.23 2 <.01
Gender 0.29 1 .59 0.44 1 51

Ascanbe seen from the parameter estimates, the effects of Year of Birth and Years
in Current Job are almost linear. With a more restricted specification in which these
effects are assumed to be linear, the encountered effects are also significant—ata 5%
significance level—in the model containing a random intercept (Wald=5.95,df=1,
p=.02;and Wald=4.89,df=1,p=.03). However, again the values of the Wald statis-
tics are much larger and thus seriously overestimated in the model without random
effects (Wald =11.49,df =1, p < .01; and Wald = 10.33, df =1, p < .01).

EXTENSIONS OF THE BASIC MODEL

Several of the extensions that have been proposed for the standard LC model could
also be relevant in the context of the LC-MELR model. Three of these extensions
are (a) models with items of other scale types, (b) models with ordered latent
classes, and (c) models that relax the local independence assumption.

Suppose the items are not dichotomous or nominal but ordinal variables. The
most natural way to use this information in the model specification is by restricting
the relationship between the latent classes and the observed responses by means of
an ordinal logit model (Agresti, 2002). One option is to use an adjacent-category
logit ordinal model of the form

P(yl]k :dk |xij :t): CXp(Sdk +dk "th) ’

Z?kkzl exp (8a, +dk *Yir)

which is similar to the nominal item response model but with the linear logistic re-
striction g, = d - Yir. Another option is to use a cumulative logit specification;
that is,

exp (8, +Vir)
1+exp(8dk +yk,)'

P(yijk > dy Ix,j:t):
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Latent class models can be used not only with discrete items, but also with
continuous items, yielding what is also referred to as a finite mixture model. For
a continuous indicator, the conditional response probability P(y;ix = di | x;; = 1) is
replaced by a conditional density having a certain parametric form, for example,
a normal distribution with a class-specific mean and variance (Banfield &
Raftery, 1993; Hunt & Jorgensen, 1999; Vermunt & Magidson, 2002).

A restriction that might be of interest in models with more than two latent
classes is to assume that the classes are ordered. In the LC-MELR model, this in-
volves constraining both the measurement model and the regression model for the
latent classes. Suppose the items are ordinal and the relationship between latent
classes and items is restricted with an adjacent category logit model. With ordered
classes, this model has the following form:

P(yl]k :dkl-xlj:t): exp<8dk +dkt'yk) ’

Zz:lexp (3 +dic-1-vi)

yielding what Heinen (1996) called a discretized IRT model and what Magidson
and Vermunt (2001) called a LC factor model. The above model is, in fact, a
discretized generalized partial credit model. For an extended discussion on the
connection between restricted LC models and IRT models, see Vermunt (2001).

In order to complete the ordinal specification for the latent classes, the regres-
sion model for the latent variable should now be an ordinal instead of a nominal lo-
gistic regression model. An adjacent category ordinal logit model is obtained by
restricting the term m;;; appearing in Equation 1 to be equal to

/ /
MNije :OLQt—I—Wl:j-l-OL-i-Z,'j'l-Bj.

Here, o, is a category-specific intercept, « is a vector containing the other fixed ef-
fects, and B; contains the random effects. The most important difference with the
nominal model is that—except for the intercept—regression parameters are no
longer category specific.

The last extension I would like to discuss is the possibility to relax the local in-
dependence assumption for particular item pairs (Hagenaars, 1988). This involves
treating such a pair as a joint indicator variable. For example, if the first two indica-
tors are locally dependent,

Py =di,yijp = da | xj =1t)= P(yji = di | xj = t)P(yjo = da | x5 = 1).



MIXED-EFFECTS LOGISTIC REGRESSION MODELS 295

This means that we have to use the left-hand side instead of the right-hand side of
this equation in the definition of the latent class model of interest. For P(y;; = d,
vip = dz | x;; = 1), we will generally use a linear logistic model of the form

exp(84; +04, +da1a> +Yayr +Va
P(yU] :dl’yijZ =ds |xij :t) p( 1 2 1dy T Ydit T 2t) ,

Zdl 12 1EXP (B +84> +Baar +Yarr +Yao )

in which the term 8,4, captures the within-class dependence between items 1
and 2.

DISCUSSION

An extension of the MELR model was proposed that can be used in situations in
which the discrete dependent variable is alatent variable thatis measured with multi-
ple indicators. The proposed model can also be seen as an extension of the concomi-
tant variable LC model to situations with clustered observations. To make ML esti-
mation feasible, I adapted the E step of the EM algorithm making use of the
conditional independence assumptions implied by the model. The new model wasil-
lustrated with an example from organizational research in which we constructed ala-
tent task-variety typology. There was clear evidence for between-cluster variation in
the latent class distribution, even after controlling for individual-level covariates.

A practical problem in the application of the LC-MELR model is that the nu-
merical integration to be performed for parameter estimation can involve summa-
tion over a large number of points when the number of random effects is increased.
Recall that the total number of quadrature points equals the product of the number
of points used for each dimension. Despite the fact that the number of points per di-
mension may be somewhat reduced with multiple random effects, computational
burden becomes enormous with more than 5 or 6 random coefficients. Adaptive
quadrature may be a good alternative to the standard quadrature method used in
this article. It has been shown that adaptive quadrature is quite accurate, even with
a very small number of quadrature points (Rabe-Hesketh, Skrondal, & Pickles,
2002; Skrondal & Rabe-Hesketh, 2004). Other alternatives for solving the high-di-
mensional integrals are Bayesian MCMC and simulated likelihood methods, but
these are very computationally intensive.

As shown by Vermunt and Van Dijk (2001), the practical problems with multi-
ple random effects can be reduced by using a finite-mixture type random-effects
model. In such a non-parametric ML approach, the distribution of the random ef-
fects is approximated with a small number of nodes whose locations and weights
are unknown parameters to be estimated (Laird, 1978). This finite-mixture ap-
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proach does not only have the advantage that it is computationally much less inten-
sive, but also that it does not rely on unverifiable assumptions about the random ef-
fects (Aitkin, 1999). A recently simulation study by Agresti, Caffo, and
Ohmand-Strickland (2004) showed that misspecifation of the random effects dis-
tribution may seriously affect efficiency of parameter estimates, and they therefore
advocated the non-parametric approach. In agreement with their simulation re-
sults, using the finite-mixture approach in the task-variety application yielded sim-
ilar parameter estimates but slightly larger values of the Wald statistics.
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APPENDIX

Implementation of the EM Algorithm

The preferred algorithm for obtaining ML estimates in LC analysis is the
well-known EM algorithm. Contrary to Newton-Raphson and related methods,
EM is a very stable algorithm that does not require good starting values
(Hagenaars, 1990; Heinen, 1996). For EM, random starting values are good
enough to converge to the nearest local maximum. When using the EM algo-
rithm in the context of the LC-MELR model, one is, however, confronted with
an important problem. The E step of the algorithm requires the computation of
the joint conditional expectation of n; latent class variables and R random effects
for each level-2 unit j; that is, the posterior distribution P(x;, 0., | y;, w;, z;) con-
taining M - T" entries. This means that the ML estimation problem increases
exponentially with the number of cases per group. With typical multilevel data
group sizes, this may imply that one has to compute millions of probabilities,
which is, of course, impractical. Fortunately, it turns out that the E step of EM
can be adapted to the problem at hand.

Because of the structure of the LC-MELR model, the next step after obtaining
the posterior probabilities P(x;, 0,, | y;, w;, ;) would be to compute the marginal
posterior probabilities for each level-2 unit, P(x;; = ¢, 0,, | y;, w;, z;) by collapsing
over the latent class probabilities of the other level-1 units within level-2 unit j. In
other words, in the E step we only need the n; marginal posterior probability distri-
butions containing M - T entries. This can be seen from the form of the (approxi-
mate) complete data log-likelihood, which is defined as

M T J nj

logL. = ZZZZP(XU =10, ij,wj,zj)logP(xij =1y IwiJ-,zij,Om). 9

m=11t=1 j=1i=1

It turns out that it is possible to compute P(x;; =t, 0, | y;, W, z;) without going
through the full posterior distribution by making use of the conditional inde-
pendence assumptions associated with the density function defined in Equation
5. In that sense, our procedure is similar to the forward-backward algorithm for
the estimation of hidden Markov models for large numbers of time points
(Baum, Petrie, Soules, & Weiss, 1970; Juang & Rabiner, 1991). A similar proce-
dure was proposed by Vermunt (2002) for the estimation of generalized linear
three-level models.

The marginal posterior probabilities P(x;; =t, 0,1 y;, w;, z;) can be decomposed
as follows:

P(x,'j =10, |yj,Wj,Zj):P(0m ij,wj,zj)P(x,-j :tlyj,wﬁzj:em)-
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Our procedure makes use of the fact that in the LC-MELR

P(x,‘j :l|yj,Wj,Zj,0m): P(x,_-,- :l|y,‘j,WZj,le,0m);

that is, conditionally on 0, x;; is independent of the observed (and latent) variables
of the other level-1 units within the same level-2 unit. This is the result of the fact
that level-1 observations are mutually independent given the random effects, as is
expressed in the density function described in Equation 5. Using this important re-
sult, we get the following slightly simplified decomposition:

P(x,‘j :[,Om |yj,Wj,Zj):P(0m |yj,Wj,Zj)P(X,j :l|y,‘j,W,j,le,0m).

The computation of the marginal posterior probabilities therefore reduces to the
computation of the two terms on the right-hand side of this equation. The term
P(0,,|yj, wj, z;) is obtained by

P(yj,ﬁm |Wj,Zj)

10
P(y;Iw;.z;) 10

P8, 1y, w;z;)=

where

j

P(yj,ﬂm |Wj,Zj):1T(0m)HP(yij |W,‘j,Zij,9m)

i=l

M
P(y;jlwiz;)=> P(y;.0mw,.2;).
m=1

Notice that P(y;; | wj;, z;;, 0,,) was defined in Equation 4.
The other term, P(x;; =t | y;j, Wy, Zj, 0,,), is computed by

P()Cij =1Yi |Wij,zij,0m)
P(yij|W,‘j,Zij,9m) '

P()Cij :l‘|yl‘j,Wij,Zij,9m)=

As can be seen, the basic operation that has to be performed is the computation of
P(xij=t,yij| wi, z;;, 0,,) for each i, j, #, and m by means of Equation 3. This shows
that computation time increases only linearly with the number of level-1 observa-
tions instead of exponentially, as would be the case with a standard EM algorithm.
Computation time can be reduced somewhat more by grouping records with the
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same values for the observed variables within level-2 units; that is, records with the
values for P(x;; = t, yij | wij, zij, 0,,).

A practical problem in the above implementation of the ML estimation of the
LC-MELR model is that underflows—numbers that cannot be distinguished from
zero given the limited precision with which numbers can be stored—may occur in
the computation of P(0,, | y;, w;, ;). More precisely, because it may involve multi-
plication of a large number (R + n; - K) of probabilities, the numerator of Equation
10 may become equal to zero for each m. Such underflows can, however, easily be
prevented by working on a log scale. Letting

Ajm = 10g [1T (em )]+ 27/ 10g P(yy | szi’Zij,em ),
and b; = max(ajn), P(0, 1 y;, W, z;) can be obtained by

exp(ajm _bj)

Zf/[exp(aj, _bj).

P((‘)m |yj,Wj,Zj):

In the M step of the EM algorithm, the (approximate) complete data log-likeli-
hood described in Equation 10 is improved by standard complete data algorithms
for the ML estimation of multinomial logistic regression models.

Standard Errors and Identification

Contrary to Newton-like methods, the EM algorithm does not provide standard er-
rors of the model parameters as a by-product. Estimated asymptotic standard er-
rors can be obtained by computing the observed information matrix, which is the
matrix of second-order derivatives of the log-likelihood function to all model pa-
rameters. The inverse of this matrix is the estimated variance-covariance matrix of
the unknown model parameters.

The parameters of a LC model may not be identified when the number of items
is too small given the postulated number of latent classes (Goodman, 1974).
Nonidentification means that different sets of parameter values give the same max-
imum of the log-likelihood function. Identifiability can be checked by means of
the information matrix. A sufficient condition for local identification is that all the
eigenvalues of the information matrix are larger than zero, which yields a formal
method to determine whether a model is identified. Similarly to standard LC anal-
ysis, it is not possible to provide a general rule for model identification of the
LC-MELR model. It should, however, be noted that the dependence structure be-
tween observations belonging to the same cluster that is also used in the formula-
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tion of the log-likelihood function provides additional information on class mem-
bership of individuals. A sufficient condition for identification of the LC-MELR
model is, therefore, that its standard LC variant without random effects is identi-
fied. This is, however, not a necessary condition: LC models that are not identified
in their standard form may be identified in their mixed-effects form. For example, a
two-class model with two nominal items is not identified, but its mixed effect vari-
ant is, even with only two individuals per group. With two individuals per group
one has, in fact, a LC model with two correlated dichotomous latent variables and
four items (two for each latent variable), and such a model is identified.

Software Implementation

The proposed LC-MELR model is implemented in version 4.0 of the Latent
GOLD (Vermunt & Magidson, 2000). The implementation includes the extensions
discussed earlier—ordinal and continuous items, ordinal latent variables, and local
dependencies. The program also contains a variant of the LC-MELR model in
which the random effects are assumed to come from an unspecified discrete distri-
bution instead of a normal distribution (Vermunt, 2003). This yields what is some-
times referred to as a non-parametric random-effects model (Aitkin, 1999;
Skrondal & Rabe-Hesketh, 2004).

To increase the likelihood of finding the global ML solution, Latent GOLD con-
tains a search system that is based on using multiple sets of random starting values.
According to my experience with the LC-MELR model, local maxima do not oc-
cur more often than in standard LC models. The exact algorithm implemented in
Latent GOLD is a hybrid algorithm combining EM and Newton-Raphson; that is,
EM iterations are performed till it is close enough to the maximum and then it
switches to Newton-Raphson.

The LC-MELR model described in this article is also implemented in version
3.0 of the Mplus program (Muthén & Muthén, 2004). The manual, however, does
not provide technical information on the estimation algorithm that is used to obtain
the ML estimates of the model parameters.



