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Abstract

Several statistical methods are nowadays available for the analysis of gene expression data

recorded through microarray technology. In this paper, we take a closer look at several Gaussian

mixture models which have recently been proposed to model gene expression data. It can be

shown that these are special cases of a more general model, called mixture of structural equation

models (mixture of SEMs), which has been developed in psychometrics. This model combines

mixture modeling and SEMs by assuming that component-specific means and variances are

subject to a structural equation model. The connection with SEM is useful for at least two

reasons: 1) it shows more explicitly the basic assumptions of existing methods, and 2) it helps

in straightforward development of alternative mixture models for gene expression data with
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alternative mean/covariance structures. Different specifications of mixture of SEMs for clustering

gene expression data are illustrated using two benchmark datasets.

Keywords: Mixture of SEMs, microarray data, biclustering, simultaneous clustering and dimen-

sional reduction, correlated data.

1 Introduction

DNA microarray techniques are used to measure the expression levels of thousands of genes simultane-

ously. From a statistical point of view, microarray data are a collection of real numbers (representing

expression levels) arranged in a (n × J) data matrix Y, where, usually, rows and columns repre-

sent genes and experimental conditions. The latter may refer to different time points, environmental

conditions, cellular states, organs, treatments, tissue samples, and so on. In most cases, the generic

element of this matrix, yij, represents the log-ratio between the j-th experimental condition and a

reference condition for the i-th gene (i = 1, ..., n; j = 1, ..., J). Summarizing biologically relevant

information from such high dimensional data is a challenging task. Among others, several clustering

techniques have been proposed for this purpose; from a biological point of view, in fact, it is often

meaningful to cluster genes and/or experimental conditions (that is, rows and columns of the data

matrix). In a clustering context, genes (rows) with similar expression patterns (across conditions)

are assumed to belong to the same cluster of genes; conversely, experimental conditions (columns)

with similar expression patterns (across genes) are assumed to belong to the same cluster of conditions.
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Conditional on the biological question, attention is focus on one of the following three types of

microarray experimental designs: 1. genes are measured on different tissue samples (or different treat-

ments); 2. genes are measured at different time points (time-course series); 3. gene measurements are

replicated on each tissue sample (technical replicates) at different time points. In the first design, it

may be useful to cluster genes with similar expression levels to predict gene functions or identify sets

of genes that are regulated by the same organism. In this context, it may also be interesting to define

clusters of tissue samples reflecting biological categories such as cell tumor progression, mutational

status of a disease, and so on. In particular, if tissue samples belong to known groups of tissues (for

example, normal and abnormal tissues or known subtypes of a disease), it may be interesting to find

genes which are associated with disease status (clinical markers), that is, genes that are differentially

expressed in the observed experimental conditions. A more complex situation is related to discovering

local expression patterns; in this case, clusters of genes may show similar activation patterns under

a class of experimental conditions, which is not defined a priori. The task is here to joint clusters

experimental conditions and genes, where cellular processes are active only in a subset of the exper-

iments and groups of genes participate in the cellular process of interest. The second design arises

since biological systems are dynamic; thus, microarray experiments performed over time give us a way

to observe cellular mechanisms in action. Analyses in this area have focused on identifying genes with

differential expressions over time, to identify clusters of genes with similar time profiles (co-expressed

genes) or causal networks generating the observed data. The last experimental design is the most

complex one; here, multiple measurements are taken over time usually for a different purpose than

time-course data. More specifically, mRNA from a tissue sample is hybridized several times to reduce
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the uncertainty about gene expression levels and the effect of measurement error. It can be expected

that the repeated measurements will also increase robustness of clustering results. In terms of the

possible purpose of the analysis, this design may be considered as more similar to the first than to

the second one.

This paper focuses on cluster analysis via mixture models. Model-based clustering dates back at

least to [1], [2], [3], [4], [5],[6], [7], [8] and [9] and became popular in microarray data analysis thanks to

the works of [10], [11] and [12]. Model-based clustering approaches are based on the assumption that

the data come from an underlying finite mixture model, where each mixture component corresponds

to a cluster. Finite mixtures of Gaussian densities are by far the most commonly used structure

in model-based clustering. The goal of model-based clustering is to provide a partition of the data

into clusters of homogeneous observations; to achieve this, after model fitting model-based clustering

requires an additional step to assign each observation to a different cluster according to some pre-

specified rule.

Whereas this approach offers various advantages compared to classical clustering techniques [13],

its use in gene expression data applications may face specific questions. Problems occur when the

aim is to cluster tissue samples, since the number of objects to be clustered (tissue samples) is usu-

ally much smaller than the number of variables (genes). In this case, the standard mixture model

should be adapted to prevent singularity of component-specific covariance matrices. A further prob-

lem may arise when clustering genes in time series or repeated measurement contexts, due to the

potential dependence among gene profiles which may also vary across tissue samples. Recent exam-
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ples of model-based clustering for these kinds of microarray data are discussed in [14] and [15]. A

third limitation of standard model-based clustering methods is that they are not designed to cluster

simultaneously genes and conditions, i.e. to provide a biclustering structure. Extensions of standard

mixture models have been recently developed for this purpose by [16] and [17].

The aim of this paper is to show that most model-based clustering methods developed in the

microarray data context can be seen as special cases of a finite mixture of structural equation models

(Mixture of SEMs). This framework has been developed in the field of psychometrics, quite indepen-

dently from other fields of applied statistics. We take the mixture of SEMs as the starting point, and

show in the next sections how to unify and extend a wide variety of statistical methods proposed for

model-based clustering of microarray data. Additionally, we show how these are connected with the

more general mixture of SEMs model to discover interesting relationships among previously separate

methods with possibly different biological purposes becoming visible. The mixture of SEMs frame-

work may help statisticians develop more flexible and realistic models, as well as make analyses easier,

since biologists/genetists can focus on the applied rather than on the theoretical side.

The rest of the paper is structured as follows. In section 2, we introduce the mixture of SEMs

framework. Section 3 proposes different specifications of mixture of SEMs to cluster tissue samples

and/or to apply dimensional reduction on genes, including mixture of factor analyzers (MFA), its

extensions (PGMM1-PGMM8, EPGMM1-EPGMM4), mixture of probabilistic principal component

analyzers (MPCA), and two-way models for simultaneous reduction and classification introduced by
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[18] (RV). Section 4 shows how mixtures of SEMs are related to two-way mixtures of factor analyzers

proposed by [19] for the simultaneous clustering of genes and tissue samples (Biclustering). In section

5, we highlight connections between mixture of SEMs and mixture models for clustering genes where

repeated time-course data have to be handled, focusing on ideas developed by [20] (LMM1). A more

refined specification of mixture of SEMs is presented in section 6, where the linear mixed models

proposed by [21] (LMM2, LMM3 and LMM4) to deal with correlated genes (in different experimental

designs) is shown to be a special case of a mixture of SEMs. The mixture of SEMs framework is

illustrated by discussing the analysis of two benckmark datasets from the microarray literature: the

yeast galactose data of [22] and the colorectal carcinoma data of [23]. Last section presents concluding

remarks.

2 Modeling framework: The mixture of SEMs

Let us take as starting point the structural equation model (SEM). Structural equation modeling is

mainly used to assess relations among manifest and latent variables; given its generality, it may be

considered as nesting many multivariate techniques such as multiple regression, path analysis, con-

firmatory factor analysis, etc. Readers unfamiliar with common factor modelling, are referred to the

recent overview by [24].

A SEM is composed of two parts, a measurement part relating the observed outcomes to the latent

variables and a structural part that specifies the relationships among the latent variables. Even though
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it is very popular in some statistical areas, SEM is not commonly used in mainstream statistics, since it

often lacks a strict formalization (because of its widespread flexibility) and a standardized terminology

(because of the different application fields). About ten years ago, several authors proposed modelling

unobserved heterogeneity through a general model by unifying SEM and finite mixture model for

clustering ([25], [26], [27], [28], [29] and [30]). This hybrid approach is called mixture of SEMs. In

detail, it is defined as a finite mixture model with a structural equation model describing component-

specific parameters. In particular, when a Gaussian distribution is considered, a SEM can be used to

constrain component-specific mean vectors and/or covariance matrices. This approach may lead to

parsimonious Gaussian mixture models that are more stable with respect to models with unrestricted

parameter sets. The aim of linking mixture models and SEMs is not only to avoid singularities in

the estimation phase, but also to test hypotheses concerning the relationship among variables within

component-specific distributions. Below, we first introduce standard mixture of SEMs. Then, we

show how the mixture SEM framework can be used to analyze gene expression data (by imposing

specific constraints); that is, how it can be linked to already known models for model-based clustering

of gene expression data.

2.1 Specification of a mixture of SEMs

Let yi (i = 1, ..., n) be a J-dimensional data vector from a finite mixture model. The marginal density

function is defined by:

f(yi;φ) =
K∑

k=1

πkf(yi;θk), (1)
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where πk represent the k-th component weight, πk ≥ 0, for k = 1, ..., K, with
∑K

k=1 πk = 1, f(yi;θk)

represents the component-specific density indexed by the parameter vector θk (k = 1, ..., K), while

φ = {πk,θk}k=1,...,K is the “global”parameter vector. We will assume that the component-specific

density is Gaussian, where a given hierarchical structure will be used to define the parameters θk. As

shown in [28], conditional on the i-th unit belonging to the k-th component, the SEM can be defined

as follows:

yi = υk + Vkuik + eik, (2)

uik = αk + Bkuik + ξik. (3)

The first equation represents the measurement part of the model, where υk represents a J-dimensional

component-specific vector of intercepts, Vk is a J×Qk component-specific factor loadings matrix, uik

is a Qk-dimensional, component-specific, latent variable vector, eik is a J-dimensional, component-

specific, measurement error vector (k = 1, ..., K, i = 1, ..., n). The second equation defines the

relationships among the latent variables (referred to as the structural part of the model); here, αk

is a Qk-dimensional component-specific vector of intercepts, Bk is a Qk × Qk component-specific

regression coefficient matrix (with null diagonal elements), while ξik is a Qk-dimensional component-

specific residual vector (k = 1, ..., K). It is worth noticing that Bk should be defined as such that

(I −Bk) is non singular. Moreover, eik and ξik are assumed to be mutually independent. The most

general model is based on the following additional assumptions:

• E(eik) = 0, cov(eik) = Dk and eik ∼ N(0,Dk);

• E(ξik) = 0, cov(ξik) = Φk and ξik ∼ N(0,Φk);
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where Dk and Φk represent component-specific covariance matrices; these matrices may be non-

diagonal. It follows that the mixture component densities in (1) are J-variate Normal density functions

with parameters θk = {µk,Σk} (k = 1, ..., K). To define the corresponding component-specific means

and covariances, let us consider a set of K indicator variables zik of component membership: zik = 1

if the i-th unit belongs to the k-th cluster, 0 otherwise. Thus, component-specific mean vectors and

covariance matrices can now be expressed as follows

E(yi|zik = 1) = µk = υk + VkE(uik) + E(eik) = υk + Vk(I−Bk)−1αk,

cov(yi|zik = 1) = Σk = Vkcov(uik)V′k + Dk = Vk(I−Bk)−1Φk(I−B′k)−1V′k + Dk.

It should be noted that the structural parameters in the structure for the component-specific covari-

ance matrix in models (1)-(3) are not identifiable. A common method to identify the component-

specific covariance matrix is to fix the elements in Vk and/or Bk to constant values. In this paper,

we restrict ourselves to situations where Bk = 0, since, as far as we know, models with alternative

specifications for Bk have not been proposed in the microarray context yet. However, by taking the

more general formulation as a starting point, it is possible to define several useful extensions; for

example, in the clustering of time-course data, it may be relevant to impose a Markov-type structure

on time-specific latent factors.

2.2 Parameter estimation and model selection

even though this paper does not focus on estimation, we believe that a brief description of parameter

estimation and model selection is mandatory. The most general mixture of SEMs (1)-(3) has a total of
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JK+JQkK+ J(J+1)K
2

+QkK+(Q2
k−Qk)+ Qk(Qk+1)K

2
+(K−1) parameters; in particular, terms J(J+1)K

2

and Qk(Qk+1)K
2

refer to the component-specific covariance matrices Dk and Φk, JK and QkK to the

component-specific intercept vectors υk and αk, JQkK and Q2
k−Qk to the component-specific factor

loadings and regression parameter matrices Vk and Bk, and (K − 1) to the mixing weights πk. For

parameter estimation, the same approaches used for standard finite mixture models may be used. As

discussed in [13], these include graphical methods, methods of moments, minimum-distance methods,

maximum likelihood and Bayes methods. However, the maximum likelihood (ML) framework is the

most commonly used approach to fit a mixture of SEMs. The optimization of the likelihood function

wrt model parameters is mostly based on the Expectation-Maximization (EM) algorithm [31] with

the Newton-Raphson algorithm [32].

In the clustering context, the interest is not only on model parameter estimates but also on posterior

probabilities of component membership, wik, defined by:

Pr(zik = 1|y;φ) = wik =
π̂kϕ(yi; µ̂k, Σ̂k)∑K

k=1 π̂kϕ(yi; µ̂k, Σ̂k)
(4)

where π̂k, µ̂k, Σ̂k represent component-specific parameters estimated at the current iteration of the

EM algorithm. To allocate each unit in the sample a MAP (Maximum A Posteriori) rule could be

used, where each observation is assigned to the cluster corresponding to the highest wik (k = 1, ..., K).

In the following, we will assume that the number of mixture components K and latent variables Qk

(k = 1, ..., K) is fixed. However, in practice, these are unknown quantities which must be estimated

from observed data. One of the advantages of model-based clustering compared to standard clustering

algorithms is that it provides a more formal basis to choose the number of clusters; in this case, the
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choice of K or Qk involves comparison of possible models. This procedure is common to standard

finite mixture models, where the number of components is usually determined by penalized likelihood

methods (AIC, BIC, AWE, etc.; see [33] for details). Although there is a considerable amount of

literature concerning this issue, an optimal method to determine the number of components can

not be found (for recent work, see [34], [35] and [36]). In particular, [34] argued that BIC tends to

overestimate the number of mixture components and propose the ICL criterion as a solution; however,

[35] showed that the ICL criterion tends to select models with too few components; therefore, they

propose a method combining BIC and ICL to join the best of both criteria. A recent proposal is

discussed in [36], who emphasized that there in practical situations the concept of cluster has not

a unique definition. For example, we may look for a cluster characterized by a high variance but

notthat different from another (more homogeneous) cluster when the average is concerned; otherwise,

we may look for clusters with low variance but far from each other on the mean scale. Therefore, [36]

propose different methods according to different definitions, based on a ridgeline analysis of modalities

in Gaussian mixtures, dip test, Bhattacharya dissimilarity, a direct estimator of misclassification rate

and the strength of predicting pairwise cluster memberships.

However, for standard model-based clustering methods only a single choice (the number of compo-

nents) has to be made. In the mixture of SEMs context, model choice can be more complex when, for

example, both dimensional reduction of observations (clustering) and variables (clustering or factorial

techniques) are involved. In this case, once the number K of clusters has been specified, the number

of latent variables Qk within each cluster (k = 1, ..., K) has to be estimated. Since automatic model

selection is usually desirable, most of the studies discussed in the next sections use for this purpose
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penalized likelihood criteria, such as AIC and BIC.

3 Case 1a: Clustering tissue samples and gene-reduction

Let us start considering the case of tissue sample clustering. In this context, the original matrix Y

has to be transposed to let yi represent the i-th tissue sample (i = 1, ..., n) . As mentioned before, the

classification of few tissue samples with information on a very large number of genes represents a non

standard problem in statistics, where observations are usually considered as n independent realizations

of a J-dimensional random variable, n > J to avoid near-singular estimates of (component-specific)

covariance matrices. If the aim is to cluster few tissue samples characterized by a very large number of

genes, we may face some problems in parameter estimation. A first raw solution could be to constrain

on these quantities to reduce the number of parameters; we may turn to:

• local independence: component-specific covariance matrices are diagonal matrices (i.e. indepen-

dent genes);

• covariance matrices are equal across the mixture components;

• component-specific covariance matrices are reparameterized by an eigenvalue decomposition as

proposed in [37].

A more refined solution, to solve overparameterization problems getting a better trade-off between

the use of simple and full covariance matrices, is the so-called mixture of factor analyzers (MFA, [38]).

It can be considered as an extension of standard factor analysis models to deal with heterogeneous

12



populations; in detail, data within each mixture component are generated according a standard factor

model with substantial dimension reduction. Starting with the pioneering work of [38] in the Neural

Computation community, MFA has received, thanks to its flexible structure, considerable interest in

many other research communities. In particular, in the statistics community, [13] and [39] developed

the MFA as a solution to simultaneous clustering of tissue samples and local dimensionality reduction

for the feature space of genes (see [40] for an application to real data). It could be interesting to

show that MFA is a particular mixture of SEMs by making the following assumptions in equations

(1)-(3): αk = 0, Bk = 0 (that is ξik = uik), Dk = diag(σ2
1k, ..., σ

2
Jk) and Φk = I where I denotes a

Qk-dimensional identity matrix, i = 1, ..., n and k = 1, ..., K. As it can be noticed, MFA constrains

the latent variables to be uncorrelated. The component-specific mean vector and covariance matrix

are defined by: E(yi|zik = 1) = υk, cov(yi|zik = 1) = VkV
′
k + Dk. Conditionally on uik, they can be

expressed as follows: E(yi|zik = 1,uik) = υk + Vkuik, cov(yi|zik = 1,uik) = Dk. As it can be seen

from the latter expression, the elements in yi are conditionally independent given the latent factors

uik (Dk is diagonal). Thus, dependence among the observed genes in the i-th tissue sample within the

k-th cluster (i = 1, ..., n; k = 1, ..., K) are due to the latent factor only. In other words, MFA controls

the number of parameters by modelling the component-specific covariance matrices Σk = VkV
′
k +Dk

and explains the correlations between genes through latent factors uik.

As opposed to the previous case, let us assume that we are interested in identifying the variables

(genes) that best discriminate between two or more groups. This can be achieved by assuming that the

component-specific mean vectors lie in a common subspace identified by latent factors that best explain
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the between group variability. With this purpose, let us consider the mixture of SEMs (1)-(3) with the

following constraints: υk = 0, Bk = 0, Vk = V, ξik = 0 and unconstrained Dk. These assumptions

imply uik = αk (i = 1, ..., n and k = 1, ..., K). Therefore, the component-specific mean vector and

covariance matrix have the following reparameterization: E(yi|zik = 1) = Vαk and cov(yi|zik =

1) = Dk. This model was introduced by [18] as a two-way model for simultaneous dimensional

reduction and clustering of units (and will be referred to as RV). It could also be considered as a MFA

model with non-random factors, υk = 0, Vk = V and free component-specific covariance matrices,

Dk (k = 1, ..., K). In [40] MFA and RV, are shown to give good clustering results when applied

to data described by [41]. It is worth noticing that, while MFA solves the over-parametrization

problem by modelling the component-specific covariance matrices, RV can be used when the number

of tissue samples is smaller than the number of genes. As observed in [40], when a common spherical

covariance matrix for the analyzed data can be assumed, RV is more efficient in terms of computational

complexity.

Another model which is closely related to MFA is the mixture of probabilistic principal component

analyzers (MPCA) proposed by [42] to model high dimensional data with relatively few parameters

and applied as model-based clustering method in the context of microarray data by [43]. The principal

component approach is motivated by the aim of projecting observed data onto an optimal subspace. In

detail, MPCA resembles MFA with unequal, isotropic, error component-specific matrices Dk = ψkIJ

with Qk = J , k = 1, ...K. It has to be noted that the isotropic model is highly constrained as the

covariance structure in J dimensions is based on a single parameter (ψk).
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More recently, [44] proposed a family of eight mixture models (Parsimonious Gaussian mixture models)

where the following three constraints can be imposed Vk = V, Dk = D and Dk = ψkIJ . The four

special cases in which Vk = V, thanks to the reduced number of parameters involved, can be useful for

clustering tissue samples and gene-reduction (PGMM1, PGMM2, PGMM3, PGMM4). In [45] further

the Parsimonious Gaussian mixture model is extended leading to twelve mixture models (expanded

PGMM) by reparametrizing Dk = ωkHk, where ωk ∈ < and Hk = diag{ϑ1, ..., ϑJ} such that |Hk| = 1

for k = 1, ..., K. This expanded family is applied to two well known gene expression data sets.

4 Case 1b: Biclustering

The models discussed so far represent approaches that treat microarray data matrix as asymmetric;

that is, rows and columns play rather different roles. The rows contain the objects which have to be

clustered, whereas the columns contain the variables which are projected using factor techniques. As

highlighted before, when analyzing DNA microarray experiments discovering clusters of genes with

similar biological features and clusters of tissue samples with similar gene expression profiles may be

a key point to detect meaningful biological functions. In such situations, it could be more useful to

apply a symmetric approach, where the two modes of the data matrix have similar roles and both are

summarized by clustering techniques. In the bioinformatic area, this approach is often referred to as

biclustering and has become very popular in the last decade. In this section, we show how mixtures

of SEMs can be useful to describe approaches to simultaneous clustering of genes and tissue samples.
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Biclustering was originally introduced by [46],[47] and only later discussed by [48] in the microarray

data analysis; for a review of biclustering techniques proposed in this area, see [49] and [50]. In

particular, examples of biclustering methods in a finite mixture context have been developed by [51],

who propose a block mixture model by using Bernoulli mixtures, and by [52], who propose a two-way

Poisson mixture model for text analysis context. However, as far as we know, the only biclustering

method for gene expression data based on finite mixture models has been proposed by [19]. Here,

we focus on the latter model and show that it represents a particular case of mixture of SEMs. As

before, let yi be the J-dimensional observed vector for the i-th gene and assume the MFA structure

holds except for the factor loading matrix Vk. To introduce tissue samples clustering, Vk is specified,

as a binary row stochastic matrix representing tissues cluster membership. Specifically, Vk is used

to cluster tissue samples, whereas a traditional finite mixture approach is used to define the gene

clustering (for details on the update of Vk see [19]). It has to be noted that this model leads to a

component-specific covariance matrix, VkV
′
k + Dk, having a block diagonal structure, i.e. a block

matrix having on its main diagonal Qk blocks formed by square matrices of size Jl (l = 1, ..., Qk

with
∑Qk

l=1 Jl = J) such that the off-diagonal blocks are null matrices. In particular, the smaller

the variance of a tissue, the larger the correlation among other tissues within the block. While the

tissues have unequal variances, the covariance between tissues is equal to 1 if the tissues are within

the same cluster and 0 otherwise. This biclustering model was introduced by [19] and applied to real

data described by [53]. It has to be observed that this can be also fitted, without facing problems of

singular estimates, to the transposed data matrix (rows are tissue samples and columns are genes),

due to the possibility to split the component-specific covariance matrix, VkV
′
k + Dk (see [19] for
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details). Further extensions of this approach could be defined, such as allowing Φk and Dk to be

unconstrained; however, one should be careful because increasing the number of free parameters may

yield identifiability problems.

5 Case 2: Clustering genes with technical replicates

Recently, some authors have underlined the necessity to develop models taking into account technical

variability (replicates from each tissue sample) to improve the quality of analysis (for a discussion, see

[54] among others). This kind of variability is usually modelled through linear mixed-effects models

(LMMs), in a context similar to multilevel models, defined to handle repeated measures corresponding

to the same individual. In the microarray field, [55] and [56] gave some examples of LMM studies,

and, in particular, [57] and [58] propose ad hoc procedures to deal with repeated measurements

when clustering microarray data. As far as the latter is concerned, a more refined solution has

been developed by [20], where a finite mixture of LMMs is proposed to account for measurement

variability where clustering is performed (LMM1). Here, we show how this model can be embedded

in the mixture of SEMs framework. Assuming that yi is a J-dimensional observed vector for the

i-th gene containing R replicates for each of T tissue samples (J = RT ). To account for replicates

in a finite mixture framework, [20] simply constrain all measurements of a gene to belong to the

same mixture component. They explicitly model the covariance structure between the r-th and r′-th

technical replicates on the i-th gene and the t-th tissue sample, cov(yitr, yitr′). Thus, considering
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models (1)-(3), we assume υk = Xβk where X is a known (RT × T ) design matrix defined by

X =



1R 0R ... 0R

0R 1R ... 0R

... ... ... ...

0R ... 0R 1R


with 1R and 0R representing unit and null vectors of size R while βk is a T -dimensional vector

of fixed effects. Furthermore, Vk = X, Bk = 0 and αk = 0. These last two constraints imply

ξik = uik, where the terms ξik represent zero-mean T -dimensional vectors of random effects capturing

the common variability between gene expression and cluster center profiles. Finally, Φk = τ 2
k I and

Dk = σ2
kI. Given these assumptions, the component-specific mean vector and covariance matrix of

a mixture of SEMs become: E(yi|zik = 1) = Xβk and cov(yi|zik = 1) = τ 2
k XX′ + σ2

kI. This model

assumes that measurements corresponding to different genes are independent, while the covariance

between two technical replicates (on any gene from the same tissue sample) is equal to τ 2
k , while, the

variance of a gene is given by τ 2
k + σ2

k. As mentioned in [20], this model can be extended accounting

also for common variation in different tissue samples; that is, by modeling the covariance between

two different tissues within the same gene through the assumption of another gene-specific random

effect not depending on a given tissue. For further details, see [20].
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6 Case 3: Clustering correlated genes

In sections 4 and 5, we have discussed particular specifications for a mixture of SEMs to handle

clustering of genes in different experimental conditions. In particular, when the biclustering model

is fitted by considering genes as rows and tissue samples as columns of a data matrix, potential

dependence between genes is often ignored. Similarly, in LMM1 measurements corresponding to

different genes are assumed to be independent, since attention is focused on the variability due to

repeated measurements on any couple (gene, tissue sample). In both cases, independence may not

hold since genes within a given tissue sample may be associated; even though, in practice, we can just

proceed by ignoring this correlation. In this section, we focus on a family of models introduced by [21]

to provide a unified approach to cluster genes by taking into account dependence in a wide variety

of experimental situations. Also the models discussed in [21] can be placed within the finite mixture

of SEMs framework. In particular, in the next subsections, we will focus on empirical situations

considered in [21], namely: clustering of time-course data (LMM2), clustering of genes with replicates

(LMM3) and clustering of genes with a known tissue sample partition (LMM4).

6.1 Case 3a: Clustering time-course data

Our aim here is to cluster n genes whose expression levels are repeatedly measured at J different

time points. With respect to expressions (1)-(3), the model (referred to as LMM2) defines υk to be

a J-dimensional vector of fixed effects describing the conditional mean of the i-th unit (gene) values

in the k-th cluster; we have Bk = 0 and αk = 0 so that uik = ξik. The term Vkξik is specified as
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Vkξik = bik1J+ck, where bik is a cluster-specific gene-effect which is constant across time points with

var(bik|zik = 1) = θbk , and ck = (ck1, ..., ckJ)′ represents time and cluster-specific effect associated

to the J time points with cov(ck|zik = 1) = θckI, so that Φk = θbk1J1′J + θckI. It has to be noticed

that, within the same cluster, the gene specific-effect bik is used to model the covariance between time

points corresponding to the same gene, while, ck allows the covariance between expression levels of

different genes measured at the same time point to be non-zero. Moreover, we assume Dk = σ2
kI,

i.e. the cluster-specific error covariance matrix is a diagonal matrix with constant variance across

J time. Given these assumptions, the component-specific mean vector and covariance matrix of

the LMM2 are defined by E(yi|zik = 1) = υk and cov(yi|zik = 1) = σ2
kI + θbk1J1′J + θckI. Within

the k-th cluster, the covariance structure between the gene expression levels can be summarized as:

cov(yij, yi′j′) = θbkδ
i′
i + θckδ

j′

j + σ2
kδ

i′
i δ

j′

j (where δi′
i = 1 if i = i′, 0 otherwise). Thus, within the same

cluster the covariance between expression levels of different genes measured at the same time point is

θck , the covariance between expression levels corresponding to different time points but to the same

gene is equal to θbk and the variance of a gene is θbk + θck + σ2
k.

6.2 Case 3b: Clustering genes with replicates

In this section, we discuss the technical situation dealt with in section 5; that is, there are R replicates

on T tissue samples; here, however, we are not only interested in modelling the covariance between

replicates corresponding to the same gene, but also the potential dependence of the expression levels

entailing any pair of genes from the same tissue, which is commonly encountered in practice. This can
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be dealt with by adding another random effect (latent factor) to the finite mixture of SEMs described

in section 5 (LMM1). This factor is assumed to be shared by genes from the same tissue at the same

replicate. Specifically, on the basis of expressions (1)-(3) LMM3 is based on υk = Xβk, where X and

βk are defined as in section 5, Vkξik = Xbik+ck, where bik represents the cluster-gene specific effect

shared by replicates from the same gene and the same tissue sample with cov(bk|zik = 1) = θbkI, while

ck is a RT -dimensional vector accounting for correlations between genes with cov(ck|zik = 1) = θckI,

so that Φk = θbkXX′ + θckI. Moreover, Dk = diag(Xϑk), where ϑk = (σ2
1k, ..., σ

2
Tk), that is Dk is

a diagonal matrix with different variances across the T tissues and constant across the replicates.

Therefore, the component-specific mean vector and covariance matrix from a LMM3 are, respectively,

E(yi|zik = 1) = Xβk and cov(yi|zik = 1) = θbkXX′+ θckI + diag(Xϑk). Thus, conditional on the k-th

cluster, the covariance structure between expression levels has the following form: cov(yitr, yi′t′r′) =

θbkδ
i′
i δ

t′
t + θckδ

t′
t δ

r′
r + σ2

tkδ
i′
i δ

t′
t δ

r′
r .That is, within the same cluster the covariance between replicates

on any genes measured on the same tissue sample is θbk , the covariance between genes (from the

same tissue and replicate) is θck , and the variance of a gene measured on the t-th tissue sample is

θbk + θck + σ2
tk. Other types of covariance structures for gene expression data with replicates are

described in [59].

6.3 Case 3c: Clustering genes with a known tissue sample partition

This section deals with situations where we aimed to find (eventually correlated) genes that best

discriminate between two groups of tissue samples; such genes may be called marker genes. The
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problem is similar to biclustering with the main difference being that information about the partition of

tissue samples is known. Let J1 and J2 the size of the two groups, which can be thought of “abnormal”

and “normal” tissue samples, respectively, with J1 +J2 = J . Expressions (1)-(3), according to LMM4

can be specified as υk = Xβk, where βk is a 2-dimensional vector of fixed effects with X being a

(J × 2) binary matrix where, after proper rearranging, the first J1 rows are (1 0) and the next J2

rows are (0 1). This can easily be generalized to situations where more than two known tissue groups

are available; including one extra column in per tissue group. In LMM4, Vkξik = Xbik+ck, where

bik is a 2-dimensional random effect explaining association between tissue samples in the same group,

with cov(bik|zik = 1) = θbkI, and ck is a J-dimensional vector modelling correlations between genes,

within the same partition, with cov(ck|zik = 1) = θckI, so that Φk = θbkXX′ + θckI. The component-

specific error variance can be different between groups of tissue samples, Dk = diag(Xϑk), where

ϑk = (σ2
1k, σ

2
2k). The component-specific mean vector and covariance matrix of the LMM4 have the

same expression for those in the previous subsection even though the interpretation is different. In

fact, conditional on belonging to the k-th cluster and the g-th group of tissues, the covariance between

tissue samples is θbk , the covariance between genes (measured on the same tissue sample) is θck , and

the variance of a gene measured on the g-th tissue sample group (g = 1, 2) is θbk + θck +σ2
gk. As it can

be noticed, expression values corresponding to tissue samples are correlated only if the tissues are in

the same group.
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7 Real examples

In this section, results obtained on real data sets are discussed, to show the use of different specifi-

cations of finite mixtures of SEMs discussed in several empirical examples. In particular, since the

second microarray experiment design (see section 1) can be easily related to the others, we decided

to focus on the other two types: genes measured on different tissue samples as in [22] and genes with

technical replicates as in [23].

7.1 The yeast galactose data

The yeast galactose data discussed in [22] consider n = 205 genes containing R = 4 replicates on

T = 20 tissue samples. As in [57] and [59], we imputed all the missing values using a k-nearest

neighbor method. The expression levels of the genes reflect four functional categories in the Gene

Ontology (GO) listing [60]; thus, we expect they are clustered together. To cluster genes, we applied

the specifications of the finite Mixture of SEMs discussed in section 5 (LMM1) and 6.2 (LMM3). All

the results have been obtained using R EMMIX-WIRE library developed by [59] to fit LMMs via the

EM algorithm (see http://www.maths.uq.edu.au/~gjm/mix_soft/EMMIX-WIRE/index.html). As

highlighted before, if we use LMM1 we ignore the potential dependence between expression levels

from any pair of genes on the same tissue, which is accounted for by LMM3. In detail, the former

model assumes that replicates from the same gene and the same tissue share some random effects (uik),

while in the latter specific random effects are also shared by expressions measured on the same tissue

but corresponding to different genes (ck). While, LMM1 assumes that the k-th component variance is
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Cluster Estimated Estimated True

LLM1 membership LLM3 membership Membership

1 80 80 83

2 15 21 15

3 96 90 93

4 14 14 14

Table 1: LMM1 and LMM3 model results compared to the known membership

constant across tissues, it could be different in LMM3. Thus, we applied LMM1 and LMM3 to group

genes into K = 4 clusters; we do not discuss fitting for varying numbers of components K, since we

aim at comparing their performance in reproducing the known functional categories. We measured

the degree of agreement between the known categories and the estimated cluster memberships by

using the Modified Rand Index ([61]), whose value equals 1 in the case of perfect agreement. In our

study, the values are 0.976 for LMM1 and 0.978 for LMM3, which are good results compared with

several model-based and hierarchical clustering algorithms considered by [57]. Table 1 shows that

the number of genes assigned to each group is similar for the two mixture models, and similar to

the known functional membership. Additional information on the correlation among expression levels

estimated by LMM3 shows that this correlation is significantly higher in cluster 1 (0.6973), than in

cluster 4 (0.3667), cluster 3 (0.2166), or cluster 2 (0.1425). This could be a useful information to

proceed with further biological research.

7.2 The human colorectal carcinoma data

This dataset has been previously analyzed by [23] and [59] using parametric clustering method and

LMM4, respectively. Gene expression levels have been measured using a PCR (polymerase chain
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reaction). However, as in [59], the data set i a good example of association between genes and

malignancy in human colorectal carcinoma. To allow for direct comparability with previous analyses

on the same dataset, we consider 1536 gene expression levels over 100 tumoral samples and 11 normal

samples, pre-processed using the same method as in [59]. Previous analyses, see e.g. [23] and [59],

provided a partition of genes based on their expression levels in three gene clusters; more specifically,

[23] found a cluster (27 genes) containing 17 genes linked to human colorectal carcinoma. [59], using

the information on the known tissue partition as proposed in section 6.3, found a cluster with 15 genes

consisting of a subset of the 17 genes listed by [23], which reduces the discriminating “important”

genes list. Here, we use this dataset for two analyses:

1. Clustering of tissue samples and gene-reduction using MFA ([38]) and RV ([18]) models;

2. Clustering of genes and tissue samples to recover both gene and tissue sample partitions by

using the biclustering model introduced in [19].

Results have been obtained using MATLAB routines based on the EM algorithm (and extensions)

which have been developed by the corresponding author.

For the first analysis, we aim at recovering the “true” partition of tissue samples, and for this reason

no model selection criteria have been used. We fitted the RV model to the transposed data matrix

(n=111, J = 1536) with K=2, Q=2, and a common, spherical, covariance matrix Σ, and the MFA

model with K=2, Q=2, and a common covariance matrix. Both models have difficulties to correctly

separated the 100 tumoral samples from the 11 normal ones (the Modified Rand Index is below 0.8).

Further, we fitted the RV model with K=3, Q=2, and a common, spherical, covariance matrix Σ
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and the MFA model with K=3, Q=2, and common covariance matrix to further classify the 100

tumoral tissues in two subgroups according to having distant metastases or not (we know that 29 and

71 are with/without distant metastases). Also in this case, both models have difficulties to correctly

separate the tissue samples in three groups even though the Modified Rand index values are slightly

higher (but still below 0.8) and the BIC criteria values are lower than for the models with K = 2. A

possible reason for the inability to recover the true partition of tissue samples is the low number of

controls (11 normal tissues), together with the presence of many missing data.

For the second analysis, we take the original data matrix (n=1536, J = 111) and fit the biclustering

model with three gene clusters and several number of tissue clusters, with the purpose: 1) compare

the gene partition with the ones obtained by [23] and [59]; 2) find a more meaningful tissue partition.

We run the algorithm several times to avoid local maxima, choosing the best solution through BIC

among 100 starting points. This has been reached with Q1 = Q2 = 1, Q3 = 2; that is, two gene

clusters constant across tissues and one gene cluster containing discriminant genes between two tissue

groups (the third cluster). The last bicluster includes 312 genes with two clusters of 82 and 29 tissue

samples, and contains most of the 27 genes selected by [23]; 56 tissue samples out of 82 are a subset

of 71 tissues without distant metastases and 11 out of 29 are a subset of 29 tissues with distant

metastases. Although this biclustering model ignores the possible dependence between genes, it is

able to select a potential bicluster as relevant to tumor progression process.
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8 Comments and future research

We have presented a general framework that provides a richer description of model-based clustering

developed in microarray analysis, and discussed the empirical evidence from two real datasets. The

full range of models and the corresponding model parameter specifications are summarized in Table

2.

The first fifteen models (MFA [38], MPCA [42], RV [18], PGMM1-PGMM8 [44], EPGMM1-

EPGMM4 [45]) in Table 2 are examples of approaches to provide partition of observations under

dimensional reduction of the feature space, and for this reason they may be useful to clustering tissue

samples avoiding singularity of component-specific covariance matrices. The Biclustering model ([19])

is defined to discover local expression patterns in microarray data. It can be fitted to the original or

transposed data matrix (with tissue samples as rows and genes as columns) taking into account that,

in the former case, we are ignoring correlation between genes. The last four models (LMM1 [20],

LMM2 [21], LMM3 [21], LMM4 [21]) deal with gene clustering. LMM1 [20] and LMM3 [21] models

take into account technical variability due to replicates on each tissue sample, but the latter is tailored

to model also the dependence between any pair of gene values. LMM2 [21] is an important tool for

clustering time-course data; it takes into account the correlations between time points corresponding

to a single gene and between any pair of genes for the same time point. Finally, LMM4 [21] is a power-

ful approach to discover genes which are associated with disease status (clinical markers): it takes into

account the correlation between tissues in the same group and between pair of genes of the same tissue.
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Model υk Vkuik αk Bk Dk Φk µk Σk

MFA [38] free free 0 0 diag(σ2
1k, ..., σ

2
Jk) I υk VkV′

k + Dk

MPCA [42] free free 0 0 ψkI I υk VkV′
k + ψkI

≡ PGMM5 [44]

RV [18] 0 Vuik uik 0 free − Vαk Dk

PGMM1 [44] free Vk = V 0 0 free I υk VV′ + Dk

PGMM2 [44] free Vk = V 0 0 D I υk VV′ + D

PGMM3 [44] free Vk = V 0 0 ψkI I υk VV′ + ψkI

PGMM4 [44] free Vk = V 0 0 ψI I υk VV′ + ψI

PGMM6 [44] free free 0 0 D I υk VkV′
k + D

PGMM7 [44] free free 0 0 ψI I υk VkV′
k + ψI

PGMM8 [44] free free 0 0 free I υk VkV′
k + Dk

EPGMM1 [45] free free 0 0 ωH I υk VkV′
k + ωHk

ω ∈ <

Hk = diag{ϑ1k, ..., ϑJk}

EPGMM2 [45] free free 0 0 ωHk I υk VkV′
k + ωH

ω ∈ <

H = diag{ϑ1, ..., ϑJ}

EPGMM3 [45] free Vk = V 0 0 ωHk I υk VV′ + ωHk

ω ∈ <

H = diag{ϑ1k, ..., ϑJk}

EPGMM4 [45] free Vk = V 0 0 ωkHk I υk VV′ + ωkHk

ωk ∈ <

H = diag{ϑ1k, ..., ϑJk}

Biclustering [19] binary row stochastic free 0 0 diag(σ2
1k, ..., σ

2
Jk) I υk VkV′

k + Dk

LMM1 [20] Xβk Xuik 0 0 σ2
kI τ2

kI Xβk τ2
kXX′ + σ2

kI

LMM2 [21] υk Xbik+ck 0 0 σ2
kI θbk

11′ + θck
I υk σ2

kI + θbk
11′ + θck

I

LMM3 [21] Xβk Xbik+ck 0 0 diag(X(ϑk)) θbk
XX′ + θck

I Xβk θbk
XX′ + θck

I+

ϑk = (σ2
1k, ..., σ

2
T k) diag(X(ϑk))

LMM4 [21] Xβk Xbik+ck 0 0 diag(X(ϑk)) θbk
XX′ + θck

I Xβk θbk
XX′ + θck

I+

ϑk = (σ2
1k, σ

2
2k) diag(X(ϑk))

Table 2: Different model specifications derived from the mixture of SEMs

There are several advantages to define a common approach to the methods we have discussed in

this paper. First, the proposed approach emphasizes that all the techniques are essentially particular

specifications of the same model since they correspond to specific restrictions imposed to a general on

mixture of SEMs model; this unifying model would encompass a broad range of existing models as
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specific cases. Essentially this formal framework helps visualize connections and differences between

related approaches, it highlights specific restrictions implied by each particular model, and it poten-

tially leads to a powerful and flexible path for development of new modelling approaches in microarray

data analysis. The models discussed in these pages are by no means exhaustive, but we believe that,

this systematic organization can be used by interested readers as a good starting point to learn and

apply the most important models proposed in the last few years in the context of model-based clus-

tering of microarray data. One promising direction for future research involves new specifications of

mixture of SEMs corresponding to Bk 6= 0. For example, a Markov structure could be imposed on the

latent factors to cluster genes with repeated measurements (as mentioned in section 2.1). Another

example could be the inclusion of higher-level factors for biclustering of repeated measure data; that

is, by using one or more latent factors for all tissues at one time, and a set of higher-level factors

connecting the factors at different time points. Finally, the unification in a single software package of

specific cases of mixture of SEMs for microarray data analyses could be investigated.
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