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A mixture model with random-effects
components for classifying sibling pairs
F. Martella,a*† J. K. Vermunt,b M. Beekman,c,d

R. G. J. Westendorp,e P. E. Slagboomc,d and
J. J. Houwing-Duistermaatf

In healthy aging research, typically multiple health outcomes are measured, representing health status. The aim
of this paper was to develop a model-based clustering approach to identify homogeneous sibling pairs according
to their health status. Model-based clustering approaches will be considered on the basis of linear mixed effect
model for the mixture components. Class memberships of siblings within pairs are allowed to be correlated,
and within a class the correlation between siblings is modeled using random sibling pair effects. We propose
an expectation–maximization algorithm for maximum likelihood estimation. Model performance is evaluated
via simulations in terms of estimating the correct parameters, degree of agreement, and the ability to detect the
correct number of clusters. The performance of our model is compared with the performance of standard model-
based clustering approaches. The methods are used to classify sibling pairs from the Leiden Longevity Study
according to their health status. Our results suggest that homogeneous healthy sibling pairs are associated with
a longer life span. Software is available for fitting the new models. Copyright © 2011 John Wiley & Sons, Ltd.
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1. Introduction

In healthy aging research, typically, data on subjects older than a specific age threshold are collected,
and health is measured via several health-related variables such as blood pressure, cholesterol levels,
and mini mental state examination. A formal definition for being healthy is lacking, and subjects are for
example assigned a healthy status when they have a low blood pressure, low cholesterol levels, and a high
score for the mental state examination questionnaire. Identification of genetic factors for healthy aging
is hampered by the lack of a formal definition. Instead of using an arbitrary definition for health status,
we consider in this paper a latent variable approach in which the latent variable represents health. To
increase the probability for segregation of genetic factors, genetic studies on healthy aging use a family
design of families with multiple ‘old’ subjects. For example, the Leiden Longevity Study ([1]) and the
European study Genetics of Healthy Aging ([2]) collect data on nonagenarian sibling pairs. Thus, a latent
variable approach that is applicable to genetic studies should be able to deal with the family structure.
The aim of this paper was to develop a method to classify sibling pairs according to their health status
using a model-based approach. The statistical challenge is to deal with the correlation within sibling
pairs and to include the specific features of the outcome variable healthy aging.

Genetic linkage analysis is an often used approach to identify new chromosomal regions which harbor
genes involved in the etiology of the traits. To enhance gene finding, it has been advocated to first identify
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subtypes of traits by using cluster methods based on measures of distance [3, 4]. Alternatively, model-
based cluster methods can be used to determine subtypes of various disorders [5–7]. These methods have
also been applied to family data, but the dependence between outcomes of family members is ignored
by these methods. In contrast, Labbe et al. [8] proposed a model-based clustering approach for nuclear
families, and recently, their model was extended to deal with larger pedigrees [9]. Their models assume
that class memberships of relatives are independent, conditional on the class memberships of the parents.
However, this assumption is violated when, within sibships, additional correlation is present because of
shared environmental factors. In addition, their model can only be used when parental information is
available. In human aging studies, information on the parents is typically not available.

In this paper, we propose to cluster data from sibling pairs by using mixtures of random effect models.
Here, the random effects represent the shared genetic and environmental effects of siblings. Dependence
among observations has been considered in model-based clustering approaches. A hierarchical mixture
model with non-parametric random effects in a mixture model was proposed to capture the hierarchi-
cal structure of subjects within families [10] (which is itself a nonparametric random-effects model;
see [11]). A mixture of linear mixed effect models (LMMs) was proposed to cluster repeated gene
expression data [12]. This work was further developed by Ng et al. [13] for clustering correlated gene
expression profiles obtained from various experimental designs. Our model is an extension of the mix-
tures of LMMs and allows for a more flexible structure of the component-specific covariance matrix of
the random effects needed to appropriately model covariances within sibling pairs. The proposed model
is implemented in the software LATENT GOLD program for latent variable modeling (Statistical Inno-
vations Inc., Statistical Innovations, Belmont, MA USA, [14]). The proposed model basically assumes:
(i) each sibling pair is a vector of repeated observations; (ii) the class membership of the two siblings is
allowed to be correlated (not with a random effect but simply with an association parameter); (iii) after
accounting for the correlation between the two siblings’ class memberships, variables are still correlated
between the two siblings of a pair. This correlation is modeled by sibling pair-specific random effects;
(iv) the correlation between variables of sibling pairs is allowed to vary across outcome variables; (v)
the correlation between various variables within a sibling and between two siblings is modeled. The
difference between our proposed model for sibling pair data and the currently available models [12, 13]
will be described in detail in the method section.

As illustration, we apply the method to data on multiple health outcomes observed for nonagenarian
sibling pairs from the Leiden Longevity Study. Data on six health variables are available. To enhance
gene finding for healthy aging, the goal is to identify concordant healthy sibling pairs and discordant
healthy sibling pairs. The sibling pairs will be classified in three categories, namely sibling pairs in good
shape (concordant healthy sib-pairs CH), sibling pairs in bad shape (concordant unhealthy sib-pairs
CUH), and one sibling in good shape and the other in bad shape (discordant sib-pairs DH).

The outline of this paper is as follows. In Section 2.1, we introduce our linear mixed-effect model
to classify sibling pairs and describe the expectation–maximization (EM) algorithm for estimation of
the model parameters. In Section 2.2, we consider the specific situation related to the classification of
sibling pairs in concordant healthy, concordant unhealthy, and discordant pairs. In Section 3, the perfor-
mance of the model to classify sibling pairs according to their health status is studied via simulations.
We compare the performance of our new model with standard model-based clustering. In Section 4, the
results obtained from applying the new model to data from the Leiden Longevity Study are presented. In
the last section, some concluding remarks are given, and outlines for potential future research directions
are provided. In the Appendix, details on syntax language for running the empirical example with the
LATENT GOLD software are provided.

2. Linear mixed-effect model for clustering of sibling pairs

We consider the clustering of n families yi (i D 1; : : : n), where we let yi D .y0i1; y
0
i2/
0 represent

two siblings in the i th family, and yij D .yij1; : : : ; yijH /
0 (j D 1; 2) contains H outcomes mea-

sured on the j th sibling in the i th family. The observed 2H -dimensional vectors y1; : : : ; yn are
assumed to follow a discrete mixture of Gaussian distributions (components) with unknown proportions
�1; : : : ; �K(

PK
kD1 �k D 1) as follows:

f .yi j�/D
KX
kD1

�kN.yi j�k;†k/; (1)
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where �k and †k represent the component-specific mean vectors and covariance matrices, respectively
(k D 1; : : : ; K). To take into account the dependence between siblings, we add the assumption that sib-
lings within the same family belong to the same mixture component. In this way, we are able to model
the covariance structure between sibling pairs from the same family. To model the correlation between
siblings in the mixture model (1), it is assumed that, conditional on each kth component, yi has the
following structure:

yi D ˇk CXuik C ei ; (2)

where ˇk represents the 2H -dimensional component-specific fixed effect vector modeling the condi-
tional mean of yi in the kth component. ˇk has the following form:

ˇk D
�
ˇ1
0

k ;ˇ
20

k

�0
D
�
ˇ11k; ˇ

1
2k; : : : ; ˇ

1
Hk; ˇ

2
1k; ˇ

2
2k; : : : ; ˇ

2
Hk

�0
;

with ˇ
j

k
representing the component-specific fixed effect vector on the j th sibling and ˇ

j

hk
the

component-specific fixed effect for the j th sibling corresponding to the hth variable (j D 1; 2; h D
1; : : : ;H ). The term uik appearing in Equation (2) represents the component-specific H -dimensional
vector of random effects which is used to induce dependence between sibling pairs in the same family,
whereas X is a 2H �H known design matrix associated to random effects, where

XD
�

IH
IH

�

where IH is aH�H identity matrix. The 2H -dimensional component-specific error vector ei D .Qe0i ; Qe
0
i /
0,

where Qei is the H -dimensional error vector refereed to each sibling in the i th family. The error vector
ei and the random effect uik are assumed to be mutually independent. The distributions of ei and uik
are taken to be multivariate normal N.0; QFk/ and N.0; Sk/, respectively. QFk is a block diagonal matrix
where the off-block elements are equal to null matrices indicating that within a cluster the residuals of
two siblings are independent. Formally, we assume that

QFk D
�

Fk 0H
0H Fk

	
D

0
BBBBBBBBB@

f11k f12k : : : f1Hk 0 0 : : : 0

f12k f22k : : : f2Hk 0 0 : : : 0

: : : : : : : : : : : : : : : : : : : : : : : :

f1Hk f2Hk : : : fHHk 0 0 : : : 0

0 0 : : : 0 f11k f12k : : : f1Hk

0 0 : : : 0 f12k f22k : : : f2Hk

: : : : : : : : : : : : : : : : : : : : : : : :

0 0 : : : 0 f1Hk f2Hk : : : fHHk

1
CCCCCCCCCA

where Fk is equal for both sibling pairs and represents the variability due to random measurement error
in the kth cluster, whereas 0H represents a H �H null matrix. Sk is defined as:

Sk D

0
B@
s11k s12k : : : s1Hk

s12k s22k : : : : s2Hk

: : : : : : : : : : : :

s1Hk s2Hk : : : : sHHk

1
CA

and represents the variability due to the random effects in the kth cluster. Thus, conditional on belonging
to the kth component, the resulting mean vector and covariance matrix are respectively �k D ˇk and
†k D XSkX0C QFk , where

†kD

0
BBBBBBBBBBB@

f11kCs11k f12kCs12k : : : f1Hk C s1Hk s11k s12k : : : s1Hk

f12kCs12k f22kCs22k : : : f2Hk C s2Hk s12k s22k : : : s2Hk

: : : : : : : : : : : : : : : : : : : : : : : :

f1Hk C s1Hk : : : : : : fHHk C sHHk s1Hk : : : : : : sHHk

s11k s12k : : : s1Hk f11kCs11k f12kCs12k : : : f1HkCs1Hk

s12k s22k : : : s2Hk f12kCs12k f22kCs22k : : : f2HkCs2Hk

: : : : : : : : : : : : : : : : : : : : : : : :

s1Hk : : : : : : sHHk f1Hk C s1Hk : : : : : : : fHHkCsHHk

1
CCCCCCCCCCCA

:

(3)
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The component-specific covariance between the hth outcome of two siblings of the same pair is
equal to shhk , whereas the component-specific variance of the hth outcome is given by fhhk C shhk
(h D 1; : : : ;H ). In formula (3), the upper-left and lower-right submatrices and the upper-right and
lower-left submatrices contain the covariances within a sibling and between the two siblings of a pair
belonging to the kth cluster, respectively. Note that the proposed model assumes that the measurements
of siblings from different families are independent conditional on cluster membership.

As mentioned in the introduction, our model extends the models used for clustering of gene expres-
sion data [12, 13]. The mixture of mixed effect models proposed by Celeux et al. [12] is given by
Equations (1) and (2), with restrictions Sk D skI and Fk D fkI, that is, unequal, isotropic, error and
random component-specific matrices which lead to †k D skXX0 C fkI. The model of Ng et al. [13]
is slightly more general. Their model allows the variances within a sibling to vary across the various
variables, that is, Fk D .f1k; : : : ; fHk/0I. Both models are not suited for sibling pair data because they
assume that the covariances within a sibling are zero and that the covariances between the two siblings
in a pair do not vary across outcome variables.

2.1. Maximum likelihood estimation

The maximum likelihood estimates of model parameters can be derived for instance through the EM
algorithm [15–17], where missing data are of two types: the indicator variables, zi D .´i1; : : : ; ´iK/

0,
for i D 1; : : : ; n coming from multinomial distributions with priors �k , and the random effects uik for
each family in the kth cluster. Thus, the EM algorithm consists of maximizing iteratively the expecta-
tion of the following complete log-likelihood conditional on the observed data and the current value of
parameter estimates:

logLC .�/D
nX
iD1

KX
kD1

´ik log.�k/C
nX
iD1

KX
kD1

´ik log Œf .yi ;uikj�k/�

D

nX
iD1

KX
kD1

´ik log.�k/C
nX
iD1

KX
kD1

´ik log
h
N.ˇk CXuik; QFk/

i
C

KX
kD1

´ik log ŒN.0; Sk/�

D

nX
iD1

KX
kD1

´ik log.�k/C
nX
iD1

KX
kD1

´ikŒ�
1

2
.2H CH/ log.2�/

�
1

2
log.j QFkj/�

1

2
.yi � ˇk �Xuik/

0 QF�1k .yi � ˇk �Xuik/

�
1

2
log.jSkj/�

1

2
u0ikS�1k uik�

D

nX
iD1

KX
kD1

´ik log.�k/C
nX
iD1

KX
kD1

´ikŒ�
1

2
.2H CH/ log.2�/

�
1

2
log.jFkj/�

1

2
.yi1 � ˇ1k � uik/

0F�1k .yi1 � ˇ
1
k � uik/

�
1

2
log.jFkj/�

1

2
.yi2 � ˇ2k � uik/

0F�1k .yi2 � ˇ
2
k � uik/

�
1

2
log.jSkj/�

1

2
u0ikS�1k uik�

where � represents the unknown parameter vector and �k contains the unknown elements of ˇk , Sk ,
and QFk (k D 1; ::; K).

In the mth iteration of the E-step, we compute the conditional expectation of the log-likelihood
function for complete data. As usual, logLC .�/ is linear in the component labels and taking the expec-
tation implies that the component labels ´ik are replaced by their expected values, w.m/

ik
D P r.´ik D

1jyI�.m//, which represent the posterior probabilities that the i th sibling pair belongs to the kth cluster,
conditional on the observed data and the current parameter estimates. Therefore, the E-step is reduced
to the computation of
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w
.m/

ik
D

O�
.m/

k
N. Ǒ

.m/

k ;X OS.m/
k

X0C OQF.m/
k
/PK

kD1 O�
.m/

k
N. Ǒ

.m/

k ;X OS.m/
k

X0C OQF.m/
k
/
:

In the (mC 1)th iteration M-step, model parameters are estimated by maximizing the expected log-
likelihood for complete data with respect to �k , ˇk Sk , and QFk , respectively. Using the conditional
expectation of the sufficient statistics u0

ik
uik and .yik � Xuik/, we obtain the following estimates for

k D 1; : : : ; K:

O�
.mC1/

k
D

Pn
iD1w

.m/

ik

n

OS.mC1/
k

D

Pn
iD1w

.m/

ik
OS.m/
k

X0.X OS.m/
k

X0C OQF.m/
k
/�1.yik � Ǒ

.m/

k /.yik � Ǒ
.m/

k /0.X OS.m/
k

X0C OQF.m/
k
/�1X OS.m/

kPn
iD1w

.m/

ik

C
h
IH � OS

.m/

k
X0.X OS.m/

k
X0C OQF.m/

k
/�1X

i
OS.m/
k

OF.mC1/
k

D

1
2

Pn
iD1w

.m/

ik

h
.yi1 � Ǒ

1.m/

k /.yi1 � Ǒ
1.m/

k /0C .yi2 � Ǒ
2.m/

k /.yi2 � Ǒ
2.m/

k /0
i

Pn
iD1wik

�

Pn
iD1wik

h
OS.m/
k

X0.X OS.m/kX0C OQF.m/
k
/�1.yi � Ǒ

.m/

k /
i h
.yi1 � Ǒ

1.m/

k /0C .yi2 � Ǒ
2.m/

k /0
i

Pn
iD1wik

C

Pn
iD1wik

OS.m/
k

X0.X OS.m/
k

X0C OQF.m/
k
/�1.yi � Ǒ

.m/

k /.yi � Ǒ
.m/

k /0.X OS.m/
k

X0C OQF.m/
k
/�1X OS.m/

kPn
iD1wik

C OS.m/
k
� OS.m/

k
X0.X OS.m/

k
X0C OQF.m/

k
/�1X OS.m/

k

Ǒ j.mC1/
k D

Pn
iD1wikŒ.

OS.m/
k
C OF.m/

k
/�. OS.m/

k
C OF.m/

k
/�1.yijk � Ǒ

j.m/

k /�Pn
iD1w

.m/

ik

C Ǒ
j.m/

k

Furthermore, a flexible estimator of uik may be based on the posterior mean of uik conditional on the
observed data:

Ou.mC1/
ik

D w
.m/

ik
OS.m/
k

X0.X OS.m/
k

X0C OQF.m/
k
/�1.yik � Ǒ

.m/

k /: (4)

When running the EM algorithm, the Woodbury identity matrix [18] can be used for the inversion
given in Equation (4), that is, the component-specific covariance matrix can be written as follows:

.XSkX0C QFk/
�1 D QF�1k � QF

�1
k X.S�1k CX0 QF�1k X/�1X0 QFk :

Especially for high dimensional data, this formula saves computation time because the left-hand side
involves an inversion of a 2H �2H matrix, whereas for the right-hand side of the formula, onlyH �H
matrices have to be inverted:

QF�1k D
�

Fk 0H
0H Fk

	�1
D

�
F�1
k

0H
0H F�1

k

	
:

The EM algorithm to obtain the maximum likelihood parameter estimates given the number of clusters
K is implemented in the LATENT GOLD software 4.5. Typically, the number of clusters is unknown
and has to be chosen using approaches available in the standard finite mixture model literature (see
McLachlan and Peel [17]). For example, the number of clusters may be chosen by analyzing the number
of modes (mainly based on intuition), by applying likelihood-based approaches, and by using Bayesian
and penalized likelihood methods (AIC (Akaike information criterion) [19], BIC (Bayesian information
criterion) [20], AWE (Approximate weight of evidence) [21] and so on). In this paper, we consider a
specific problem where the number of clusters is known.
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2.2. Specification of the linear mixed effect model for discovering clusters of sibling pairs on the basis
of two health outcomes

As mentioned in the introduction, our interest is to discover three categories of sibling pairs: CH, CUH,
and DH sibling pairs. We consider in detail the case of two health outcomes. Without loss of generality,
it is assumed that healthy subjects have low values for the two measured health outcomes, yij1 and yij2.
Here, i is the family index, and j denotes the sibling within the i th family. Siblings with at least one
high value for one of the outcome variables are also considered to be unhealthy. In order to capture
the structural information of these data, we fix the number of cluster K equal to four. In particular, we
assume that the first cluster represents CH sibling pairs, the second and third clusters DH sibling pairs
(first sibling is healthy and second one is unhealthy and vice versa), and the fourth cluster CUH sibling
pairs. On the basis of these assumptions, the component-specific mean vectors in (2) are set as follows:
ˇ1
0

1 D ˇ
20

1 D ˇ
20

2 D ˇ
10

3 < ˇ
10

2 D ˇ
20

3 D ˇ
10

4 D ˇ
20

4, that is, the means of yij1’s and yij2’s for healthy
siblings are equal and lower than the means of yij1’s and yij2’s for unhealthy siblings, which are equal
as well. Moreover, we have:

� uik D .uik1; uik2/0 with uik � N.0; Sk/ and Sk D
�
s11k s12k
s12k s22k

	
,

� XD

0
B@
1 0

0 1

1 0

0 1

1
CA ;

� eik with eik � N.0; QFk/ and QFk D

0
B@
f11k f12k 0 0

f12k f22k 0 0

0 0 f11k f12k
0 0 f12k f22k

1
CA,

with QF2 D QF3, �2 D �3 and S2 D S3. The last three constraints come from the exchangeability of classes
2 and 3 because of the exchangeability of the two siblings. Details to fit this model using the LATENT

GOLD software 4.5 are given in the Appendix.
A straightforward extension of this model is to consider three instead of two classes at subject level

by also including an intermediate class. This model yields six classes at sibling pair level, namely
three concordant classes and three discordant classes. To fit this model, K=9 has to be used. The
ordering of the classes can be modeled using the following restrictions for the mean parameters:
ˇ1
0

1 D ˇ2
0

1 D ˇ1
0

4 D ˇ2
0

7 D ˇ1
0

5 D ˇ2
0

8 < ˇ1
0

2 D ˇ2
0

2 D ˇ2
0

4 D ˇ1
0

7 D ˇ1
0

9 D ˇ1
0

6 < ˇ1
0

3 D

ˇ2
0

3 D ˇ
20

5 D ˇ
20

6 D ˇ
10

8 D ˇ
20

9.

3. Simulations

To study the performance of the model, we carried out a simulation study. We simulated 100 data sets
of n D 500 sibling pairs. For each sibling, we simulated two health parameters (H D 2). The number
of clusters K is equal to 4. Table I gives the model parameters of the simulation. These parameters are
close to the parameter estimates obtained from our real data (shown in the next section). The largest
cluster includes CH sibling pairs, two clusters represent DH, and the last cluster represents the CUH
sibling pairs. Note that we use smaller correlations for outcomes of siblings from DH pairs compared
with correlations for outcomes of siblings from concordant pairs, and the correlations between outcomes
of siblings from CH are assumed to be larger than the corresponding correlations from CUH. The model
parameters were estimated by using LATENT GOLD software (computation took about 2 s per data set).
We evaluated the performance of the proposed model in terms of:

1. the ability to correctly estimate the model parameters;
2. the degree of agreement between the true and the estimated partition membership by using three

agreement indices: Modified Rand Index, Jaccard Index, and Hubert Index [22]. In case of perfect
agreement between the true partition and the estimated one, the values of these three indices are
equal to 1;

3. detecting the correct number of clusters.

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011
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Table I. Simulation setting and parameter estimates corresponding to our model fitted to one of the replicates.

Parameter setting Parameter estimation

Healthy
ˇ1 1.00 1.00
ˇ2 0.60 0.60
Unhealthy
ˇ3 3.00 3.00
ˇ4 2.00 2.00
Concordant healthy
�1 0.60 0.5909

F1

�
0:05 0:02

0:02 0:03

	 �
0:05 0:02

0:02 0:03

	

S1

�
0:40 0:05

0:05 0:50

	 �
0:40 0:05

0:05 0:50

	

Discordant
�2 .D �3/ 0.14 0.1382

F2 .D F3/
�
0:06 0:05

0:05 0:09

	 �
0:06 0:05

0:05 0:09

	

S2 .D S3/
�
0:08 0:01

0:01 0:10

	 �
0:08 0:01

0:01 0:10

	

Concordant unhealthy
�4 0.13 0.1327

F4

�
0:05 0:04

0:04 0:06

	 �
0:05 0:04

0:04 0:06

	

S4

�
0:20 0:07

0:07 0:20

	 �
0:20 0:07

0:07 0:20

	

The third column of Table I shows the estimated model parameters of a data set (to avoid local max-
ima, we use various starting points). These estimates agree with the model parameters used for the
simulation. In Table II, the degree of agreement indices are given. The given values are averages over
the 100 replicates. Because all indices are above 0.95, our model performs well in recovering the true
partitions.

To study the performance of our model in terms of identifying the correct number of clusters, we also
fitted models with three classes at subject level namely healthy, unhealthy, and an intermediate class. This
model corresponds to nine classes for the sibling pairs: the first, the second, and the third clusters repre-
sent CH, CM, and CUH sibling pairs, and the fourth and the seventh, the fifth and the eighth, and the sixth
and the ninth clusters represent DMH, DHUH, and DMUH, respectively. On the basis of these assump-
tions, the component-specific mean vectors in (2) were set as follows: ˇ1

0

1 D ˇ2
0

1 D ˇ1
0

4 D ˇ2
0

7 D

ˇ1
0

5 D ˇ
20

8 < ˇ
10

2 D ˇ
20

2 D ˇ
20

4 D ˇ
10

7 D ˇ
10

9 D ˇ
10

6 < ˇ
10

3 D ˇ
20

3 D ˇ
20

5 D ˇ
20

6 D ˇ
10

8 D ˇ
20

9,
that is, the means of yij1’s and yij2’s for healthy siblings are equal and lower than the means of yij1’s
and yij2’s for moderate siblings, which are equal and lower than the means of yij1’s and yij2’s for
unhealthy siblings which are equal as well. Our new model with nine clusters gave a higher BIC value
(10,811) than the correct model with four clusters (3081). Hence, a model with four clusters should be
preferred. The cluster proportions were close to the truth, namely �1 D 0:60, �3 D �5 D �8 D 0:13,
�2 D �4 D �6 D �7 D �9 � 0:00. Thus, the underlying data structure of four sibling pair classes was
recovered.

To illustrate the improvement in performance of the proposed model relative to standard model-based
clustering techniques, the Mixture Modelling Software for Matlab (MIXMOD, [23]) was used to analyze
the replicates. Here, the data from each pair were treated as a single vector. The variables were allowed

Table II. Measures of degree of agreement: mean value over 100 replicates.

Model Modified Rand index Jaccard Index Hubert Index

The proposed model 0.98 0.97 0.98
Standard model-based clustering 0.95 0.94 0.95
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to be correlated, but the specific structure of the sibling pair data represented by formula (3) is ignored,
that is, the covariance structure uses more parameters. We first fitted all 28 MIXMOD models with four
clusters. In 54 of the 100 simulations, the best model was Gaussian_pk_Lk_D_Ak_D, whereas for the
remaining 46 replicates, the best model was Gaussian_pk_Lk_Ck. Table III shows for each model the
BIC value of the replicate with the best model fit. Our proposed model gives a smaller BIC value (3081)
than the best-fitting standard mixed model (BIC value of 11,220). Table IV presents the model parameter
estimates corresponding to the replicate and the best fitting model (BICD 11; 220). Our model appears
to outperform the standard models in terms of ability to correctly estimate model parameters. Moreover,
the three agreement indices averaged over the 100 simulations are lower than the indices obtained using
our model (second line Table III). Note also that our model is more parsimonious with respect to the
standard model-based clustering. For example, in this simulation study the number of parameters used
in the covariance matrices is reduced from 2H.2H C 1/=2C 2H.K � 1/ to .K � 1/H.H C 1/.

Finally, the standard 28 MIXMOD models were fitted using nine clusters instead of correct four clus-
ters. The model which fitted best to the data had a BIC value of 11,462, which is similar to the BIC
value for models with four clusters (11,220). The obtained prior probabilities for class memberships are
�1 D 0:14, �2 D 0:16, �3 D 0:13, �4 D 0:08, �5 D 0:10, �6 D 0:12, �7 D 0:20, �8 D 0:02, and
�9 D 0:05, which do not agree with the true four classes. Thus, for our simulations, standard models are
not able to pinpoint the correct number of clusters underlying the outcomes.

4. Real data

As application, we are interested in clustering using six health outcomes measured in 427 families from
the Leiden Longevity Study. The aim of the analysis was to classify sibling pairs in CH, CUH, and
DH pairs using these health outcomes. Families were recruited between 2002 and 2006. Schoenmaker

Table III. BIC values for each MIXMOD model with
K D 4 obtained in replicates with the best fit for that
model.

Model BIC

Gaussian pLI 17,341.129476
Gaussian pLkI 16,701.368851
Gaussian pLB 16,336.983629
Gaussian pLkB 16,624.959196
Gaussian pLBk 17,804.373944
Gaussian pLkBk 16,498.108325
Gaussian pLC 17,462.176722
Gaussian pLkC 16,410.484218
Gaussian pLDAkD 17,662.605223
Gaussian pLkDAkD 15,903.007364
Gaussian pLDkADk 17,285.972361
Gaussian pLkDkADk 16,194.564931
Gaussian pLCk 13,328.303004
Gaussian pLkCk 12,581.307822
Gaussian pkLI 12,586.753144
Gaussian pkLkI 12,710.137657
Gaussian pkLB 12,555.373083
Gaussian pkLkB 12,359.955583
Gaussian pkLBk 12,085.169249
Gaussian pkLkBk 12,244.604392
Gaussian pkLC 13,437.305213
Gaussian pkLkC 12,492.306760
Gaussian pkLDAkD 12,242.787730
Gaussian pkLkDAkD 11,220.407120
Gaussian pkLDkADk 11,622.510648
Gaussian pkLkDkADk 11,553.403224
Gaussian pkLCk 11,341.642045
Gaussian pkLkCk 11,274.373955
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et al. [24] describe the design in detail. Briefly, families participating in the Leiden Longevity Study have
at least two siblings meeting four inclusion criteria: (1) men are aged 89 years or above, and women are
aged 91 years or above; (2) subjects have at least one living brother or one living sister who fulfills
the first criterion and is willing to participate; (3) the nonagenarian sibship has an identical mother and
father; (4) the parents of the nonagenarian sibship are Dutch and Caucasian. Note that for selection, dif-
ferent age cutoff points for men and women were used because of differences in life expectancies. There
were no selection criteria on health or demographic characteristics. Blood samples were taken at base-
line. The six health variables used in the study were mini mental state examination (MMSE), thyroxine
(T4), triiodothyronine (T3), glucose levels, low-density lipoprotein (LZ), and high-density lipoprotein
(HZ) particle sizes [25–27]. To obtain approximately normally distributed data, we transformed MMSE
and glucose. For MMSE, we used square root of 30 minus MMSE (tMMSE) as proposed by [28]. For
glucose, we used a log transformation (Lglucose). Table V shows the descriptives of the variables. For
the most (transformed) variables, low values mean healthy, unless for LZ and HZ (where it is vice versa).
To have an idea about the ability of each health variable to discriminate between two classes (healthy and
unhealthy), we fitted a standard k-means algorithm [29] with two clusters, ignoring the family member-
ship. Table V also shows the obtained cluster means, and the last column presents the relative differences
in the means of the two clusters. In detail, tMMSE seems to be promising in discrimination with a relative
difference of 0.79. In addition, Lglucose, T3, and T4 show moderate differences in mean between the two
clusters, namely a relative difference of 0.25, 0.25, and 0.26, respectively. However, fitting the proposed
model by using all of the four health outcomes (namely, tMMSE, Lglucose, T3, and T4), where three
are not well discriminating, seems to obscure the impact of tMMSE; in fact, the obtained clusters were
close to each other (results not presented here). Therefore, we decided to focus mainly on the effect of
tMMSE together with just one of the other outcomes which have the same discriminant power. We then
applied our proposed model to classify sibling pairs by using two health parameters, namely, tMMSE
and either Lglucose, T3, or T4. Because of missing data, we used data on 603 individuals forming 354
sibling pairs. When the sibship size was larger than two, siblings were in multiple pairs. For Lglucose
in combination with tMMSE, we found various local maxima, each of which gives a solution in which
the difference in Lglucose between healthy and unhealthy was rather small. Also, the combination of
tMMSE and T3 did not result in well interpretable solutions. Here, the problem seems to be that T3
decreases with age. For the combination of tMMSE and T4, our model gave the best results. Table VI
shows the descriptions of the three clusters. We obtained the following parameter estimates: a mean of
1.94 for tMMSE and 15.53 for T4 in healthy individuals and a mean of 2.65 for tMMSE and 17.2 for
T4 in unhealthy individuals. The proportions of CH, CUH, and DH siblings were 0.63, 0.09, and 0.28.
The correlations between tMMSE of a sibling pair within CH, CUH, and DH were 0.20, 0, and 0.06,

Table V. The descriptives of the outcomes and the k-means results of the 427 sibships of the Leiden Longevity
Study.

Outcome Size Mean SD 1st cluster mean 2nd cluster mean r. difference

HZ 867 9.35 0.56 8.90 9.80 0.10
Lglucose 912 0.80 0.11 0.75 0.95 0.25
LZ 867 21.45 0.78 22.00 20.70 0.06
tMMSE 739 2.18 1.00 1.64 3.36 0.79
T3 903 4.01 0.67 4.80 3.80 0.25
T4 903 16.01 2.73 14.50 18.70 0.26

Table VI. Clustering results by using tMMSE and T4 outcomes.

CH DH CUH

O�k 0.63 0.09 0.28
Age mean (mode) 93.18 (91.90) 93.06 (91.20) 94.06 (91.00)
Ǒ
tMMSE;k 1.935 2.653
Ǒ
T4;k 15.534 17.214

corrtMMSE 0.20 0 0.06
corrT4 0.30 0.19 0.00
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respectively, and between T4 of a sibling pair within CH, CUH, and DH were 0.30, 0.19, and 0. More-
over, the correlations between tMMSE and T4 within an individual of the CUH and DH clusters were
negative, whereas the correlation between these health variables was positive in the CH cluster (results
are not shown). Finally, we studied the relationship between membership of CH and two variables mea-
suring mortality, namely, a family history score measuring excess survival of the parental generation and
follow-up of the nonagenarian siblings (mean 3.3 years, maximum follow-up 7.5 years). We defined CH
membership as having a posterior probability to belong to CH of larger than 0.5. It appeared that sibling
pairs belonging to CH cluster have parents who lived longer (p D 0:06, T -test, one-sided p-value), and
siblings who belong to the CH cluster had a significant longer follow-up time (p D 0:005, logrank test).
These results suggest that CH membership is associated with a longer life span.

5. Conclusions

Model-based clustering is a tool for joint analysis of multiple and diverse variables. It can be used to
identify clusters of subjects with similar profiles for these variables. We extended current tools for single
subjects to cluster families by adding random family effects in the cluster-specific regression model and
allowing class membership of the siblings to be associated. Our proposal can be seen as an extension of
mixtures of LMMs proposed by [12] and [13] in the context of microarray data. Estimates of the param-
eters can be found by using the EM algorithm. The models can be fitted by the software LATENT GOLD.
As illustration, we fitted the proposed model to identify healthy sibling pairs of the Leiden Longevity
Study on the basis of two health outcomes. Via a simulation study, we showed that LATENT GOLD is able
to recover the model parameters. We also showed that the proposed model outperformed the standard
model-based clustering approach in terms of degree of agreement, identification of the correct number
of clusters, and computational simplicity.

The formulae for the EM algorithm given for sibling pairs can be easily extended to general sibship
sizes. In the future, we plan to extend our models by considering more advanced covariance structures.
For example, the correlation between sibling pairs can be modeled as a function of sharing of marker
alleles identical by descent at a position of the genome (genetic linkage analysis). Another straightfor-
ward extension of our interest is to include common risk factors (e.g., demographic and socio-economic
characteristic of family) in the model for the prior cluster membership probabilities as in standard mix-
ture models. In addition, because sibling pairs are often followed over time and repeated measures per
sibling are available, it makes sense to expand the proposed model to deal with such a situation.

Concerning the data example, we were interested in classification of sibling pairs in CH, DH, and
CUH classes. From the six health outcomes, two health outcomes appeared to discriminate between
classes. We showed that obtained classification results were realistic. In particular, within the CH class,
both siblings have beneficial values for both health outcomes. In this cluster, siblings have parents who
reached older ages and also show excess survival themselves. On the other hand, within DH and CUH
clusters, sibling pairs may be present who have beneficial values for only one of the two variables or for
another unmeasured health variable, such as grip strength.

The number of variables which are measured within epidemiological studies is increasing rapidly.
Single-variable analyses does not provide insight in the joint distribution of the variables. For further
study about biological mechanisms for healthy aging using expensive techniques such as whole genome
sequencing, the most interesting subset based on the joint distribution has to be identified. Model-based
clustering is a tool that can provide the best subset. For example, pairs with largest probabilities to be
concordant healthy and pairs with the largest probabilities to be discordant can be chosen.

To conclude, model-based clustering is a promising tool to obtain more insight in underlying
biological data structures when many outcomes are measured at different scales.

6. Appendix

The model discussed in this article can be defined using LATENT GOLD software 4.5, which is a latent
class program introduced by [14] that finds the ML estimates through the EM and Newton–Raphson
algorithms (first EM and Newton–Raphson when close to the maximum). More specifically, we need to
define a series of regression equations for the latent and the response variables, and the settings for the
(residual) variances and covariances. Before defining the regression equations, we specify the technical
and output options and the id variables, as well as the names and scale types of the latent, dependent
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variables that play a role in the model. The model definition for the specification of the LMM for dis-
covering clusters of sibling pairs on the basis of two health outcomes, described in Section 2.2 and fitted
on real data in Section 4, consists of the following syntax language:

variables
dependent y11 continuous, y12 continuous, y21 continuous, y22
continuous; latent cluster1 2, cluster2 2, u1 continuous, u2
continuous; equations (s1) u1 | cluster1 cluster2;
(s2) u2 | cluster1 cluster2;
(s12) u1 <-> u2 | cluster1 cluster2;
cluster1 <- (k) 1;
cluster2 <- (k) 1;
(l) cluster1 <-> cluster2;
y11 <- (a) 1 | cluster1 + (1) u1;
y12 <- (b) 1 | cluster1 + (1) u2;
y21 <- (a) 1 | cluster2 + (1) u1;
y22 <- (b) 1 | cluster2 + (1) u2;
(f1) y11 | cluster1 cluster2;
(f2) y12 | cluster1 cluster2;
(f1) y21 | cluster1 cluster2;
(f2) y22 | cluster1 cluster2;
(f12) y12 <-> y11 | cluster1 cluster2;
(f12) y22 <-> y21 | cluster1 cluster2;
s1[3] = s1[2];
s2[3] = s2[2];
s12[3] = s12[2];
f1[3] = f1[2];
f2[3] = f2[2];
f12[3] = f12[2];

In detail, Cluster 1 represents two classes for sibling 1, and Cluster 2 represents two classes for sib-
ling 2. The joint model has 2�2 or four classes. The first three lines of equations define the (co)variances
in the Sk’s which are allowed to differ across the four classes. The next three lines define the logit models
for the class proportions for siblings 1 and 2 and their association; by using the same parameter label
’k’ for the intercept ’1’, we get �2 D �3. The next four lines define the regression models for y’s. By
using the same labels ’a’ and ’b’, the parameters are equated for the two siblings, yielding the structure
of beta described in the text. The next six lines define the residual (co)variances. The last six lines define
the restrictions S2 D S3 and F2 D F3.

Adding covariates in the priors would imply having one extra line in variables. Just to give an idea, let
us assume that we have three predictors which may have different values for the two siblings, then the
extra line will be:

independent x11, x12, x13, x21, x22, x23;

Moreover, the equations for cluster1 and cluster2 have to be replaced by

cluster1 <- (k0) 1 + (k1) x11 + (k2) x12 + (k3) x13;
cluster2 <- (k0) 1 + (k1) x21 + (k2) x22 + (k3) x23;
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