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Summary. Recently, various types of mixture models have been developed for data
sets having a hierarchical or multilevel structure (see, e,g., [9, 12]). Most of these
models include finite mixture distributions at multiple levels of a hierarchical struc-
ture. In these multilevel mixture models, selection of the number of mixture compo-
nent is more complex than in standard mixture models because one has to determine
the number of mixture components at multiple levels.

In this study the performance of various model selection methods was inves-
tigated in the context of multilevel mixture models. We focus on determining the
number of mixture components at the higher-level. We consider the information
criteria BIC, AIC, and AIC3, and CAIC, as well as ICOMP and the validation log-
likelihood. A specific difficulty that occurs in the application of BIC and CAIC in
the context of multilevel models is that they contain the sample size as one of their
terms and it is not clear which sample size should be used in their formula. This
could be the number of groups, the number of individuals, or either the number of
groups or number of individuals depending on whether one wishes to determine the
number of components at the higher or at the lower level.

Our simulation study showed that when one wishes to determine the number of
mixture components at the higher level, the most appropriate sample size for BIC
and CAIC is the number of groups (higher-level units). Moreover, we found that BIC,
CAIC and ICOMP detect very well the true number of mixture components when
both the components’ separation and the group-level sample size are large enough.
AIC performs best with low separation levels and small sizes at the group-level.
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1 Introduction
Vermunt [9, 11, 12, 13] proposed several types of latent class (LC) and mix-

ture models for multilevel data sets with applications in sociological, behav-
ioral, and medical research. Examples of two-level data sets include data
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from individuals (lower-level units) nested within families (higher-level units),
pupils nested within schools, patients nested within primary care centers, and
repeated measurements nested within individuals. A multilevel latent class
model can be applied when in addition multiple responses are recorded for
the lower-level units, and is thus, in fact, a model for three-level data sets.
The multilevel LC models dealt with in this paper assume that lower-level
units (say individuals) belong to LCs at the lower level and that higher-level
units (say groups) belong to LCs at the higher level. In other words, the
models contain mixture distributions at two levels.

There is wide variety of literature available on the performance of model
selection statistics for determining the number of mixture components in mix-
ture models. The Bayesian (also known as Schwarz’s) information criterion
(BIC) is the most popular measure for determining the number of mixture
components and it is generally considered to be a good measure [5, 7]. Other
authors, however, prefer the Akaike information criterion (AIC) [6]. While de-
ciding about the number of mixture components is already a complicated task
in standard mixture models, it is even more complex for multilevel mixture
models. One of the difficulties consists in choosing the appropriate sample size
in the BIC and CAIC formulae:

BIC =—-2InL+kln(n) (1)

and
CAIC = —2In L+ k(1 +1n(n)). (2)

Here, L is the maximized value of the likelihood function for the estimated
model, k is the number of free parameters to be estimated, and n is the number
of observations, or equivalently, the sample size. There are several options for
defining the sample size in the multilevel context, including the number of
groups, the number of individuals, or either the number of groups or number
of individuals depending on whether one wishes to determine the number
of components at the higher or at the lower level. Neither the literature on
mixture models nor the literature on multilevel analysis give hints on what
sample size to use in the computation of BIC and CAIC in multilevel mixture
models.

This article presents the results of a simulation study in which we com-
pared the performance of several methods for determining the number of
mixture components in the multilevel LC models. We investigated the per-
formance of BIC and CAIC using different sample size definitions, as well as
compare BIC and CAIC with other model selection measures, such as AIC,
AIC3, ICOMP [2], and the validation log-likelihood [8]. Our focus is on de-
ciding about the number of mixture components at the higher level.

The next section describes the multilevel LC model. The design of the
simulation study is explained in Section 3. The obtained result are presented
in Section 4. The main conclusions are highlighted in the last section.
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2 Multilevel latent class model

Let y; = (Yj1,-- -, Yjis- - - y;1) denote the vector with the I responses of indi-
vidual j, (j =1,...,n). A discrete LC variable is denoted by z;, a particular
LC by I3, and the number of classes by Ly (I = 1,...,Ly). The basic as-
sumptions of the LC model are: 1) that each individual belongs to (no more
than) one latent class, 2) that the responses of individuals belonging to the
same LC are generated by the same (probability) density, and 3) that the I
responses of individual j are conditionally independent of one another given
his/her class membership. Under these assumptions, the traditional LC model
is defined by the following formula:

I
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where f(y;) is the marginal density of the responses of individual j, P(z; = l2)
is the unconditional probability of belonging to LC Is, and f(y;i|lz; = l2) is
the conditional density for response variable i given that one belongs to LC
lo.

A multilevel LC model differs from a standard LC model in that the param-
eters of interest are allowed to differ randomly across groups (across higher-
level units). It should be noted that the multilevel LC model is actually a
model for three-level data sets; that is, for multiple responses (level-1 units)
nested within individuals (level-2 units) and individuals (level-2 units) are
nested within groups (level-3 units). The random variation of LC parameters
across groups can be modelled using continuous or discrete group-level latent
variables, or by a combination of these two. It should be noted that using
the discrete latent variable approach, where parameters are allowed to differ
across latent classes of groups, is similar to using a nonparametric random ef-
fects approach [1, 10]. In this article we focus on this discrete approach which
makes use of group-level latent classes.

Let yx; = (Ykj1,---» Ykjis - - - » Ykj1r) denote the I responses of individual j
(j=1,...,ng) fromgroup k (k =1,..., K),and yx = (Yr1,-- - Ykj»- - - Ykn,)
the full response vector of group k. The class membership of individual j from
group k is now denoted by z;. In the discrete random-effects approach it is
assumed that every group belongs to one of the L3 group-level LCs or mixture
components. Let wy, denote the class membership of group k£ and I3 denote a
particular group-level LC (I3 = 1,..., L3). The multilevel LC model can then
be described by the following two equations:

ng

L3
Flyr) =Y Plwy =1Is) [T f(yrslwr = 1s) (4)

l3:1 j:l

and
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Lo I
Flyrilwe =13) = Y Plagy = lolwy = Is) [ | fwrsilzn; = lo,wp = 1), (5)
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Equation (4) shows how the responses of the ny, individuals belonging to group
k are linked to obtain the density for the full response vector of group k, f(yx).
More precisely, it shows that the group members’ responses are assumed to be
mutually independent conditional on the group-level class membership. Fur-
thermore, from Equation (5) it can be seen that both the lower-level mixture
proportions — P(xy; = la|wg = l3) — and the parameters defining the response
densities — f(yrji|zr; = lo, wyp = l3) — may differ across higher-level mixture
components.

Two interesting special cases of the multilevel LC model are obtained by
constraining the terms appearing in Equation (5) [10, 13]. The first special
case, which is the one we will use in our simulation study, is a model in which
the individual-level class membership probabilities differ across group-level
classes, but in which the parameters defining the conditional distributions for
the response variables do not vary across group-level classes. The latter implies
that f(ykjilze; = l2, wk = 13) = f(yrjilzk; = l2). The second special case is a
model in which the parameters defining the conditional distributions for the
response variables differ across group-level classes, but in which individual-
level class membership probabilities do not vary across group-level classes.
The latter restriction implies that P(zx; = lolwy = l3) = P(zx; = ls). The
first special case is the most natural specification if one uses the multilevel LC
models a multiple-group LC model for a large number of groups. The second
one is more similar to three-level random-effects regression analysis.

The unknown parameters of a multilevel LC model can be estimated
by means of Maximum Likelihood (ML). For this purpose one can use the
Expectation-Maximization (EM) algorithm [3] — the most popular algorithm
for obtaining ML estimates in the context of mixture modeling — which in
the context a multilevel LC model requires a specific implementation of the
E step. As shown by Vermunt [9, 12], the relevant marginal posterior proba-
bilities can be computed in an efficient way by making use of the conditional
independence assumptions implied by the multilevel LC model. This special
version of the EM algorithm, as well as a Newton-Raphson algorithm with
analytic first-order derivatives and numerical second-order derivatives are im-
plemented in the Latent GOLD software package [14]. The last version of the
Latent GOLD software package was used for the realization of the simulation
study reported below.

3 Design of the simulation study

The purpose of the simulation study was to compare the performance of differ-
ent model selection indices for determining the number of mixture components
at the higher-level in the multilevel LC model. These indices are BIC, AIC,
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AIC3, CAIC, ICOMP, and the validation log-likelihood. For BIC and CAIC
we use two versions, one with the number of groups and one with the total
number of individuals as the sample size.

Because we focus on detecting the correct number of group-level classes
rather than on detecting the correct number of individual-level classes, we
decided to keep the LC structure at the individual level fixed in our simula-
tion design. More specifically, we used a three-class model (Ly = 3) for six
binary responses (I = 6). The class-specific “positive” response probabilities —
P(yrji = 1|xj = la) — for the six items were set to {0.8,0.8,0.8,0.8,0.8,0.8},
{0.8,0.8,0.8,0.2,0.2,0.2}, and {0.2,0.2,0.2,0.2,0.2,0.2} for LCs 1, 2, and 3,
respectively. So LC 1 has a high probability of giving the positive response for
all items, LC 3 a low probability for all items, and LC 2 a low probability for
3 items and a high probability for the other 3 items. Our choice of number of
items, number of classes, and response probabilities is such that we obtain a
condition with moderately separated classes. To give an impression of the level
of the separation, our setting corresponds to an entropy based R-squared — a
measure indicating how well one can predict the class memberships based on
the observed responses — of about 0.63. By using moderately separated classes
at the lower level, we make sure that detection of the group-level classes is
neither made too easy nor too difficult as far as this part of the model is
concerned.

So far we have discussed the factors that were fixed in the simulation
study. The three factors which were varied are the lower-level sample size, the
higher-level sample size, and the number of LCs at the higher-level. Previous
simulation studies have shown that the sample size, the number of classes,
and the level of separation between the classes are the most important factors
affecting the performance of model selection measures in the context mixture
models [4]. It should be noted that the separation between the higher-level
classes can be manipulated in several ways; that is, by increasing the level of
separation of the lower-level classes, by increasing the number of individuals
per group (the lower-level sample size ny), and by making the P(xy;|wy) more
different across values of wy. We used only the lower-level sample size ny to
manipulate the level of separation. More specifically by using ni = 5, 10, 15, 20
and 30 for the number of the lower-level units per higher-level unit, we created
conditions ranging from very low to very high separation. The corresponding
entropy-based R-squared values are given below after discussing the other
design factors.

The other two factors that were varied are the higher-level sample size,
for which we used K = 50 and 500, and the number of classes at the higher
level, for which we used L3 = 2 and 3. In the condition with two higher-
level classes, the model probabilities were set to P(wy = {1,2}) = {0.5,0.5},
Pz, = {1,2,3}wg = 1) = {0.2,0.2,0.6}, and P(xy; = {1,2,3}w, = 2) =
{0.4,0.4,0.2}. These probabilities are such that the two LCs are moderately
distinguishable. The condition with three LCs at the higher-level was created
by splitting the above second class into two new classes. For this condition,
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the model probabilities were P(wy = {1,2,3}) = {0.5,0.25,0.25}, P(zx; =
{1,2,3}wr = 1) ={0.2,0.2,0.6}, P(xy; = {1,2,3}|wy = 2) = {0.2,0.6,0.2},
and P(zr; = {1,2,3}wr = 3) = {0.6,0.2,0.2}. Also here we have moderately
different group-level classes. The five different nj settings yielded entropy-
based R-squared values of 0.35, 0.57, 0.71, 0.80, and 0.90 for the 2 class con-
dition, and 0.36, 0.58, 0.73, 0.82, and 0.92 for the 3 class condition. This shows
that in our settings separation was very much affected by n; but not so much
by L3.

In total the simulation study design contained 5 x 2 x 2 = 20 cells which
are all possible combinations of the three design factors. For each of these
cells we generate 100 data sets. With each data set we estimated multilevel
LC models with a fixed number of LCs at the lower-level (Ly = 3) and with
different numbers of LCs at the higher-level.

4 Results of the simulation study

As was indicated above, the main goal of the simulation study was to deter-
mine which of the investigated model selection measures is preferable for the
deciding about the number of higher-level mixture components in multilevel
mixture models. For BIC and CAIC, which both have the sample size in their
formula, we used two versions, one based on the number of higher-level ob-
servations (K) and one based on the total number of lower-level observations
(Knk)

Table 1 reports the results of our simulation study per design factor ag-
gregated over the other two design factors. For each level of the three design
factors and for each investigated fit measure, we indicate the number of sim-
ulation replications in which the true number higher-level latent classes was
underestimated (Ls < L), estimated correctly (Ls = Ls), and overestimated
(L3 > Lg)

Let us first have a look at the results for BIC and CAIC using the two
different definitions for the sample size. From the results in Table 1, one can
easily see that both for BIC and CAIC using the number of groups as sample
size is the best option. Underestimation of the number of mixture components
it is much more likely with BIC(Kny) or CAIC(Kny) than with BIC(K) or
CAIC(K). This is especially true for the conditions corresponding to low or
moderate levels of separation (small or middle ny values), as well as for the
smaller higher-level sample size.

Comparison of the results of all eight investigated fit measures shows that
overall AIC3 performs best. The results for BIC(K), CAIC(K), ICOMP are
similar in the sense that they perform best when the number of individuals
per group (the level of separation) is large enough (n; > 15). AIC, on the
other hand, performs best when separation is weak (ny = 5) and when the
sample size is small. As was found in other studies, AIC3 seems to provide
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Nk K L3

5 10 15 20 30 50 500 2 3  Total
BIC(Kny) Ls<Ls 233131 67 18 1 400 50 136314 450
Ls=1Ls 167269 333382399 600950 864 686 1550

Ls > Ls 00 0 0 0 0 0 0 0 0
BIC(K) Ls<Ls 199 83 26 6 0 286 28 93 221 314
Ls=1Ls 201317374394399 713972 907 778 1685

Ls > Ls 0 0 0 0 1 1 0 0 1 1
CAIC(Kny) Ls<Ls 253146 81 33 5 456 62 153365 518
Ls=1Ls 147254319 367 395 544 938 847 635 1482

Ls>Ls 00 0 0 0 0 0 0 0 0
CAIC(K) Ls<Ls 228101 46 9 0 337 47 114270 384
Ls=1Ls 172299 354 391 400 663 953 886 730 1616

Ls>Ls 00 0 0 0 0 0 0 0 0
AIC Ls<Ls 10345 9 3 0 158 5 41 122 163

L3 =1L3 278 320 344 349 355 766 880 853 793 1646

L3> L3 16 35 47 48 45 76 115 106 85 191
AIC3 L3 < L3 155 68 13 5 0 236 5 70 171 241

L3 =1L3 245 323 375 389 385 745972 904 813 1717

L3> L3 0 9 12 6 15 19 23 26 16 42

ICOMP Ls<Ls 2088 20 4 0 274 43 91 226 317
Ls=1Ls  191310380392398 714957 900771 1671
Ls>Ls 1 5 0 4 2 12 0 9 3 12
Validation Ls < Ls 78 37 9 1 0 121 4 46 79 125

log-likelihood Lz = Ls 215 239 272 286 291 582 721 691 612 1303
Ly > Ls 107 124 119 113 109 297 275 263 309 572
Table 1. The number of simulation replicates in which the investigated fit measure

underestimated, correctly estimated, and overestimated the number of group-level
mixture components for each of the three conditions.

a compromise between these two sets of measures [4]. In contrast to our ex-
pectations, the validation log-likelihood did not perform very well: it tends to
overestimate the number of mixture components under all conditions.

5 Conclusions

Based on the simulation study we can draw two important conclusions. The
first concerns the preferred sample size definition in the BIC and CAIC for-
mulae. Our results show clearly that it is much better to use the number of
higher-level units as the sample size instead of the total number of lower-
level unit. Using the latter makes it much more likely that the number of
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mixture components is underestimated, especially if the separation between
components is weak or moderate.

The second set of conclusions concern the comparison of all investigated
measures. These results are very much in agreement with what is known from
simulation studies on standard mixture models. BIC, CAIC, and ICOMP
perform very well when the level of separation and the sample size are large
enough. In contrast, AIC seems to be the preferable method when the sample
size is small and when the level of separation is low. AIC3 offers a good com-
promise between the tendency of BIC, CAIC, and ICOMP to underestimate
the number of mixture components with low separation and small sample sizes
and the tendency of AIC to overestimate the number of mixture components
with higher separation and large sample sizes.

As in any simulation study, we had to make various choices which limit
the range of our conclusions. First of all, we concentrated on selecting the
number of classes at the higher level assuming that the number of classes at
the lower level is known. Further research is needed to determine whether the
same conclusions apply for selecting the number of lower-level classes, or for
selecting simultaneously the number of lower- and higher-level classes. Second,
we used a classical LC model for binary responses whereas multilevel mixture
models can also be used with other types of response variables. Finally, we
concentrated on the variant of the multilevel LC model in which only the
lower-level class proportions differ across higher-level classes. As was shown
when introducing the model, other multilevel LC models may assume that
response variables are directly related to the group-level class membership.
It seems to be useful to replicate our simulation study for other types of
multilevel mixture models, as well as for response variables of other scale

types.
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