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Recently, several types of extensions of the latent class (LC)
model have been developed for the analysis of data sets having
a multilevel structure. The most popular variant is the multilevel
LC model with finite mixture distributions at multiple levels of a
hierarchical structure; that is, with LCs for both lower-level units
(e.g. individuals, citizens, or patients) and higher-level units (e.g.
groups, regions, or hospitals). A problem in the application of this
model is that determining the number of LCs is much more com-
plicated than in standard (single-level) LC analysis because it in-
volves multiple, nonindependent decisions. We propose a three-step
model-fitting procedure for deciding about the number of higher-
and lower-level classes. We also investigate the performance of in-
formation criteria (BIC, AIC, CAIC, and AIC3) in the context of
multilevel LC analysis, with different types of response variables.
A specific difficulty associated with using BIC and CAIC in any
type of multilevel analysis is that these measures contain the sam-
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ple size in their formulae, and we investigate whether this should
be the number of groups, the number of individuals, or either the
number of groups or individuals depending on whether one has to
decide about model features concerning the higher or lower level.
The three main conclusions of our simulations studies are that (1)
the proposed three-step model-fitting strategy works rather well,
(2) the number of higher-level units (K) is the preferred sample
size for BIC and CAIC, both for decisions about higher- and lower-
level classes, and (3) with categorical indicators, AIC3 and BIC
based on the higher-level sample size are the preferred measures
for deciding about the number of LCs at both the higher and lower
level. With continuous indicators, BIC(K) performs better than
AIC3. AIC performs best in very specific situations—namely, with
poorly separated classes and categorical indicators.

1. INTRODUCTION

During recent decades, latent class (LC) analysis has become part of
the standard statistical toolbox of researchers in applied areas such as
medicine, biology, social sciences, psychology, education, criminology,
and marketing. As is typical for most statistical techniques, one of the
assumptions in LC modeling is that the available sample consists of a set
of independent units, an assumption that is inadequate when units are
nested within clusters sharing common environments, experiences, and
interactions. In such situations, one should use multilevel techniques
that take the dependencies between lower-level units resulting from the
hierarchical data structure into account (Hox 2002; Snijders and Bosker
1999).

Recently, various types of multilevel extensions of LC and other
types of finite mixture models have been developed (Asparouhov and
Muthén 2008; Di and Bandeen-Roche 2008; Palardy and Vermunt
forthcoming; Vermunt 2003, 2004, 2007, 2008). The common element
of these extensions is that some of the LC model parameters are allowed
to vary randomly across higher-level (group) units. Although group dif-
ferences can also be modeled using multigroup LC analysis (Clogg and
Goodman 1984), such an approach is feasible only when the number
of groups is not too large, say between two and ten, because otherwise
the number of parameters (one set for each group) becomes very large.
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With larger numbers of (possibly small) groups, it is more appropriate
to model group differences using random effects.

For example, in an LC analysis of a set of questions related
to work satisfaction answered by employees of say 100 organizations,
one has to take into account that work satisfaction may differ across
organizations. This can be achieved by assuming that the class mem-
bership probabilities differ randomly across organizations, rather than
estimating a different set of class membership probabilities for each
organization. The multilevel LC model proposed by Vermunt (2003)
involves expanding the standard (single-level) LC model with either
a continuous or a discrete latent variable at the higher level, yielding
either a parametric or a nonparametric specification for the random
effects distribution (Aitkin 1999; Skrondal and Rabe-Hesketh 2004).

This paper deals with the nonparametric (or semiparametric)
variant of the multilevel LC model in which differences across groups
are modeled using a discrete latent variable at the group level. Ap-
plications of this variant of the multilevel LC model typically aim at
simultaneously clustering individuals and groups; that is, lower-level
units are assumed to belong to lower-level LCs differing in the distri-
bution of the observed responses and higher-level units are assumed
to belong to higher-level LCs differing in the distribution of the lower-
level LCs. A good example is a recent study by Cavrinia, Galimberti,
and Soffritti (2009) on patients’ satisfaction with hospital services: the
lower-level LCs represent clusters of patients with similar satisfaction
levels concerning the studied aspects of hospital services, and LCs at
the higher level represent clusters of hospitals with similar distribu-
tions of patients across the patient-level satisfaction clusters. Other
applications of this variant of the multilevel LC model include stud-
ies by Bassi (2009), Bijmolt, Paas, and Vermunt (2004), Bouwmeester,
Vermunt, and Sijtsma (2007), Henry and Muthén (forthcoming),
Kragelj and Schlutter (2007), Pirani, Schifini, and Vermunt (2009),
and Rindskopf (2006).

Even though the theory of multilevel LC analysis is well de-
veloped and interesting applications have already been published in a
broad range of applied areas, one important issue has received little
attention—namely, the problem related to the simultaneous decision
regarding the number of lower- and higher-level LCs. For standard LC
and standard mixture models, there is a large body of literature on the
performance of statistics for determining the number of mixture compo-
nents. It is well-known that asymptotic likelihood ratio tests cannot be
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used because certain regularity conditions do not hold, but that approx-
imate p-values can be obtained using bootstrap procedures (McLachlan
1987; McLachlan and Peel 2000). However, because bootstrapping is
computationally very intensive, applied researchers typically prefer us-
ing measures weighting model fit (the log-likelihood value) and model
complexity (the number of parameters). The most popular of these
measures is the Bayesian information criterion (BIC; Schwarz 1978;
Hagenaars and McCutcheon 2002; Nylund et al. 2007). Other authors,
however, suggest using the Akaike information criterion (AIC; Akaike
1974), at least in particular situations (Lin and Dayton 1997). Other al-
ternatives are adjusted versions of AIC, such as consistent AIC (CAIC;
Bozdogan 1987) and AIC3 (Bozdogan 1993).

Although deciding about the number of mixture components is
already a rather complex task in standard LC and standard mixture
modeling, it is even more complex in multilevel mixture modeling. It
not only involves two decisions instead of one, about the number of
both lower- and higher-level LCs, these decisions may also be mutually
dependent. Except for the simulation study by Lukočiené and Vermunt
(2010), this issue has not received any attention in the literature on
multilevel LC analysis. However, these authors focused on the rather
simplified situation in which the number of lower-level classes is known;
that is, on the situation in which only one decision (about the higher-
level classes) has to be made. Their simulation study showed that overall
AIC3 performs best. Another important result is that the sample size
in the BIC and CAIC formulas should be the number of higher-level
units.

It is important to note that deciding about the number of mix-
ture components is not always an issue in (multilevel) LC or mixture
modeling. It is, of course, an issue when the model is used as a cluster
technique with the aim of finding a good fitting and easy to interpret
solution. However, mixture models can also be used as random effect
models with a nonparametric specification of the random effects dis-
tribution (Aitkin 1999). In such applications, one should increase the
number of LCs until the log-likelihood function reaches its maximum—
that is, until the saturation point is reached where increasing the number
of classes does no longer yield an increase of the log-likelihood.

This paper extends the work of Lukočiené and Vermunt (2010)
in various ways. The most important extension is that it does not as-
sume the number of lower-level LCs is known, but instead it deals
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with the situation encountered in practice in which both the number of
higher- and lower-level LCs is unknown. In other words, we compare the
performance of the most popular measures (BIC, AIC, CAIC, and
AIC3) when simultaneously deciding about the number of mixture com-
ponents at the lower and higher levels. A second extension is that we
propose a stepwise model-fitting strategy that allows us to make the
two decisions in a more efficient way. Moveover, the reported simu-
lation studies look at a much larger range of conditions than those
shown by Lukočiené and Vermunt (2010). Another extension is that
we focus not only on LC models for categorical responses but also on
models for continuous responses. Furthermore, contrary to Lukočiené
and Vermunt (2010), the investigated approaches are illustrated using
empirical applications. The first application concerns a multilevel LC
analysis with a set of categorical indicators measuring the job satisfac-
tion of graduates from different degree programs of the University of
Florence, where the aim is to cluster both graduates and programs into
homogeneous LCs. The second application deals with the analysis of
a set of continuous intelligence measures taken from children nested
within families and aims at clustering both children and their families.

Section 2 describes the multilevel LC model. The new three-step
model-fitting procedure and the model-selection criteria that will be
evaluated are described in Section 3. Sections 4 and 5 present the designs
and the results of our two simulation studies dealing with categorical
and continuous responses, respectively. Two applications are presented
in Section 6, and Section 7 contains the main conclusions of our study.

2. THE MULTILEVEL LATENT CLASS MODEL

We denote the observed responses in a data set used to build a multilevel
LC model by ykji , where the indices i, j, and k refer to a response vari-
able, an individual or lower-level unit, and a group or higher-level unit,
respectively. The number of response variables equals I(i = 1, . . . , I),
the number of individuals within group k equals nk( j = 1, . . . , nk),
and the number of groups equals K(k = 1, . . . , K). Moreover, the
total number of lower-level units equals N = ∑K

k=1 nk. The vectors
ykj = (ykj1, . . . , ykji , . . . , ykj I ) and yk = ( yk1, . . . , ykj , . . . , yknk) con-
tain the I responses of individual j from group k and the full set of
responses of group k, respectively. Note that such a data set can be
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perceived as either an I-variate two-level data set or a univariate three-
level data set.

A multilevel LC model assumes that individuals belong to one
of L classes and that groups belong to one of H classes. The variables
representing the lower- and higher-level class memberships are denoted
by xkj and wk, respectively, and a particular class by l(l = 1, . . . , L) and
h(h = 1, . . . , H), respectively.

The multilevel LC model proposed by Vermunt (2003, 2008) can
be formulated using two basic equations. The first equation defines the
(mixture) model for f ( yk), the marginal density of the full response
vector of group k; that is,

f ( yk) =
H∑

h=1

P(wk = h)
nk∏

j=1

f ( ykj |wk = h). (1)

Here, P(wk = h) is the probability that group k belongs to LC h and
that f ( ykj |wk = h) is the conditional density for the response vector of
individual j in group k conditional on the membership of group k to LC
h. The second equation defines the (mixture) model for f ( ykj |wk = h);
that is,

f ( ykj |wk = h) =
L∑

l=1

P(xkj = l|wk = h)
I∏

i=1

f (ykji |xkj = l, wk = h),
(2)

where P(xkj = l|wk = h) is the probability that individual j of group k
belongs to LC l given that the group belongs to LC h, and f (ykji |xkj =
l, wk = h) is the conditional density for response variable i of individual
j in group k given the membership to individual-level class l and group-
level class h.

These two equations clearly show which conditional indepen-
dence assumptions are made in a multilevel LC analysis. First, the
observations of the nk individuals in group k are assumed to be inde-
pendent of one another given the group-level class membership. Note
that this assumption is typical for any type of multilevel analysis: ob-
servations are assumed to be independent conditional on the random
effects (Skrondal and Rabe-Hesketh 2004). Second, the I responses
of individual j are assumed to be independent of each other given the
group and individual LC memberships, which is the basic assumption of
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most LC models and is usually referred to as the local independence as-
sumption (Bartholomew and Knott 1999; Hagenaars and McCutcheon
2002).

The last element in a multilevel LC model is the specification of
the conditional densities f (ykji |xkj = l, wk = h), which will typically be
assumed to belong to the exponential family. This can, for example, be a
normal or gamma distribution for continuous responses, a Poisson, bi-
nomial, or negative binomial distribution for counts, and a multinomial
distribution for categorical responses. In the current paper, we restrict
ourselves to models for either categorical or continuous responses. In
models for categorical responses, ykji = 1, . . . , Mi , where Mi is the num-
ber of categories of the ith response variable, and the multinomial form
of density f (ykji |xkj = l, wk = h) can be expressed as

f (ykji |xkj = l, wk = h) =
Mi∏

m=1

(πhlim)dkjim , (3)

where dkjim represents an indicator variable taking on the value 1 if
ykji = m and 0 otherwise, and where πhlim represents a multinomial
probability subject to the constraints πhlim ≥ 0 and

∑Mi
m=1 πhlim = 1.

Continuous responses are typically assumed to come from normal dis-
tributions with class-specific means and variances; that is, f (ykji |xkj =
l, wk = h) ∼ N(μhl , σ

2
hl ).

As standard single-level LC models, the multilevel LC model
can easily be extended to include explanatory variables affecting the
responses and the lower- and higher-level class memberships. This
involves conditioning the response variables’ densities and the class
membership probabilities on covariates (for some examples, see Ver-
munt 2003, 2004, 2008). Here, we restrict ourselves to models without
covariates.

Equations (1) and (2) describe the multilevel LC model (without
explanatory variables) in its most general form; that is, as a model
in which both the lower-level mixture proportions—P(xkj = l|wk =
h)—and the parameters defining the response densities— f (ykji |xkj =
l, wk = h)—are allowed to differ across higher-level classes. The only
application of this general model we know about is the one described by
Henry and Muthén (forthcoming). Most applications of multilevel LC
analysis, however, use one of two more restricted special cases. More
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specifically, they impose one of the following two constraints:

(1) f (ykji |xkj = l, wk = h) = f (ykji |xkj = l); or

(2) P(xkj = l|wk = h) = P(xkj = l).

In the first restricted special case, P(xkj = l|wk = h) is estimated freely,
but the parameters defining the conditional distributions are assumed
to be independent of the higher-level class membership (Vermunt 2003,
2008). This structure is the one used in almost all the applications listed
in the introduction—that is, in applications aiming at the simultane-
ous clustering of higher- and lower-level units. In fact, the clustering
of higher-level units is performed by “pushing up” the information
contained in the multiple lower-level responses via the lower-level class
memberships.

In the second special case, the parameters defining f (ykji |xkj =
l, wk = h) are estimated freely, but the lower-level class membership
is assumed to be independent of the higher-level class membership
(Vermunt 2004). This specification is in fact similar to the variance
decomposition used in three-level regression models: the variation in the
responses is split into between-group and within-group parts (Skrondal
and Rabe-Hesketh 2004). In our simulation studies, we focus on the
first specification, which is the one that has been used in almost all
applications of multilevel LC analysis that have been published so far
(see also the introduction).

3. DETERMINING THE NUMBER OF LOWER- AND
HIGHER-LEVEL CLASSES

3.1. A Three-Step Model-Fitting Procedure

Determining the number of classes in multilevel LC analysis involves a
simultaneous decision regarding the number of LCs at multiple levels of
the hierarchical structure. The main complication is that these decisions
are not mutually independent. In a model with a structure correspond-
ing to the first special case discussed above, the higher-level classes differ
only with respect to their lower-level class distributions. It is therefore
not surprising that the selected number of higher-level classes depends
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very much on the selected number of lower-level classes. Although the
reversed dependency will typically be less strong, it may also exist, es-
pecially when (some of) the lower-level classes are only weakly defined
(when classes are not very well separated). In such situations, the multi-
level data structure with observations that are dependent within groups
may yield important additional information on the lower-level class
memberships; that is, the responses of the other group members may
be informative about a person’s own class membership. This mecha-
nism requires that the dependencies are picked up by the higher-level
classes.

The model–fitting strategy used in the first paper on multilevel
LC analysis (Vermunt 2003)—and which is also the strategy used in
most applications of this model—is in fact a two-step procedure. We
first determine the number of lower-level classes ignoring the multilevel
structure and subsequently determine the number of higher-level classes
fixing the number of lower-level classes at the value from the first step.
It should be noted that the simulation study by Lukočiené and Vermunt
(2010) on the selection of the number of higher-level classes builds on
this model selection strategy in that it investigates the performance of
various model selection criteria in the second step. The main disadvan-
tage of this two-step strategy is that it accounts only partially for the
dependency between the two decisions to be made. More specifically,
the dependency of the decision about the number of lower-level classes
on the selected number of higher-level classes is fully ignored.

Bijmolt and colleagues (2004) used an alternative model-fitting
strategy that involves estimating the multilevel LC model for all relevant
combinations of L and H. In their application, this implied estimating
models with L ranging from 1 to 15 and H ranging from 1 to 8. Vermunt
(2008) used the same procedure in a set of applications illustrating
the use of multilevel LC analysis in medical research. The two main
disadvantages of this procedure are that it may require estimating a
large number of models (more than 100 in the Bijmolt et al. application)
and that it does not allow the use of different measures when deciding
about the value of L and H (see also below).

We propose an alternative three-step model-fitting procedure
that (1) is less computationally intensive than the procedure by Bijmolt
and colleagues (2004), (2) accounts for the fact that the value of L may
depend on the selected value of H, and (3) allows the use of different
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measures when deciding about L and H. This procedure consists of
three steps:

1. Determine the number of lower-level classes ignoring the multilevel
structure (that is, assuming that H = 1).

2. Fix the number of lower-level classes to the value of step 1 and
determine the number of higher-level classes.

3. Fix the number of higher-level classes to the value of step 2 and
redetermine the number of lower-level classes.

Note that the first two steps are the same as the ones used by
Vermunt (2003) but with the important modification that different fit
indices may be used in steps 1 and 2 (more details are provided below).
The aim of the extra step 3 is to evaluate whether the number of lower-
level classes changes after taking into account the dependencies between
lower-level units due to the multilevel data structure. Of course, a fourth
step could be added in which the number of higher-level classes is
reevaluated fixing L to the value of step 3, as well as a fifth step in
which the number of lower-level classes is reevaluated fixing H to the
value of step 4, etc. In the current study, however, we restrict ourselves
to the above three-step approach, which we believe already provides
an important improvement compared to the approaches offered by
Vermunt (2003) and Bijmolt and colleagues (2004).

3.2. Model Selection Measures

When working within a maximum likelihood estimation framework as
we do here, comparison of nested models is typically performed by
means of likelihood-ratio tests, which under certain regularity condi-
tions follow a chi-squared distribution. However, such likelihood-ratio
tests cannot be used to compare models with different numbers of
classes because the null model with the smaller number of classes is
obtained by fixing one or more parameters of the alternative model at
their boundary values. A solution proposed by various authors is to use
parametric bootstrap procedures to approximate the p-value associated
with these likelihood-ratio tests (for example, see McLachlan 1987;
Nylund et al. 2007). However, these bootstrap-based testing pro-
cedures are seldom used by applied researchers because they are
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computationally very intensive and, moreover, their correct implemen-
tation is not at all straightforward.

Most researchers applying LC analysis will make use of informa-
tion criteria that are measures weighting model fit (the log-likelihood
value) and model complexity (the number of parameters). As the log-
likelihood will typically increase (until its saturation point) with increas-
ing model complexity (with increasing number of classes), it is penalized
by the addition of a term measuring the complexity of the model. These
information criteria can be expressed most generally as

IC = −2 log L(θ) + Cr, (4)

where L(θ) is the maximized log-likelihood value for a model with
parameters θ , r is the number of independent parameters in this model,
and C is the weight given to the penalty term based on r. The lower
the value of an information criterion, the better the model. The various
information criteria proposed in the literature differ in the value of C.

Most texts on LC analysis suggest using the Bayesian informa-
tion criterion (BIC; Schwarz 1978) for deciding about the number of
classes (for example, see Hagenaars and McCutcheon 2002; Magidson
and Vermunt 2004). BIC is defined as

BIC = −2 log L(θ ) + log (n)r, (5)

where n is the number of observations (sample size). Simulation stud-
ies have shown that BIC usually performs very well but also that it
may sometimes underestimate the number of classes, especially when
classes are not well separated (for example, see Dias 2004; Nylund et al.
2007).

Others suggest using the Akaike information criterion (AIC;
Akaike 1974), which is expressed as

AIC = −2 log L(θ) + 2r. (6)

Simulation studies have shown that AIC tends to overestimate the num-
ber of classes (McLachlan and Peel 2000; Dias 2004), although others
report that AIC works well in specific situations (Lin and Dayton 1997).

Bozdogan proposed two adjusted versions of AIC—AIC3
(Bozdogan 1993) and consistent AIC (CAIC; Bozdogan 1987)—which



258 LUKOČIENÉ, VARRIALE, AND VERMUNT

are used more and more in LC analysis. AIC3 and CAIC can be ex-
pressed, respectively, by

AIC3 = −2 log L(θ) + 3r (7)

and

CAIC = −2 log L(θ ) + (1 + log (n))r. (8)

Simulation studies by Andrews and Currim (2003) and Dias (2004)
showed that AIC3 is the best-performing criterion in LC analysis with
categorical response variables. Note that the AIC3 weight of 3 typically
falls between the BIC weight of log n and the AIC weight of 2. It
can thus be seen as a compromise between these two measures that,
compared to BIC, is better able to detect poorly separated classes and
that, contrary to AIC, is less likely to come up with spurious classes.
The reported behavior of CAIC is similar to the behavior of BIC, which
is not surprising given that their penalties are rather similar.

There is a large number of simulation studies on the perfor-
mance of AIC, AIC3, and BIC, as well as related likelihood-based
measures, in the context of mixture models for continuous response
variables (see, among others, Bezdek, Attikiouzel, and Windham 1997;
Biernacki 1997; Biernacki, Celeux, and Govaert 2000; Bozdogan 1994;
Cutler and Windham 1994; McLachlan and Peel 2000, ch. 6; Fraley
and Raftery 1998). Fonseca and Cardoso (2007) provided an overview
of these studies and those focusing on categorical responses, and they
concluded that AIC3 works best with categorical responses and BIC
with continuous responses.

Lukočiené and Vermunt (2010) pointed out a specific issue when
using BIC and CAIC in the context of multilevel analysis: It is not clear
whether the sample size should be the number of groups (K), the total
number of individuals (N), or either the number of groups or number
of individuals depending on whether one wishes to test model features
related to the higher or lower level. Work by Pauler (1998) on the use of
BIC in the context of univariate linear mixed models suggests that one
should use K for decisions about higher-level model features and N for
lower-level model features.

The aim of the current study is to determine the performance
of the various information criteria described above for deciding about
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the number of classes in multilevel LC models. That is, the question
is whether results found for single-level LC models for categorical re-
sponses and mixture models for continuous responses also apply to
multilevel generalizations of these models. The work by Lukočiené and
Vermunt (2010) is the only study that has been published on this topic,
but it restricted itself to the simplified situation in which the number
of lower-level classes can be assumed to be known. The results of this
study can be assumed to be valid in step 2 of the three-step model-
fitting procedure described above, but only if L was correctly estimated
in step 1. There are two main results in the Lukočiené and Vermunt
(2010) study: (1) that K should be used as the sample size in the BIC
and CAIC formulas when deciding about the number of higher-level
classes, and (2) that overall, as in standard single-level LC models, AIC3
is the preferred measure.

The current study aims at providing information on the perfor-
mance of the various information criteria in the more realistic situation
in which the number of lower-level LCs is unknown. We will again
address the issue related to sample size definition in BIC and CAIC,
but now for the selection of not only the number of higher-level classes
but also the number of lower-level classes. Moreover, we will investigate
the possibility of using different sample size definitions in steps 1 and
3 on the one hand and step 2 on the other hand. Another departure
from the work of Lukočiené and Vermunt (2010) is that we investigate
LC models not only for categorical indicators but also for continuous
indicators.

4. DESIGN OF THE SIMULATION STUDIES

There are two main questions addressed in the simulation studies:

1. How well does the proposed three-step model-fitting procedure
perform under the studied conditions?

2. How well do the various information criteria perform under the
studied conditions?

By performance we mean whether the model with the correct
number of LCs is selected by our procedure. The starting point for
the design of the simulation studies—for defining the conditions that
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will be varied—is what is known from previous simulation studies on
determining the number of classes in LC models. As summarized by
Dias (2004), there are two main factors determining the difficulty of
detecting the correct number of classes:

1. the separation between the classes (the smaller the separation be-
tween the classes the less likely that one finds the right number of
classes), and

2. the sample size (the smaller the sample size the less likely that one
finds the right number of classes).

These are the two key factors that will be manipulated, and
because we are dealing with a multilevel LC model instead of a standard
LC model, these will be manipulated for both the higher and the lower
level.

It should be noted that while “separation between the classes”
has been reported to be the most important factor (for example, see
Andrews and Currim 2003; Dias 2004; Sarstedt 2008), it is also a some-
what “obscure” factor because it can be manipulated and quantified
in various ways. As is often done in LC and mixture modeling, we
will quantify the separation between classes using an entropy-based
R-squared measure indicating how well the class memberships can be
predicted from the observed responses (Wedel and Kamakura 1998).
For the lower level, this measure can be defined as

R2
entropy,low = 1 −

K∑

k=1

nk∑

j=1

L∑

l=1

−P(xkj = l|yk) log P(xkj = l|yk)

K∑

k=1

nk∑

j=1

L∑

l=1

−P(xkj = l) log P(xkj = l)

,

(9)

and for the higher level as

R2
entropy,high = 1 −

K∑

k=1

H∑

h=1

−P(wk = h|yk) log P(wk = h|yk)

K∑

k=1

H∑

h=1

−P(wk = h) log P(wk = h)

.

(10)
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Note that these measures quantify the relative improvement of the pre-
diction of the class membership when using the responses (conditional
entropy in the numerator) compared to the prediction without using the
responses (unconditional entropy in the denominator). A value equal
to 0 corresponds to a prediction that is no better than chance (and thus
no separation at all) and a value of 1 to a perfect prediction (and thus
a perfect separation).

The R2
entropy,low depends on the number of lower-level classes,

the number of response variables, and the parameters defining the
class-specific response densities. It will be larger with a smaller number
of classes, a larger number of response variables, and larger between-
class and smaller within-class variation in responses. For categorical
responses, the latter corresponds to a larger number of categories and
larger differences in the class-specific response probabilities, and, for
continuous responses, to larger differences in the class-specific means
and smaller within-class variances. The R2

entropy,high depends on the
number of classes at the higher level, the number of individuals per
group, the number of classes at the lower level, and the conditional
probabilities P(xkj = l|wk = h). The separation at the higher level is
larger with a smaller number of higher-level classes, a larger num-
ber of individuals per group, a larger number of lower-level classes,
and larger differences in the conditional probabilities P(xkj = l|wk = h)
across higher-level classes. Note that the number of lower-level classes
affects the entropy at both levels, but in an opposite direction.

The settings for the design factors we used in our simulation
studies have been chosen in order to cover a broad range of possible
separation values at both levels. We describe below the design of our two
simulation studies in more detail. The first study focuses on LC models
for categorical indicators and the second on LC models for continuous
indicators.

4.1. Study I: Categorical Indicators

The first simulation study concerns multilevel LC analysis with cate-
gorical indicators. The following design factors were varied:

1. the number of lower-level classes L,
2. the number of higher-level classes H,
3. the lower-level class probabilities P(xkj = l|wk = h),
4. the number of response variables I ,
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5. the class-specific response probabilities πlim

6. the lower-level sample size nk, and
7. the higher-level sample size K.

Two factors were constant across simulation replications: (1) the
higher-level class sizes, which were always set to P(wk = h) = 1/H, and
(2) the number of categories of the response variables, which were fixed
to Mi = 2. The latter implies that our simulation study concerns multi-
level LC models for dichotomous responses. It should be noted that by
varying Mi we would primarily introduce another factor affecting the
lower-level separation, which is already varied by means of the choice
of L, I , and πlim.

The factors related to the number of classes are the easiest to
manipulate. More specifically, the number of LCs are either two or three
at both levels (L = 2, 3 and H = 2, 3). Table 1 presents the structure
used for varying the conditional class probabilities P(xkj = l|wk = h).
These are such that only one parameter (denoted by px) needs to be
specified. We used either px = 0.7 or px = 0.8, where the larger value
corresponds to more diverse conditional lower-level class probabilities
and thus to better higher-level separation.

The number of items I was either 6 or 10. For the class-specific
response probabilities πlim—which are assumed to be unrelated to the
higher-level class membership (the first restricted special case discussed
in Section 2)—we used three settings that were defined with a single
parameter denoted by p. More specifically, p could take on the values
0.7, 0.8, and 0.9. This parameter represents the probability of the first
response for all items in the first class (π1i1 = p) and the probability of
the second response in the last class (πLi2 = p). In the L = 3 condition,
for class 2, it represents the probability of the first response for the first
I/2 items and the probability of the second response for the remaining
items. The interpretation of the classes is such that the first and last class
are opposites, and in the L = 3 condition, the second class is similar to
class 1 for half of the items and to class 3 for the other half. Note that
p = 0.7 yields the smallest and p = 0.9 the largest separation between
the lower-level classes.

Another factor that we manipulated is the number of lower-level
units per group (the lower-level sample size nk). Note that the larger
the number of units per group, the more information we have about
the group-level class membership. More specifically, we used the values
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TABLE 1
Assumed Values for the Lower-Level LC Probabilities Conditional on the

Higher-Level Class—(P(xkj = l|wk = h))—for L = 2, 3 and H = 2, 3

(a)
h

l 1 2

1 px 1 − px

2 1 − px px

(b)
h

l 1 2 3

1 px 0.5 1 − px

2 1 − px 0.5 px

(c)
h

l 1 2

1 px (1 − px)/2
2 (1 − px)/2 (1 − px)/2
3 (1 − px)/2 px

(d)
h

l 1 2 3

1 (1 − px)/2 0.33 px

2 (1 − px)/2 0.33 (1 − px)/2
3 px 0.33 (1 − px)/2

nk = 5, 10, 20, and 50 to create conditions ranging from very low to
very high separation.

The last factor that was varied is the higher-level sample
size, for which we used K = 30, 100, and 1000. These sample sizes
were chosen to cover the full range of small, moderate, and large
sample sizes encountered in multilevel applications in social science
research.

Table 2 presents the lowest and average R2
entropy,low and

R2
entropy,high value for each of the manipulated conditions (the high-

est value is always close to 1). It can be seen that for the lower level
the separation indeed depends on L, p, and I , and for the higher level
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TABLE 2
Entropy-Based R-Squared Values at Lower and Higher Levels for all Values of

nk, K, H, L, px, p, and I , and for the R2
entropy Quintiles

Higher Level Lower Level

Lowest Average Lowest Average

nk 5 0.13 0.50 0.38 0.78
10 0.22 0.68 0.40 0.79
20 0.37 0.83 0.41 0.79
50 0.62 0.95 0.42 0.80

K 30 0.13 0.74 0.38 0.79
100 0.13 0.74 0.38 0.79
1000 0.13 0.74 0.38 0.79

H 2 0.28 0.86 0.42 0.80
3 0.13 0.63 0.38 0.78

L 2 0.13 0.66 0.51 0.84
3 0.25 0.82 0.38 0.75

px 0.7 0.13 0.67 0.38 0.78
0.8 0.26 0.81 0.42 0.80

p 0.7 0.13 0.68 0.38 0.58
0.8 0.18 0.76 0.66 0.83
0.9 0.20 0.79 0.89 0.96

I 6 0.13 0.73 0.38 0.74
10 0.16 0.76 0.53 0.84

R2
entropy 1 0.13 0.34 0.38 0.51
quintile 2 0.48 0.61 0.59 0.68

3 0.73 0.80 0.75 0.83
4 0.90 0.95 0.90 0.94
5 0.95 1.00 0.97 0.98

Total 0.13 0.74 0.38 0.79

mainly on nk, H, L, and px, but also slightly on p, and I (indirect on the
lower-level separation). These numbers show that our settings are such
that we cover a broad range of separation values both for the lower-
and higher-level classes.
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In total, the simulation study design contained 2 × 2 × 2 × 2 ×
3 × 4 × 3 = 576 cells representing all possible combinations of the seven
varied design factors. For each of these cells, we generated five data
sets, and ran models with different numbers of lower- and higher-level
classes. The syntax version of Latent GOLD (Vermunt and Magidson
2008) was used for the realization of this simulation study, as well as for
the study described next and the applications.

4.2. Study II: Continuous Indicators

In the second simulation study, we dealt with multilevel LC models
with continuous indicators. The aim of this study was to check whether
results depend on the type of response variables used in the multilevel
LC model. As mentioned earlier, there is a large body of literature
on deciding about the number of mixture components in models for
continuous responses (for example, see Bezdek et al. 1997; Biernacki
1997; Biernacki et al. 2000; Bozdogan 1994; Cutler and Windham 1994;
McLachlan and Peel 2000, ch. 6; Fraley and Raftery 1998). However,
these studies focused on single-level mixture models, whereas here we
are interested in the performance of information criteria in multilevel
mixture modeling.

For the design factors H, L, px, nk, and K, we used the same
settings as in the first study. To reduce the size of this second study, we
kept the number of items fixed to 6. This means that we should compare
the results with the ones for the I = 6 condition in Study I.

The class-specific response densities are now defined by the item
means and variances. The variances were all set to 1 (σ 2

li = 1). Similar
to πlim in Study I, we used three settings for the means μli , defined by
a single parameter d taking on the value 0.4, 0.7, or 1.0. The first class
had item means equal to −d(μ1i = −d), the last class to d(μLi = d),
and in the L = 3 condition, the second class has μ2i = −d for the first
I/2 items and μ2i = d for the rest. These three settings for d yielded
very similar lower-level entropy values as the three settings for p in
simulation Study I with I = 6. The average lower-level entropy is 0.74
in Study II, which is the same as the value for I = 6 in Study I. The
average higher-level entropy is slightly lower in Study II (0.72 instead
of 0.73).
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5. RESULTS OF THE SIMULATION STUDIES

5.1. Study I: Categorical Indicators

The results obtained with simulation Study I, which deals with mul-
tilevel LC models for categorical responses, are presented below. We
discuss the results for the lower-level classes, for the higher-level classes,
and the overall results concerning the simultaneous decision about L
and H. We also note the effect of using the third step of our stepwise
modeling procedure.

5.1.1. Lower-Level Classes
Table 3 presents the results for the lower-level classes obtained after
step 3. Per design factor and information criterion, it reports the per-
centage of simulation replications in which the number of classes is un-
derestimated (L̂ < L), correctly estimated (L̂ = L), and overestimated
(L̂ > L).

The lower-level results are very much in agreement with the re-
sults of simulation studies for standard (single-level) LC models (An-
drews and Currim 2003; Dias 2004; Sarstedt 2008). Indeed, sample size,
number of classes, number of items, and size of the response probabil-
ities affect the difficulty of finding the correct model in the expected
direction. Moreover, AIC3 is the best-performing criterion. BIC(N)
and CAIC(N) are more likely than AIC3 to underestimate the number
of classes with smaller sample sizes and lower separation levels. More-
over, AIC is more likely to overestimate the number of classes in all
situations.

Comparison of the performance of the somewhat unconven-
tional BIC(K) and CAIC(K) measures with the AIC3, BIC(N), and
CAIC(N) shows that these perform almost as well as AIC3, and thus
better than BIC(N) and CAIC(N). It should be noted that under all
conditions the weight log K is closer to the AIC3 weight of 3 than log N,
which is probably why the BIC(K) and CAIC(K) results are in line with
the comparatively good qualities of AIC3.

Instead of looking at the separate effects of L, I , and p, we
can also look at the overall effect of the lower-level entropy on the
performance of the various measures. Table 3 provides the results for the
five lower-level entropy quantiles. As can be seen, the higher the entropy
values, the better the performance of the information criteria, especially
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when comparing the first and second quintile as well as the second and
the third. The only exception is the AIC, which does not seem to be
affected by the entropy value in a systematic way.

5.1.2. Higher-Level Classes
Table 4 presents the results for the higher level classes obtained after
step 2. Per design factor and information criterion, it reports the per-
centage of simulation replications in which the number of classes is
underestimated (Ĥ < H), estimated correctly (Ĥ = H), and overesti-
mated (Ĥ > H).

As mentioned earlier, the key factors expected to affect the per-
formance of the various information criteria are sample size and separa-
tion between classes. For the higher level, the sample size is defined by K
and separation depends most strongly on H, px, and nk, and somewhat
on L, I , and p. The results of Table 4 show that each of the investigated
criteria performs better under the easier conditions (larger sample and
larger separation between classes). Another thing that can be observed
is that the hit rates are lower than for the lower-level part of the model
(see again Table 3). The explanation for this is that the separation values
used for the higher level were slightly lower than the ones for the lower
level (as shown in Table 2, the average entropy-based R-squared is .74
for the higher level and .79 for the lower level).

Comparing the various measures with one another shows that
overall AIC3 and BIC(K) perform better than the other measures. The
main difference between these two is that AIC3 performs slightly better
than BIC(K) with lower separation (smaller nk and lower quintiles
of R-squared) and BIC(K) somewhat better than AIC3 for the high
separation levels.

Both for BIC and CAIC, we find substantial differences between
the versions based on sample size K and N. BIC(N) and CAIC(N) are
more likely to underestimate the number of mixture components than
BIC(K) and CAIC(K). Overall, CAIC performs slightly worse than
BIC. Finally, we see again that AIC has the tendency to overestimate
the number of LCs, but also that it performs better than the other
methods under the lowest separation conditions.

As we saw for the lower-level results, the larger the separation
between the LCs, the better the indices detect the correct number of LCs.
This positive relationship does, however, not apply for BIC(K), AIC3,
and AIC when going from the fourth to the fifth entropy quintile,
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although the hit rate is still very high (larger than 95 percent) in the
fifth quintile.

5.1.3. Combined Lower- and Higher-Level Classes
The main goal of this simulation study was to determine which of the
investigated model selection measures is preferable for deciding simulta-
neously about the number of lower- and higher-level classes in multilevel
LC models. Tables 5 and 6 present the percentage of simulation replica-
tions in which the number of lower- and higher-level classes is correctly
estimated (L̂ = L and Ĥ = H) for the design factors and the separation
quintiles, respectively. Note that we also present the results for BIC and
CAIC with sample size N for the lower-level analysis (steps 1 and 3)
and K for the higher-level analysis (step 2), denoted by BIC(N, K) and
CAIC(N, K).

Comparison of the results for the investigated fit measures shows
that overall AIC3 and BIC(K) have higher hit rates than the other
indices, except for the lowest higher-level entropy conditions, for which
AIC performs better. Comparison of AIC3 with BIC(K) shows that the
latter performs better with well-separated lower- and higher-level classes
and the former with more poorly separated classes. BIC(K) performs
slightly better than BIC(N, K) and better than BIC(N), and the same
applies to the three versions of CAIC. However, BIC performs better
than CAIC with the same sample size definitions.

As can be clearly seen from Table 6, for each measure applies that
the better separated the lower- and higher-level classes are, the better
the hit rates. An exception is the fifth lower-level quintile for which the
hit rates are lower than for the fourth quintile. This is probably due to
the fact that the fifth quintile mainly contains design cells with L = 2,
and the higher-level entropy is somewhat lower with L equal to 2 instead
of 3.

5.1.4. Evaluation of the Three-Step Procedure
An issue that we did not yet address is whether the third step in our
three-step procedure is important, or whether the two-step procedure
used by Vermunt (2003) performs equally well. Recall that in the third
step the number of lower-level classes is reestimated, which accounts for
the multilevel data structure via the higher-level classes. Table 7 reports
the differences in hit rates between steps 3 and 2. As can be seen overall,
the third step increases the hit rate with at most 1 percent. AIC is an
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TABLE 6
Percentage of Simulation Replications in Which the Number of Classes at Both

Levels is Correctly Estimated Per Entropy Quintile

R2
entropy,high quintile R2

entropy,low quintile

1 2 3 4 5 1 2 3 4 5

BIC(N) 15 46 73 86 92 34 58 72 76 73
BIC(K) 18 54 84 92 95 42 67 78 81 76
BIC(N, K) 18 52 80 86 91 36 61 76 80 76
CAIC(N) 19 50 74 86 91 37 60 72 77 74
CAIC(K) 16 50 80 90 94 38 64 76 78 75
CAIC(N, K) 16 51 79 86 91 38 61 74 78 75
AIC 25 45 61 63 59 44 52 54 52 52
AIC3 23 60 85 91 93 50 69 78 79 75

TABLE 7
Difference in Percentage of Correct Number of Classes at Both Levels Between

Step 3 and Step 2: Total and for Four Specific Conditions

I = 6, p = 0.7 I = 10, p = 0.9

K = 1000, K = 100, K = 1000, K = 100,
Total nk = 5 nk = 50 nk = 5 nk = 50

BIC(N) 1 3 18 0 0
BIC(K) 1 0 0 0 0
BIC(N, K) 1 3 18 0 0
CAIC(N) 0 0 20 0 0
CAIC(K) 1 3 0 0 0
CAIC(N, K) 0 0 20 0 0
AIC −3 0 0 3 −15
AIC3 1 2 3 0 0

exception, because with that measure step 3 does not increase and in
fact decreases the hit rate.

An improvement of 1 percent is indeed small, but note step 3 can
be expected to have an effect only in specific situations. That is, when the
lower-level classes are poorly separated, information on the higher-level
classes may help in finding the correct number of lower-level classes,
provided that the higher-level classes are well separated themselves.
To illustrate this issue, Table 7 presents the improvement in step 3 for
four selected conditions. Note that the (I = 6, p = 0.7) and (I = 10,
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p = 0.9) conditions represent poor and very good separation between
lower-level classes, and (K = 1000; nk = 5) and (K = 100; nk = 50)
poor and very good separation between higher-level classes, where the
latter two are such that the overall lower-level sample size remains
constant. It can indeed be seen that step 3 does not add anything
with very well-separated lower-level classes. However, with poorly sep-
arated lower-level classes, step 3 is very important, especially with well-
separated high-level classes.

We also compared the results of the proposed three-step proce-
dure with the approach used by Bijmolt and colleagues (2004) in which
models with all relevant combinations of lower- and higher-level classes
are estimated. With all measures, the hit rates are the same for both pro-
cedures. An exception is AIC, for which the hit rate with the three-step
procedure is 2 percent higher.

5.2. Study II: Continuous Indicators

The key difference between Study II and Study I is that the indicators
are continuous variables. Another minor difference is that Study II in-
vestigated only the (more difficult) I = 6 condition, which is something
that should be taken into account when comparing the results of the two
studies. The main issue we are interested in is whether the results found
in Study I generalize to the situation in which responses are continuous
instead of categorical.

Table 8 presents the results on the simultaneous decision about
the lower- and higher-level classes for Study II. The last column of
this table provides the total for Study I for the I = 6 condition (which
was also reported in the column I = 6 in Table 5). Comparison of the
totals with continuous and categorical indicators shows that for most
indices the hit rates are higher with continuous indicators. Exceptions
are AIC and AIC3. AIC performs very poorly with continuous indica-
tors. Closer inspection of the results showed that the problem already
occurs in step 1 in which the number of lower-level classes is very likely
to be overestimated. AIC3 does not perform as well as with categorical
indicators, and BIC(K) is the preferred method now. It should be noted
that the I = 6 condition is in fact the least favorable one for BIC(K),
which implies that the difference between AIC3 and BIC(K) can be
expected to be larger with I = 10.
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The dependence of the hit rates of the various information cri-
teria on the design factors is the same as with categorical indicators.
Design factor levels corresponding to larger sample sizes and better
separated classes have the highest hit rates.

6. TWO EMPIRICAL EXAMPLES

We illustrate the three-step model selection procedure with two exam-
ples, one with categorical and one with continuous indicators.

6.1. Job Satisfaction Measured with Categorical Indicators

In the first application, we analyze one of the annual surveys con-
ducted among university graduates by the AlmaLaurea consortium—
specifically, the questionnaire items on job satisfaction answered by the
summer 2004 graduates of the University of Florence (AlmaLaurea
2006). Information is available for 826 graduates having a job at the
moment of interview and belonging to 23 study programs, where the
smallest number of graduates per program is 8 and the largest is 155. The
12 dichotomous questionnaire items of interest measure the following
aspects of the satisfaction with the current job: stability, correspon-
dence with the major taken in university, competence/professionalism,
prestige, cultural interests, social utility, independence, involvement in
the working activity and in the decisional processes, schedule flexibility,
salary, and career as well as the overall satisfaction. The aim of the
multilevel LC analysis is to cluster graduates into classes based on their
responses to the satisfaction items as well as to cluster programs based
on the distribution of graduates across the graduate-level satisfaction
classes.

Table 9 summarizes the results obtained with our three-step
model-fitting procedure. In step 1 (where the hierarchical data structure
is ignored), BIC(N) and CAIC(N) select a model with four lower-level
classes, BIC(K) and CAIC(K) select a model with 5 classes, AIC3 selects
a model with 8 classes, and AIC selects a model with 9 classes. For step
2, we estimated multilevel LC models with L = 4, L = 5, and L = 8 (we
did not proceed with the AIC result L = 9). Irrespective of the value of
L and the information criterion that is used, a model with 2 classes at the
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TABLE 9
Selected Models in Steps 1, 2, and 3 with the University of Florence Data

Information Criterion L, Step 1 H, Step 2 L, Step 3

BIC(K) 5 2 8
BIC(N) 4 2 4
BIC(N, K) 4 2 4
CAIC(K) 5 2 6
CAIC(N) 4 2 4
CAIC(N, K) 4 2 4
AIC3 8 2 8

program level should be preferred. In step 3, we estimated models with
2 LCs at the program level and different numbers of LCs at the graduate
level. BIC(N), CAIC(N), and AIC3 select the same solution as in step
1, whereas BIC(K) and CAIC(K) select models with a larger number of
lower-level classes (8 and 6, respectively). The explanation for the fact
that these criteria select a larger number of lower-level classes in step 3
is that the higher-level separation is very good (ranging from .86 in the
model with L = 6 to .89 in the model with L = 8). Note that BIC(K)
and AIC3 come up with the same final conclusion, which is the result
of the fact that their penalties are very similar: log 23 = 3.14, which is
very close to 3.

Of course, it is not only fit indices that are important for model
selection, but also the interpretability of the obtained solutions. Because
the solution with 8 LCs at the lower level is somewhat difficult to inter-
pret, we will describe the solution with 4 lower-level and 2 higher-level
classes. Lower-level class 1 contains the graduates who are satisfied with
all aspects of the current job and class 4 the ones who are dissatisfied
with all job aspects. The other two classes are satisfied with some and
dissatisfied with other aspects: Class 2 is dissatisfied with job stability,
salary, and career opportunities, and class 3 with correspondence with
the major taken in university and cultural interests.

At the program level there are two classes, where class 1 is the
larger of the two [P(wk = 1) = 0.81]. Table 10 shows how the two classes
differ in terms of their student-level class membership probabilities
P(xkj = l|wk = h). As can be seen, programs belonging to class 1 score
much better in terms of the satisfaction of their graduates than programs
belonging to class 2. Compared to the latter, the former have a much
larger proportion of graduates belonging to the satisfied lower-level
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TABLE 10
Distribution of Student-Level Classes Within Program-Level Classes for the

H = 2 and L = 4 Model Estimated with the University of Florence Data

h

l 1 2

1 0.63 0.33
2 0.17 0.20
3 0.10 0.25
4 0.09 0.22

LC 1, and a much smaller proportion of students belonging to the
dissatisfied lower-level LC 4. Also the proportions of graduates in the
partially dissatisfied classes 2 and 3 are slightly smaller.

6.2. Intelligence Measured with Continuous Indicators

The second application uses the Van Peet (1992) data set that was used
by Hox (2002) to illustrate multilevel factor analysis and by Vermunt
(2008, 2010) to illustrate various types of multilevel mixture models.
The data set contains six continuous measures that are supposed to be
connected to intelligence: “word list,” “cards,” “matrices,” “figures,”
“animals,” and “occupations.” Information is available for 269 children
belonging to 49 families. The aim of the multilevel LC analysis is to
cluster both children and families based on childrens’ responses.

Table 11 shows the models selected in the various steps of our
three-step procedure. In step 1, CAIC(N) and CAIC(N, K) select a

TABLE 11
Selected Model in Steps 1, 2, and 3 with the Intelligence Data

Information Criterion L, Step 1 H, Step 2 L, Step 3

BIC(K) 4 3 4
BIC(N) 3 3 4
BIC(N, K) 3 3 4
CAIC(K) 3 3 4
CAIC(N) 2 2 2
CAIC(N, K) 2 2 2
AIC3 4 3 4
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TABLE 12
Distribution of Children-Level Classes Within Family-Level Classes and
Class-Specific Means for the H = 3 and L = 4 Model Estimated with the

Intelligence Data

h

l 1 2 3 Word List Cards Figures Matrices Animals Occupations

1 0.74 0.17 0.07 31.9 36.0 29.0 34.0 30.5 29.1
2 0.25 0.59 0.01 29.4 30.0 26.1 29.9 28.4 28.5
3 0.00 0.24 0.03 25.5 22.5 22.2 26.8 24.1 25.5
4 0.02 0.01 0.90 26.2 34.0 27.2 28.8 21.5 23.0

model with two lower-level classes; BIC(N), BIC(N, K), and CAIC(K)
select a model with three lower-level classes; and AIC3 and BIC(K)
select a model with four lower-level classes. In step 2, models with
three higher-level classes are selected by all indices except CAIC(N)
and CAIC(N, K), which select models with two higher-level classes. In
step 3, the number of lower-level classes changes from three to four
for BIC(N) and CAIC(K). After step 3, all three BICs, CAIC(K), and
AIC3 select the model with three classes at the higher level and four
classes at the lower level, which is also the model selected by estimating
models with all relevant combinations of L and H (Vermunt 2008,
2010).

Table 12 reports the parameter estimates for the model with
H = 3 and L = 4. The means of the six intelligence indicators are nicely
ordered across child-level classes 1 to 3. These can therefore be labeled
high, middle, and low. Children in class 4 show a somewhat mixed
pattern: They perform better than the middle class on cards and figures,
better than the low class on word list and matrices and worse than the
low class on animals and occupations. The estimates of the lower-level
class membership probabilities for the higher-level classes show that in
family-level class 3 almost all children belong to the mixed child-level
class. Children from families belonging to family-level class 1 are more
likely to be in the high intelligence class and children from family-level
class 2 are more often in the middle and low intelligence classes. These
results show that there is a very strong family effect on the performance
of children on these six intelligence subtests.



NUMBER OF LOWER- AND HIGHER-LEVEL CLASSES 279

7. CONCLUSION

The purpose of the current study on multilevel LC models was twofold:
to evaluate the performance of a new three-step model-fitting procedure
and to investigate the performance of information criteria for simulta-
neously deciding about the number of lower- and higher-level classes.

As far as the performance of the three-step procedure is con-
cerned, the simulation study provided evidence that the proposed
model-fitting strategy works rather well. It is an improvement over the
two-step procedure used by Vermunt (2003) when lower-level classes
are poorly separated and higher-level classes well separated, which is
the situation in which the multilevel data structure may help to identify
the lower-level classes. In the two applications we also saw that the ad-
ditional third step may matter. What can also be said is that the third
step will never harm.

Furthermore, the three-step procedure performed equally well
as model selection by estimating models for all relevant combinations
of L and H, as used by Bijmolt and colleagues (2004) and Vermunt
(2008). Since the three-step procedure is computationally less demand-
ing and, moreover, allows the use of different measures for deciding
about L and H, we think that the three-step approach is the preferred
approach.

Regarding the sample size definition for BIC and CAIC, our
simulation studies clearly showed that the number of groups (K) is
the only appropriate sample size for deciding about the number of
higher-level classes, which is in agreement with the results reported by
Lukočiené and Vermunt (2010). For the decision about the number
of lower-level classes, it makes less of a difference which sample size
is used, but somewhat surprisingly here BIC(K) and CAIC(K) also
perform slightly better than BIC(N) and CAIC(N).

Overall, AIC3 and BIC(K) turn out to be the preferred criteria
for simultaneously deciding about the number of lower- and higher-level
classes in models with categorical indicators. The good performance of
AIC3 with categorical responses is in agreement with simulation results
for standard LC models (Andrews and Currim 2003; Dias 2004; Sarst-
edt 2008). However, with continuous response variables, BIC(K) per-
forms better than AIC3. AIC performs best in very specific situations—
namely, with poorly separated classes and categorical indicators. These
results agree with Fonseca and Cardoso’s (2007) conclusions for
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single-level LC models based on an overview of a large number of
simulation studies.

Simulation studies such as the ones reported in this paper always
have certain limitations. For example, we did not investigate models
with combinations of categorical and continuous indicators. It seems
that in such situations BIC(K) is the preferred criterion, assuming that
these models are in fact a mixture of the two types of models that were
investigated.

Another limitation is that we assumed that both variables to
be included in the LC analysis and the model to be used within LCs
are known. More specifically, we did not consider variable selection
methods for LC analysis such as the one proposed by Dean and Raftery
(2009), nor did we consider tools for detecting dependencies between
variables within classes as proposed by Hagenaars (1988) and others. It
should, however, be noted that these more advanced tools could be used
in step 1 of our three-step procedure, in which standard LC models are
in fact estimated.
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