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Abstract
Latent Markov modeling is used as an alternative to the Current Population

Survey (Census, 2002) reinterviewing methodology for estimating the measure-
ment error in the recorded employment status. This alternative methodology,
which is implemented in the syntax version the Latent GOLD program, turns out
to be a promising new approach for estimating measurement error in longitudinal
surveys. However, it is important to take into account unobserved heterogeneity in
the initial-state and transition probabilities because the size of the measurement
error is overestimated when unobserved heterogeneity is not taken into account.

1. Background and Statement of the Problem
The Current Population Survey (CPS) is a national household survey conducted

by the U.S. Census Bureau for the Bureau of Labor Statistics (Census, 2002). It
is designed to generate monthly national estimates of labor force characteristics
including employment status - i.e, counts of: (E) employed, (U) unemployed, and
(N) not in the labor force. For a variety of reasons, employment status questions
in the CPS may not elicit true employment status. Thus, a respondent’s true
employment status is unknown. The primary goal was to improve the methodology
for estimating the magnitude and direction of measurement errors that exist in
employment status elicited by the survey.

Some years ago the U.S. Census Bureau started exploring the solution of uti-
lizing a latent Markov (LM) structure to estimate the measurement error as a
more cost effective and timely approach than its current reinterview methodol-
ogy (Biemer and Bushery, 2000; Tran & Winters, 2003). Rather than incurring a
monthly cost of reinterviewing a sample of respondents, the LM approach replaces
the reinterview with the repeated measurements that are readily available at no
additional cost as part of the longitudinal design. On the other hand, the use
of repeated measures instead of a reinterview means that differences in a respon-
dent’s state from one month to another may reflect either measurement error or
a true transition from one state to another (e.g., from being employed to being
unemployed). Thus, it is necessary to model both measurement and transitions
simultaneously as part of the model.

The main contribution of the current project∗ is that it shows that it is im-
portant to use a mixture LM model instead of a standard LM model. Use of the
latter may seriously overestimate the size of measurement error probabilities.

Below we first introduce the standard LM model, as well as its mixture ex-
tension. Then, details are provided on the implementation of these models in
the Latent GOLD software package. Subsequently, we describe the CPS data set

∗This research project was supported by contract #50 YABC-2-66060 from the U.S. Census
Bureau
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we used for our analysis and report the results obtained when applying the LM
models to this data set.

2. Mixture Latent Markov Models
Latent Markov models - which are sometimes also referred to as hidden Markov

models, latent transition models, or regime-switching models – have been increas-
ingly used to analyze discrete-time longitudinal data where respondent observa-
tions contain measurement error (Collins & Wugalter, 1992; Hagenaars, 1990;
Poulsen, 1982; Van de Pol & Langeheine, 1990; Vermunt, Magidson & Tran,
2008). The LM approach defines the true states as categories (latent classes) of
a dynamic latent (unobservable) variable within a statistical model. The latent
aspect of the LM model allows for measurement error. The Markov assumption is
reflected in the LM model via transition probabilities which allow for correlation
between a respondent’s true state at times t − 1 and t. The inclusion of both
transition probabilities as well as measurement error parameters allows the LM
structure to isolate changes to a respondent’s true state and thus obtain pure
estimates of measurement error (Hagenaars, 1990).

Let yit denote the observed value of the dependent variable of interest at time
point t for a person with response pattern i. In our application yit is a nominal
variable with M = 3 categories; that is, 1 ≤ yit ≤ M . The total number of time
points is T + 1, 0 ≤ t ≤ T . The response vector of length T + 1 containing the
responses for pattern i is denoted by yi, and the associated model probability
by P (yi). A LM model is a model with T + 1 latent variables, each having
K categories. In the current study, we will only work with models in which
K = M = 3, the number of latent labor force states is assumed to be equal to
the number of observed labor force states. Let xt denote a possible value of the
latent variable at time point t, where 1 ≤ xt ≤ K. The LM model of interest has
the following form

P (yi) =
K∑

x0=1

K∑
x1=1

...

K∑
xT =1

P (x0)
T∏

t=1

P (xt|xt−1)
T∏

t=0

P (yit|xt). (1.1)

The unknown model probabilities to be estimated are the initial latent state proba-
bilities P (x0), the latent transition probabilities P (xt|xt−1), and the classification
error probabilities P (yit|xt).

The model probabilities can be reparameterized as follows:

P (x0 = s) =
exp(αs)∑K

k=1 exp(αk)
, (1.2)

P (xt = r|xt−1 = s) =
exp(γt

rs)∑K
k=1 exp(γt

ks)
(1.3)

P (yit = `|xt = s) =
exp(β`s)∑M

m=1 exp(βms)
(1.4)

that is, as multinomial logistic equations (see, for example, Vermunt, Langeheine,
and Böckenholt, 1999). Note that the β`s parameters do not contain a superscript
t, which means that the classification errors are assumed to be time homogeneous,
an assumption needed for the identification of a LM model for a single response
variable and with time-heterogeneous transition probabilities. Our focus here
is on the estimation of these time-homogeneous measurement error probabilities
P (yt = `|xt = s). Furthermore, note that 1, K, and M constraints are needed to



3

identify the set of αs, γt
rs, and β`s parameters, respectively. Here, we assume that

α1 = 0, γt
11 = γt

22 = γt
33 = 0, and β11 = β22 = β33 = 0. Under these identifying

constraints, we can write αs, γt
rs, and β`s as

αs = log
[
P (x0 = s)
P (x0 = 1)

]
(1.5)

γt
rs = log

[
P (xt = r|xt−1 = s)
P (xt = s|xt−1 = s)

]
(1.6)

β`s = log
[

P (yit = `|xt = s)
P (yit = s|xt = s)

]
, (1.7)

respectively. This means that αs can be interpreted as the logit (or log odds) of
having initial state s rather than state 1, γt

rs as the logit of making a transition
from state s to state r rather than staying in state s, and β`s as the logit of
misclassifying someone with latent state s by assigning observed state ` rather than
the correct observed state s. Below, we will refer to the latter two as “transition”
and “error” coding, respectively. Note that the γt

rs and β`s will typically take
on large negative values since it is much more likely to remain in the current
state than to make a transition to another state, and it is much more likely to
measure the correct state than an erroneous state. For example, if the transition
probability P (xt = 2|xt−1 = 1) = .01 and the probability of no transition P (xt =
1|xt−1 = 1) = .98, γt

rs = log(.01/.98) = −4.58.
As part of the current project, we also simulated the effects of various vio-

lation of the assumptions underlying the traditional (homogeneous, first-order)
Markov model on the estimates of measurement errors. An important result of
the simulation study was that a violation of the homogeneous transition proba-
bility assumption such that the heterogeneity is correlated with the initial-state
probability would produce inflated estimates of measurement error. To determine
whether such a violation exists in the CPS application, in addition to estimating
the traditional LM model, we also used a mixture LM model where two LM chains
were specified. This two-class mixture LM model has the following form (Van de
Pol & Langeheine, 1990; Vermunt, Magidson & Tran, 2008):

P (yi) =
2∑

w=1

K∑
x0=1

K∑
x1=1

...

K∑
xT =1

P (w) P (x0|w)
T∏

t=1

P (xt|xt−1, w)
T∏

t=0

P (yit|xt). (1.8)

Here, w denotes one of the two categories of a time constant latent variable, w = 1
or 2. As can be seen, in this mixture model, both the initial-state probabilities and
the transition probabilities are allowed to differ for each latent class. In addition,
we have a new set of parameters, the mixture proportions P (w).

A more restricted special case of the two-class mixture LM is the mover-stayer
LM model (Van de Pol & Langeheine, 1990; Vermunt, Magidson & Tran, 2008).
As the unrestricted mixture version of the model it violates the traditional LM
assumptions due to the existence of different transition probabilities across 2 sub-
groups. There is a group of movers who have nonzero probabilities of moving
from one state to another over the time period, and a group of stayers who do not
change. This model is obtained by assuming

P (xt = r|xt−1 = s, w = 2) = 0, (1.9)

for r 6= s. For the stayer class (w = 2), the transition probabilities are a priori
fixed to 0, but the probabilities in the mover class – P (xt = r|xt−1 = s, w = 1) –
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are not restricted. The restrictions on the transition probabilities for the stayer
class can also be defined using our logistic formulation. That is,

P (xt = r|xt−1 = s, w) =
exp(γt

rsw)∑K
k=1 exp(γt

ksw)
, (1.10)

with γt
rs2 = −100 for r 6= s and 0 otherwise. Note that assuming that the logit of

a transition for w = 2 equals -100 is the same as saying that the probability of a
transition equals 0. The degree of the unobserved heterogeneity depends on the
size of the stayer class w = 2, as well as on the difference between the transition
probabilities of the mover and stayer classes.

3. Implementation in Latent GOLD program
A much more extended LM model was implemented in the syntax version of the

Latent GOLD program (Vermunt and Magidson, 2007). Apart from the rather
basic models described above, models that can be estimated include:

• higher-order Markov models;

• models containing time-constant and time-varying covariates such as gen-
der, age, ethnicity, etc., affecting specific components of the models, such as
initial-state probabilities, transition-probabilities, measurement error proba-
bilities, and mixture proportions (Vermunt, Langeheine & Böckenholt, 1999;
Paas, Vermunt, Bijmolt, 2007);

• models with multiple observed variables (Paas, Vermunt & Bijmolt, 2007);

• models for multiple associated Markov processes;

• models for observed response variables of other scale types, such as variables
which are ordinal, continuous, or counts (Dias, Ramos & Vermunt, 2007);

• models for multilevel data similar to the multilevel latent class models pro-
posed by Vermunt (2003).

Not only more extended models can be dealt with, but it is also possible to perform
estimation with complex sampling design features such as weighting, clustering
and stratification.

Assuming that ni is the observed frequency count for data pattern i, maximum
likelihood estimation of the mixture LM model parameters involves maximizing
the following log-likelihood function:

L =
I∑

i=1

ni log P (yi). (1.11)

This problem that can be solved by the EM algorithm (Dempster, Laird and
Rubin, 1977). In the E step we compute

P (w,x|yi) =
P (w,x)P (yi|w,x)

P (yi)
, (1.12)

which is the joint conditional distribution of the T + 2 latent variables given the
data and the model parameters. In the M step we compute new estimates of
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the model probabilities from an expanded table with I · 2 · KT+1 “observed” cell
entries ni ·P (w,x|yi) (Vermunt, Langeheine and Böckenholt, 1999). It can easily
be seen that computation time and computer storage increases exponentially with
the number of time points, which makes the standard EM algorithm impractical or
even impossible to apply with more than a few time points (Vermunt, Langeheine
and Böckenholt, 1999).

To circumvent this problem, the Latent GOLD program uses a special variant
of the EM algorithm for LM models that is called the Baum-Welch or forward-
backward algorithm (Baum et al., 1970; Paas, Vermunt & Bijmolt, 2007). Use
of this algorithm allows for the estimation of models for very long time series, as
well as easily handling of incomplete data when such is present. Details on the
implementation of the Baum-Welch algorithm – which was originally developed
for hidden Markov models – in the estimation of mixture LM models can be found
in Vermunt, Magidson & Tran (2008).

Below we provide the Latent GOLD syntax for standard, mixture, and mover-
stayer LM models with time-heterogeneous transition probabilities. The data
should be in the format of a person-period file, where for the Markov type models
periods with missing values should also be included in the file since each next
record for the same subject is assumed to be the next time point. The definition of
a model contains three main sections, which are called “options”, “variables”,
and “equations”. Although not shown below, the options section should contain
the statement “missing=includeall”, which indicates that records with missing
values should be retained in the analysis.

An example of a set up for a standard LM model with time-varying transition
probabilities is the following:

\\ standard LM model
variables

caseid id;
dependent Y nominal;
independent t nominal;
latent X nominal markov 3;

equations
X[=0] <- 1;
X <- 1 + X[-1] + t + X[-1] * t;
Y <- 1 + X;

In the variables section, we define the caseid variable connecting the multiple
records of one person, the latent, dependent (or response) and independent
variables to be used in the analysis, as well as various attributes of these variables,
such as their scale type, and for categorical latent variables, their number of
categories and whether they vary over time (indicated with the statement markov).
Note that the independent variable t is the time variable that we included as one
of the columns in the data set. This variable has a missing value for time point
0, and the values 1, 2, etc. for the other time points.

In the equations section, the dynamic latent variable is referred to in a different
way depending on whether it is the initial state (X[=0]), the state at a particular
time point (X), or the state at the previous time point (X[-1]). Note that these
three equations are logit equations, one for the initial latent state (X[=0]), one
for the latent state at a particular time point (X) conditional on the latent state
at the previous time point (X[-1]), and one for the response variable (Y). If the
model would contain more than a single response variable, one would have a
separate equation for each response variable. The model for X[=0] contains only
an intercept or constant term, which is denoted by 1. The model for X contains
an intercept, an effect of the latent state at the previous time point X[-1], an



6

effect of the time variable t, as well as an interaction effect between the state
at the previous time point and the time variable. The equation for the observed
response Y contains an intercept and an effect of X.

Using the special coding scheme for the logit parameters introduced in equations
(1.6) and (1.7), exactly the same LM model can also be defined as follows:

\\ standard LM model with special coding of logit parameters
equations

X[=0] <- 1;
X <- (~tra) 1 | X[-1] + (~tra) t | X[-1];
Y <- (~err) 1 | X;

There are two important differences compared to the previous set up. The
first difference is that we make use of the option to condition a parameter set on
the value of other variables, which is achieved with the symbol “|” Note that an
intercept plus an effect of X[-1] is the same as having an intercept that depends
on X[-1], and an effect of t plus a X[-1] * t interaction term is the same as
having an effect of t that depends on X[-1]. The second difference is that we
inserted “(˜tra)” or “(˜err)” before some of the regression terms. These modify
the coding of the coefficients concerned into transition (error) coding; that is, a
coding in which the “no transition” (“no error”) category serves as the reference
category. Note that this implies that the reference category depends on the origin
state (true state).

A mixture LM model can be defined as follows:

\\ mixture LM model
variables

caseid id;
dependent Y nominal;
independent t nominal;
latent X nominal markov 3, W nominal 2 coding=first;

equations
W <- 1;
X[=0] <- 1 | W;
X <- (~tra) 1 | X[-1] + (~tra) W | X[-1] + (~tra) t | X[-1];
Y <- (~err) 1 | X;

The difference from the previous models is that we added the two-class latent
variable W which has its own equation and which appears in the equations for the
initial state and the transition probabilities. This model could be expanded in
two different ways: we could include an iteraction between W and t in the model
for X, and we could allow the measurement error to dependent on W.

The mover-stayer LM model is defined as follows:

\\ mover-stayer LM model
equations

W <- 1;
X[=0] <- 1 | W;
X <- (~tra) 1 | X[-1] + (g~tra) W | X[-1] + (~tra) t | X[-1];
Y <- (~err) 1 | X;
g = -100;

The difference compared to the previous set up is that the term W | X[-1] is
now restricted to be equal to -100 for the stayer class. This is achieved by giving a
label to the parameter set concerned (here g) and adding the required parameter
constraint at the end of the equations section.
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Table 1. Estimated Misclassification Percentages Based on the Standard LM Model
and the Mover-Stayer LM Model

True Observed Employment Status (yit)
Employment Standard LM Mover-Stayer LM
Status (xt) E U N E U N

E 97.8 0.6 1.6 98.5 0.6 0.8
U 9.2 70.1 20.7 4.7 78.2 17.1
N 1.9 0.9 97.2 1.1 1.0 97.8

4. Sample Data and Results
The CPS employs a rotation group design structure: Upon entering the CPS

study, an individual is interviewed for 4 consecutive months, and then is out of the
sample for 8 months prior to being interviewed again for another 4 consecutive
months (Census, 2002). To illustrate the LM approach we utilize sample data
consisting of the 14 rotation groups who were interviewed at least once during
the 4 month period June - September 2006. All such observations were used to
estimate the models - respondents in 4 rotation groups each contributed 1 month of
data, 4 groups contributed 2 months, 4 groups contributed 3 months and 2 groups
provided 4 months. In total, there were 123,147 respondents, approximately 8,000
per rotation group.†

Based on the Bayesian Information Criteria (BIC), the mixture LM model pro-
vided a better fit to the data than the traditional LM model. In addition, the
2 classes having different transition probabilities were highly correlated with the
initial state and lower measurement error estimates were obtained than those from
the traditional LM model, as suggested by our simulation.

Close examination of the transition probabilities obtained under the mixture
model suggested that a mover-stayer structure, as suggested by Tran & Winters
(2003), may provide a good fit. As indicated above, such a model is obtained
from the 2-class mixture LM model by restricting the off-diagonal entries in the
transition probability matrix to be zero (the stayer class). This mover-stayer
model provided a further improvement in the BIC, supporting the mover-stayer
variant restrictions on the mixture LM model.

The mover class in the mover-stayer LM model consisted of approximately 20%,
the remaining 80% were stayers. The mover class was much more likely to be
“Unemployed” than the stayer class during the initial time point – 20% for the
movers versus less than 2% for the stayers. As mentioned above, when a strong
association such as this is present, the simulation suggested that measurement
error estimates obtained from the traditional LM model would be inflated (upward
bias). That is, wrongly ignoring unobserved heterogeneity here (i.e., mistakenly
specifying the traditional LM model) would cause measurement/ misclassification
errors to be overstated. Comparison of the traditional LM model with the mover-
stayer LM model in our empirical analysis provided results consistent with the
simulation result.

Table 1. compares the measurement error estimates obtained from the mover-
stayer LM model with those from the traditional LM model. As can be seen,
under each of the 3 true states, the off-diagonal terms reflecting the estimated
measurement errors are smaller under the mover-stayer LM structure. Our con-

†Similar results to those reported here were obtained in a more complete analysis based on
14 time points and which took into account the complex sampling design of the CPS.



8

clusion is that latent Markov models can be used for estimating measurement
error as long as unobserved heterogeneity is taken into account, for example, with
a mover-stayer structure.
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