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Abstract
The sensitivity of multilevel logistic regression models for misspeci�cation of therandom e�ects distribution is studied. More speci�cally, it is investigated whetherusing a nonparametric speci�cation of the random e�ects distribution reduces biasand increases e�ciency when random e�ects are not normally distributed. For mod-erate intraclass correlations, this turns out to be true as long as the level-1 samplesize is not too small. However, when the level-1 sample size is very small (say 3), thestandard parametric approach outperforms the nonparametric approach, even whenthe random e�ects distribution is misspeci�ed. For small intraclass correlations, thetwo approaches perform equally well.
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1 Introduction
In the biomedical, social and behavioral sciences, it is common to collect datawith a nested, multilevel, or hierarchical structure. It is therefore not surpris-ing that the last decades there has been an increase in the use of multilevelmodels in these �elds (Hox, 2002; Skrondal and Rabe-Hesketh, 2004; Snijdersand Bosker, 1999). Examples of nested data structures include persons nestedwithin families, pupils nested within schools, patients nested within primary
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care physicians, and repeated measurements nested within subjects. In moregeneral terms, lower-level or level-1 observational units (persons, pupils, pa-tients, or repeated measurements) are nested within higher-level or level-2observational units (families, schools, primary care physicians, or subjects).
Speci�c for multilevel data sets is that observations are correlated; that is,level-1 units (pupils, time points) belonging to the same level-2 unit (schools,subjects) tend to be more alike than level-1 units from di�erent level-2 units.Methods for dealing with correlated data are usually classi�ed as marginal orconditional models (Lee and Nelder , 2004). In marginal models such as theGEE approach by Zeger, Liang, and Albert (1988), the correlation betweenobservations is treated as a nuisance factor. In contrast, in conditional mod-els, speci�cation of the dependence structure is part of the model building.Random e�ects models { sometimes also referred to as subject-speci�c models{ belong to the family of conditional models, since results are conditional onthe level-2 units' unobserved random e�ects. A limitation of random e�ectsmodels that may be problematic in particular types of applications is thatthese can only capture positive associations between nested observations. Al-ternative conditional models which can also yield negative associations are,for example, transition models in which a person's state at a particular timepoint is modeled conditional on the state at the previous time point.
In this research, we focus on conditional models which use random e�ects.Whereas initially random e�ects were introduced for linear regression models,currently they were also applied in combination with the more general classof generalized linear models, yielding what is often referred to as the family ofgeneralized linear mixed models (GLMMs) (Stiratelli et al., 1984; Breslow andClayton, 1993) or hierarchical generalized linear models (HGLMs) (Lee andNelder , 2004). Usually the unobserved random e�ects are assumed to comefrom a particular parametric distribution, typically multivariate normal (Bres-low and Clayton, 1993; Wol�nger and O'Connell, 1993). But it is clear thatparametric distributional assumptions about the random e�ects are unlikelyto hold in practice (Aitkin, 1999). Various studies found that misspeci�ca-tion of the distribution of random e�ects results in a light loss of e�ciency ofthe regression estimators (Neuhaus et al., 1992; Heagerty and Kurland, 2001;Maas and Hox, 2004).
As an alternative to using a mixing distribution from a parametric family,one may use a nonparametric speci�cation for the random e�ects distribution(Laird, 1978; Heckman and Singer, 1982). This involves using a discrete mix-ing distribution de�ned by a set of unknown locations and weights to approx-imate an underlying continuous mixing distribution with an unknown form.Maximum likelihood (ML) estimation of the resulting �nite mixture or latentclass model is straightforward using the Expectation-Maximization (EM) al-gorithm: since the likelihood is a �nite mixture no (numerical) integration is
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involved. By choosing the number of latent classes to maximize the likelihood,the nonparametric maximum likelihood (NPML) estimator is obtained (Laird,1978; Heckman and Singer, 1984; B�ohning, 2000). When used in the contextof regression analysis, one obtains what is sometimes referred to as a latentclass or mixture regression model (Leisch , 2004; Vermunt and van Dijk, 2001;Wedel and DeSarbo, 1994).
Latent class and random coe�cients regression models have always been seenas rather di�erent approaches for dealing with dependent observations. Re-cently, the connection between the two approaches was stressed and it wasshown that latent class regression methods cannot only be used to identifylatent classes with di�erent regression coe�cients, but may also yield the typ-ical random-coe�cient modelling output; that is, estimates for the �xed andrandom e�ects (Aitkin, 1999; Hartzel et al., 2001; Rabe-Hesketh et al., 2005;Vermunt and van Dijk, 2001). As pointed out by Aitkin (1999), an impor-tant advantage of such a nonparametric approach is that there is no needto introduce possibly inappropriate and unveri�able assumptions about thedistribution of the random e�ects. But this is certainly not enough to preferthis particular method, which is generally available in mixture modelling soft-ware such as GLLAMM (Skrondal and Rabe-Hesketh, 2004), Latent GOLD(Vermunt and Magidson, 2005), and Mplus (M�uthen and M�uthen, 1998).
Based on a limited scope simulation study for a random intercept ordinallogit model, Hartzel et al. (2001) concluded tentatively that the parametricapproach yields more reliable estimates for both the �xed and random inter-cept terms, although it had some di�culties when the random e�ects distri-bution was extremely skewed. For the remaining �xed e�ects both approachesproduce essentially unbiased estimates. They indicated that more research isneeded to provide a �nal conclusion about the relative performance of the twomethods. In contrast, based on another small simulation study for three typesof GLMMs, Agresti et al. (2004) advised always to use a nonparametric in-stead of a parametric speci�cation for the random e�ects distribution in orderto prevent loss of e�ciency. Though the simulation studies by Hartzel et al.(2001) and Agresti et al. (2004) seem to yield contradictory conclusions, closerinspection of their designs provides a possible explanation for the encountereddi�erences. Hartzel et al. (2001) used small lower-level sample sizes (4 and7) combined with a moderate higher-level sample size (100) and small valuesof the random e�ects variances. Agresti et al. (2004) used moderate to largelower-level sample sizes (10, 20, and 100) combined with small higher-levelsample sizes (10 and 30) and moderate to large random e�ects variances. Ourhypothesis is that the di�erences in conclusions are the result of these di�er-ences in simulation set up, and that lower-level and higher-level sample sizesand random e�ects variances should be more systematically varied to providea complete answer.
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This paper provides such a more systematic comparison of the two randome�ects approaches for the two-level random intercept logistic regression model.More speci�cally, the two research questions that are addressed are:
(1) Should the nonparametric model be preferred in situations in which un-derlying assumptions of the parametric model do not hold?(2) Does it harm using a nonparametric model { say for practical reasons {when the assumptions of the parametric model hold?
A simulation study was conducted in which a broad range of data sets weregenerated in order to cover all typical populations in biomedical, social, andbehavioral science research. More speci�cally, we varied the true distributionof the random e�ects, the size of the intraclass correlation coe�cient (ICC),and the level-1 and level-2 sample sizes. We are interested in whether thesesimulation design factors a�ect the answers to our two research questions.
The next section describes the models of interest. Section 3 discusses the setup of the simulation study. Results of the simulation study are presentedin Section 4. In Section 5, we present an application of the parametric andnonparametric random e�ects logistic regression model to a real life data set.The last section provides the reader with a discussion along with conclusionsand practical recommendations.

2 The two-level random-intercept model
This section introduces two-level generalized linear models with either a para-metric or a nonparametric random intercept. Let yij denote the observedresponse of the level-1 unit i, i = 1; : : : ; nj, belonging to level-2 unit j,j = 1; : : : ; n, xij the vector of explanatory variables, and uj the unobserv-able common random e�ect for all level-1 units within level-2 unit j. Thevector xij may contain di�erent types of explanatory variables; that is, vari-ables that vary between level-1 units, between level-2 units, or between bothlevel-1 and level-2 units, as well as (cross-level) interaction terms. In a GLMM,the conditional mean of yij, E[yijjxij; uj], denoted by �ij is related to the linearpredictor as follows:

g(�ij) = �0xij + uj; (1)
where g(�) is what is referred to as the link function. Note that this is thespecial case in which only the intercept is random.
The typical speci�cation for the random intercept term uj, j = 1; : : : ; n, isto assume that this is an independently and identically distributed normal
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random variable with mean zero and variance �2u; that is, uj � N(0; �2u).An equivalent alternative is to treat the mean as a free parameter and �xthe � for the intercept to 0. Consistent with this distributional assumption,parameters of GLMMs are usually estimated by ML, where construction ofthe likelihood function is simpli�ed by the fact that yij can be assumed tobe independent within level-2 units conditionally on the observed predictorsand the unobserved random e�ects. ML estimation involves maximizing thefollowing marginal likelihood function:
L(�; �2u) = nY

j=1
Z
u
" njY
i=1 f(yijjxij; u;�)

# f(u;�2u)du; (2)

where f(yijjxij; u;�) represents the error distribution at level-1 or, equiva-lently, the conditional density of yij. Note that the �xed e�ects � and thevariance �2u are the unknown parameters to be estimated. Except for the situ-ation in which a continuous response variable is modelled with an identity linkfunction and a normal level-1 error distribution, maximization of the likeli-hood requires the optimization of a numerically integrated likelihood. For thisnumerical integration, one may use a technique called Gauss-Hermite quadra-ture, which uses an optimal discrete approximations of the normal distribu-tion. The most common algorithms for maximizing the resulting numericallyintegrated marginal likelihood are the EM algorithm (Agresti et al., 2000;Bock and Aitkin, 1981; Dempster et al., 1977) and gradient methods, suchas the Fisher scoring (Longford, 1987) and Newton-Raphson algorithm (Panand Thompson, 2003; Rabe-Hesketh et al., 2004). In our study we used nu-merical integration with 50 nodes. For maximization a combination of EMand Newton-Raphson was used, where the estimation process starts with EMiterations and switches to Newton-Raphson when the relative change in theparameter values is very small.
As was indicated in the introduction, usually nothing or very little it is knownabout the underlying distribution of the random e�ects. To prevent possiblemisspeci�cation, it may therefore be attractive to assume the random e�ectsuj to come from an unspeci�ed mixing distribution concentrated on a �nitenumber of latent classes or mass points (Aitkin, 1999; B�ohning, 2000; Heckmanand Singer, 1984; Laird, 1978). Let K denote the number of latent classes,k a particular latent class, and u�k the unknown value of the random e�ectuj when level-2 unit j belongs to latent class k, and let �k = P (uj = u�k)represent the probability that a randomly selected level-2 unit belongs tolatent class k. Using such a K-class discrete characterization of the randome�ects distribution yields the following marginal likelihood function:

L(�;u�;�) = nY
j=1

KX
k=1

njY
i=1 f(yijjxij; uj = u�k;�) �k; (3)
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where f(yijjxij; uj = u�k;�) is the class-speci�c conditional density functionof yij. Note that �k > 0 and PKk=1 �k = 1, and that moreover one identifyinglocation constraint should be imposed on the u�k parameters, e.g.,PKk=1 u�k �k =0, which implies that the u�k are centered. The unknown parameters to beestimated are the �xed e�ects �, K � 1 free mass point locations u�k, andK � 1 free mass point weights �k. Even though the random e�ects varianceitself is not a model parameter, it can easily be obtained as follows: �2u� =PKk=1 (u�k)2 �k.
Maximization of the marginal likelihood function in equation (3) for a speci�cK can, as in the parametric case, be achieved by means of the EM and/orNewton-Raphson algorithm. The use of multiple sets of starting values is usu-ally required because of the risk of ending up in a local maximum.
In a standard �nite mixture modelling context one estimates the model ofinterest for di�erent values of K and stops increasing the number of classeswhen the model �t no longer improves according to the BIC, AIC or anothercriterion. However, to obtain the solution corresponding to the NPML estimateof the random e�ects distribution, we not only have to maximize (3) for speci�cvalues of K; but we simultaneously have to �nd the value of K { say KNPML{ that yields the largest marginal likelihood value. In other words, we haveto �nd the saturation point at which increasing K no longer results in anincrease of the likelihood function. A method to �nd KNPML proposed byvarious authors involves introducing latent classes one by one using directional(Gateaux) derivatives (B�ohning, 2000; Lindsay, 1983, 1995; Rabe-Hesketh etal., 2003). A much simpler alternative approach is to estimate the model witha large number of latent classes, KMAX . When KMAX > KNPML, the MLestimates for u�k will be equal for some latent classes and/or the estimatefor �k will be equal to zero for some latent classes (B�ohning, 2000). In otherwords, classes may be merged (equal u�k) and/or removed (�k equal to zero).To prevent local maxima this procedure should be repeated with several setsof starting values. Moreover, to guarantee that also the more di�cult to �ndmass points located at �1 and +1 are encountered when needed in theNPML solution, it is a good idea to include latent classes located at �1 and+1 in each starting set (Hartzel et al., 2001; Wood and Hinde, 1987). Inthe dichotomous response case we will deal with in the next sections, thesecorrespond to success probabilities equal to 0 and 1, respectively.

3 Design of the simulation study
To keep the simulation study feasible, we will restrict ourselves to one partic-ular type of GLMM, namely to the multilevel binary logistic regression model.The reason for this choice is that whereas binary outcome variables are very
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commonly used in sociological, behavioral, and biomedical studies, most at-tention is typically paid to models for continuous responses. Moreover, it iswell documented that binary data are more sensitive to speci�cation issuesin multilevel analysis than continuous variables: in linear regression analysis,fully ignoring a random intercept does not bias parameter estimates, which isnot the case in logistic regression analysis (Agresti et al., 2000).
The population model we use is a two-level random-intercept logistic regressionmodel with one level-1 and one level-2 explanatory variable; that is,

logit(�ij) = �0 + �1x1ij + �2x2j + uj: (4)
We assume that x1ij { the explanatory variable for level-1 unit i in level-2unit j { takes on the values 0 and 1 with probability 0.5, and that x2j { theexplanatory variable for level-2 unit j { takes on the values 0 and 1 withprobability 0.5 independently of x1ij. For the �xed intercept �0 and regressionslopes �1 and �2, we used the same values across simulation replications. Morespeci�cally, we set their values to: �0 = �2, �1 = �2 = 2. This yields largebut not too extreme di�erences between the response probabilities for uj = 0.More speci�cally, the corresponding response probabilities for the four possiblecombination of explanatory variables are
P (y = 1jx = 1; z = 1; u = 0) = e2=(1 + e2) = 0:88,P (y = 1jx = 1; z = 0; u = 0) = e0=(1 + e0) = 0:5,P (y = 1jx = 0; x = 1; u = 0) = e0=(1 + e0) = 0:5
and
P (y = 1jx = 0; z = 0; u = 0) = e�2=(1 + e�2) = 0:12.
So far we discussed only the elements that were not varied in the simulationsstudy. The factors that were varied are the speci�cation of the random e�ectsdistribution and the level-1 and level-2 sample sizes. We wish to assess how theparametric and nonparametric models perform under di�erent true randome�ects distributions and whether the performance depends on the level-1 andlevel-2 sample sizes.
Let us �rst look at the various speci�cations we used for the random e�ectsdistribution. We not only varied the form of the distribution, but also itsvariance. For the latter, it is important to note that in a logit model the level-1 errors are assumed to come from a logistic distribution with mean 0 andvariance �2=3 � 3:29. The ICC is therefore equal to:

ICC = �2u=(�2u + 3:29): (5)
7



Hox and Maas (2001) found that the value of the ICC may a�ect the accu-racy of the estimates, which is why we included this factor in the simulationdesign. We set the ICC equal to 0:1 and 0:3, which corresponds to small andmoderate values. The random e�ects variance �2u is easily derived from theabove formula: �2u = 3:29 � ICC = (1� ICC).
Data sets were generated using six distributional forms for the random e�ects,three continuous distributions { exponential, normal, and uniform { and threetwo-class discrete mixing distributions with membership probabilities of 0:10,0:25, and 0:50 for the �rst class. With these choices we have apart from thenormal distribution, distributions that considerably deviate from normal interms of skewness, kurtosis, and discontinuity.
The other two factors that were varied are the level-1 and level-2 sample sizes.More speci�cally, for the number of level-2 units we used n = 30, 100, and1000 and for the number of level-1 units nj = 3, 10, and 50. These samplesizes were chosen to be in agreement with the simulation studies of Kreft andde Leeuw (1998) and Maas and Hox (2004), and to cover the full range of small,moderate, and large sample sizes encountered in biomedical, behavioral, andsocial science research. For example, in family surveys and in panel studies thecombination of n = 1000 and nj = 3 is rather common. Moreover, accordingto Kreft and de Leeuw (1998), n = 30 is the minimum number of level-2 unitsrequired for a meaningful multilevel analysis with random e�ects models. Inorganizational surveys, it is common to have about as many as 50 level-1 unitswithin each level-2 unit, mostly combined with 30 to 100 level-2 units.
Combining the 4 design factors { ICC value, distributional form, level-2 sam-ple size, and level-1 sample size { yields a total of 2�6�3�3 = 108 conditions.We generated 1000 data sets for each of these conditions. For each simulateddata set, the unknown model parameters were estimated using the parametricapproach assuming that random e�ects come from a normal distribution andusing the NPML approach.

4 Results of the simulation study
The aim of the simulation study was to determine the bias and relative e�-ciency of the parametric and nonparametric random e�ects approaches underdi�erent true random e�ects distributions and sample sizes. Let � be one ofthe parameters of interest, in our case the �xed e�ects �0, �1, and �2, andthe standard deviation of the random e�ects distribution �u, which in thenonparametric case is computed from the nodes' locations and weights. TheML estimate of � obtained in replication s, s = 1; : : : ; 1000, is denoted byb�s. Rather than using the standard de�nitions of bias and relative e�ciency {

8



Table 1E�ciency for the conditions n = 1000, ICC = 0:3, and nj = 50 or nj = 10nj True distribution Model j�̂0s � �0j j�̂1s � �1j j�̂2s � �2j j�̂s � �j50 Exponential Normal 0.05 0.02 0.05 0.11Nonparametric 0.04 0.02 0.03 0.06Normal Normal 0.04 0.02 0.06 0.02Nonparametric 0.04 0.02 0.06 0.02Uniform Normal 0.04 0.02 0.06 0.02Nonparametric 0.04 0.02 0.05 0.02Discrete with �1 = 0:1 Normal 0.09 0.02 0.06 0.16Nonparametric 0.03 0.02 0.02 0.04Discrete with �1 = 0:25 Normal 0.07 0.02 0.06 0.02Nonparametric 0.03 0.02 0.02 0.02Discrete with �1 = 0:5 Normal 0.04 0.02 0.07 0.05Nonparametric 0.03 0.02 0.02 0.0110 Exponential Normal 0.08 0.04 0.06 0.11Nonparametric 0.06 0.04 0.05 0.10Normal Normal 0.05 0.04 0.06 0.04Nonparametric 0.05 0.04 0.06 0.03Uniform Normal 0.05 0.04 0.07 0.06Nonparametric 0.05 0.04 0.07 0.03Discrete with �1 = 0:1 Normal 0.13 0.04 0.05 0.23Nonparametric 0.05 0.04 0.04 0.06Discrete with �1 = 0:25 Normal 0.07 0.04 0.06 0.04Nonparametric 0.05 0.04 0.05 0.03Discrete with �1 = 0:5 Normal 0.06 0.04 0.08 0.11Nonparametric 0.05 0.04 0.06 0.02
E(b�s � �) and E h(b�s � �)2i { we used a more robust de�nition to prevent thatthe results are a�ected by a very small number of replications with boundaryestimates. More speci�cally, when using the NPML estimator, especially inthe conditions with large number of level-2 units and small number of level-1units, there is a (small) positive probability that one of the latent classes islocated at �1 or +1. When such boundary estimates may occur E(b�s � �)and E h(b�s � �)2i do not exist. This not only to applies to �u, but also to�0, �1, and �2. To prevent this problem from occurring we de�ne bias as themedian of (b�s � �) and relative e�ciency as the median of bj�s � �j. For similarapproaches, see Agresti et al. (2004); Galindo-Garre et al. (2004).
Table 1 reports results on relative e�ciency for a level-2 sample size of 1000,level-1 sample sizes of 50 and 10, and ICC = 0:3. It can be observed, that theassumption of a normally distributed random intercept can give a moderateloss of e�ciency compared to the NPML estimator when the true distributionof random intercept is continuous but not normal. On the other hand, whenthe true random intercept is normal, a nonparametric approach does not yieldany loss of e�ciency. In all situations with a discrete true distribution, we �nda considerable loss of e�ciency when a misspeci�ed parametric model is used.Though details are not provided here, very similar results were obtained forthe same level-1 and ICC conditions { thus with 50 and 10 level-1 units andICC = 0:3 { but with the smaller numbers of 100 and 30 level-2 units.
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Table 2E�ciency for the conditions nj = 3, ICC = 0:3, and n = 1000, n = 100, or n = 30n True distribution Model j�̂0s � �0j j�̂1s � �1j j�̂2s � �2j j�̂s � �j1000 Exponential Normal 0.10 0.08 0.09 0.12Nonparametric 0.11 0.09 0.09 0.20Normal Normal 0.07 0.08 0.10 0.07Nonparametric 0.08 0.08 0.10 0.11Uniform Normal 0.08 0.08 0.10 0.08Nonparametric 0.09 0.08 0.10 0.08Discrete with �1 = 0:1 Normal 0.11 0.07 0.08 0.17Nonparametric 0.11 0.08 0.07 0.21Discrete with �1 = 0:25 Normal 0.08 0.08 0.09 0.07Nonparametric 0.09 0.08 0.09 0.07Discrete with �1 = 0:5 Normal 0.08 0.08 0.10 0.06Nonparametric 0.09 0.08 0.10 0.10100 Exponential Normal 0.24 0.24 0.28 0.24Nonparametric 0.30 0.26 0.29 0.33Normal Normal 0.26 0.25 0.29 0.21Nonparametric 0.28 0.27 0.28 0.26Uniform Normal 0.24 0.25 0.29 0.21Nonparametric 0.29 0.27 0.31 0.24Discrete with �1 = 0:1 Normal 0.25 0.23 0.27 0.33Nonparametric 0.29 0.24 0.26 0.54Discrete with �1 = 0:25 Normal 0.25 0.25 0.30 0.22Nonparametric 0.29 0.25 0.30 0.25Discrete with �1 = 0:5 Normal 0.25 0.25 0.31 0.22Nonparametric 0.28 0.26 0.32 0.2230 Exponential Normal 0.46 0.45 0.52 0.45Nonparametric 0.58 0.50 0.61 0.98Normal Normal 0.46 0.47 0.54 0.42Nonparametric 0.59 0.54 0.64 0.68Uniform Normal 0.46 0.51 0.54 0.41Nonparametric 0.63 0.58 0.65 0.80Discrete with p (u01) = 0:1 Normal 0.45 0.47 0.54 0.57Nonparametric 0.58 0.53 0.59 1.19Discrete with p (u01) = 0:25 Normal 0.46 0.49 0.55 0.44Nonparametric 0.56 0.54 0.64 0.73Discrete with p (u01) = 0:5 Normal 0.46 0.48 0.58 0.42Nonparametric 0.61 0.54 0.65 0.59
There is no need to present all the details on the results for ICC = 0:1, thecondition corresponding to a small level-2 variance, since these can easily besummarized. Irrespective of the level-1 and level-2 sample sizes and the formof the true random e�ects distribution, the parametric and nonparametricestimates are equally e�cient. This holds even if the distribution of randome�ects is misspeci�ed.
The e�ciency estimates obtained with the smallest level-1 unit sample size(nj = 3) and the largest ICC (ICC = 0:3) are reported in Table 2. Underthese conditions, the parametric approach clearly outperforms the nonpara-metric approach. The former is more e�cient irrespective of whether the trueunderlying distribution is misspeci�ed or not. Even for the discrete true dis-tributions, the parametric approach is the preferred one in terms of e�ciency.The di�erences become larger as the level-2 sample size decreases and are
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Table 3Bias for the conditions n = 1000, ICC = 0:3, and nj = 50 or nj = 10nj True distribution Model �̂0s � �0 �̂1s � �1 �̂2s � �2 �̂s � �50 Exponential Normal -0.04 0.00 0.01 -0.11*Nonparametric -0.02 0.00 0.00 -0.05Normal Normal 0.00 0.00 0.00 -0.01Nonparametric 0.00 0.00 0.00 0.00Uniform Normal -0.01 0.00 0.01 0.02Nonparametric 0.00 0.00 0.00 0.00Discrete with p(u1) = 0:5 Normal 0.09 0.01 0.04 -0.16*Nonparametric 0.00 0.00 0.00 0.00Discrete with p (u01) = 0:25 Normal 0.06 0.00 0.02 0.02Nonparametric 0.00 0.00 0.00 0.00Discrete with p (u01) = 0:1 Normal -0.02 0.00 0.05 0.05Nonparametric 0.00 0.00 0.00 0.0010 Exponential Normal -0.07 0.01 0.00 -0.11*Nonparametric -0.04 0.01 0.01 -0.09*Normal Normal 0.00 0.00 0.01 0.00Nonparametric 0.00 0.00 0.01 -0.01Uniform Normal -0.01 0.00 0.02 0.06Nonparametric 0.00 0.01 0.01 0.01Discrete with p (u01) = 0:5 Normal 0.13* 0.00 0.02 -0.23*Nonparametric 0.01 0.01 0.01 -0.01Discrete with p (u01) = 0:25 Normal 0.06 0.00 0.00 0.02Nonparametric -0.01 0.01 0.01 0.01Discrete with p (u01) = 0:1 Normal -0.03 0.01 0.05 0.11*Nonparametric -0.02 0.01 0.02 0.01
? Cases with medians absolute value over 5%.
larger for �u than for the � parameters.
The second evaluation criterion of interest is the bias in the parameter es-timates. As was indicated above, we quanti�ed bias as the median of thedi�erence between estimated and true parameter value across simulation repli-cations. Table 3 provides the estimated biases of the parameter estimates fora level-2 unit sample size of 1000, level-1 unit sample sizes of 50 or 10, andICC = 0:3, and Table 4 for the 3 conditions with level-1 sample size of 3 andICC = 0:3. Reported biases are marked by a \*" in these two tables whenthey are larger than 5% of true parameter value.
The conclusions that can be derived from Tables 3 and 4 are similar to thosefrom Tables 1 and 2. Table 3 shows that the bias of the NPML estimator isnegligible for all true distributions. The parametric estimator yields biasedestimates for �u and �0 when the true distribution is discrete or when thetrue distribution is continuous but asymmetric (exponential distribution). Al-though not reported here, very similar results were obtained when the numberof level-2 units is decreased to 100 and 30 (and level-1 and ICC settings keptconstant).
As was also the case for e�ciency, in the ICC = 0:1 conditions, the parametricand nonparametric approach perform equally well in terms of bias (results arenot listed here). All biases are negligible, irrespectively of whether the random
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Table 4Bias for the conditions nj = 3, ICC = 0:3, and n = 1000, n = 100, or n = 30n True distribution Model �̂0s � �0 �̂1s � �1 �̂2s � �2 �̂s � �1000 Exponential Normal -0.08 0.01 0.01 -0.11*Nonparametric -0.08 0.02 0.02 -0.18*Normal Normal -0.01 0.01 0.01 0.00Nonparametric -0.02 0.01 0.01 -0.07Uniform Normal -0.01 0.01 0.02 0.06Nonparametric -0.01 0.01 0.03 0.03Discrete with p (u01) = 0:5 Normal 0.02 0.01 0.01 -0.05Nonparametric 0.11* 0.02 0.03 -0.21*Discrete with p (u01) = 0:25 Normal 0.07 0.00 0.01 0.01Nonparametric 0.00 0.02 0.03 -0.01Discrete with p (u01) = 0:1 Normal -0.02 0.02 0.02 0.01Nonparametric -0.03 0.03 0.03 0.10*100 Exponential Normal -0.07 0.02 0.00 -0.14*Nonparametric -0.11* 0.06 0.06 -0.17*Normal Normal -0.02 0.03 0.03 -0.04Nonparametric -0.06 0.07 0.10* -0.06Uniform Normal -0.02 0.01 0.02 0.03Nonparametric -0.07 0.05 0.10* 0.02Discrete with p (u01) = 0:5 Normal 0.06 0.00 0.02 -0.29*Nonparametric 0.13* 0.08 0.10* -0.34*Discrete with p (u01) = 0:25 Normal 0.09 0.01 0.01 -0.04Nonparametric -0.02 0.06 0.09 0.01Discrete with p (u01) = 0:1 Normal -0.02 0.03 0.04 0.06Nonparametric -0.09 0.09 0.12* 0.09*30 Exponential Normal -0.11* 0.05 0.01 -0.19*Nonparametric -0.21* 0.19* 0.19* -0.20*Normal Normal -0.02 0.04 0.07 -0.10*Nonparametric -0.19* 0.19* 0.31* -0.11*Uniform Normal -0.02 0.03 0.04 0.01Nonparametric -0.19* 0.20* 0.24* 0.07Discrete with p (u01) = 0:5 Normal 0.00 0.07 0.04 -0.48*Nonparametric 0.11* 0.24* 0.26* -0.61*Discrete with p (u01) = 0:25 Normal 0.09 0.08 0.02 -0.16*Nonparametric -0.09 0.22* 0.25* -0.08*Discrete with p (u01) = 0:1 Normal -0.05 0.04 0.05 0.00Nonparametric -0.24* 0.18* 0.28* 0.10*
? Cases with medians absolute value over 5%.
e�ect distribution is correctly speci�ed or not.
The results reported in Table 4 show that with a small level-1 sample size andlarge ICC, the nonparametric approach performs worse than the parametricone even when in the latter the underlying random intercept distribution ismisspeci�ed.

5 Real data example
The use of logistic regression analysis with a random intercept is illustratedwith a data set from the 1988 Bangladesh Fertility Survey (Huq and Cle-
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Table 5Parameter estimates and log-likelihood values for the logistic regression modelsestimated with the 1988 Bangladesh Fertility Survey data setNo random intercept Parametric NonparametricCoef SE Coef SE Coef SEIntercept -1.568 0.126 -1.690 0.148 -1.664 .No children 0.000 . 0.000 .1 child 1.059 0.152 1.109 0.158 1.100 0.1592 children 1.288 0.167 1.377 0.175 1.368 0.1763 or more children 1.216 0.171 1.346 0.180 1.327 0.181Age -0.024 0.008 -0.027 0.008 -0.026 0.008Urban 0.797 0.105 0.732 0.120 0.719 0.122
Intercept Std. Dev. 0.464 0.079 0.472 .ICC 0.061 0.063
Log-likelihood -1228.365 -1206.674 -1204.523
land, 1990). It contains information on 1934 women who live in 60 areas ofBangladesh. It is a two-level data set: women are the level-1 units which arenested within living areas, the level-2 units. The dependent variable is the useof contraceptives yes/no. Since this is a binary response variable, it is naturalto use a logit link function. Level-1 predictors are the woman's number ofliving children measured in four categories (no children, 1 child, 2 children,3 or more children), and the woman's age (centered around the mean). Thesingle level-2 predictor is type of region of residence (urban or rural). Numberof living children is used as a categorical predictor, which \no children" as thereference category.
Using the Latent GOLD 4.0 software (Vermunt and Magidson, 2005), we esti-mated a standard logistic regression model without random e�ects, as well asparametric and nonparametric random intercept models. For the nonparamet-ric model we used the \zero-in
ated" option to make sure that mass pointsat �1 and +1 are encountered. Table 5 reports the parameter estimatesand the value of the log-likelihood function for the three estimated models.Comparison of the log-likelihood values indicates that the random intercept isneeded. The nonparametric speci�cation yields a slightly larger log-likelihoodvalue than the parametric speci�cation. The NPML solution contains 5 masspoints which are located at -1.138, -2.342, -1.608, -1.867, and �1 with weightequal to 0.350, 0.255, 0.254, 0.1299, and 0.011, respectively.
The parameter estimates obtained with the parametric and nonparametricapproach are very similar in this application. This con�rms the results of oursimulation study in which we found that the two approaches yield almostindistinguishable results for small ICC values (note that the ICC is about0.06 in this application). It should be noted that we excluded the mass pointlocated at �1 and with a very small weight in the computation of the meanand the standard deviation of the intercept for the NPML solution. Inclusionof this mass point yields a mean equal to �1 and a standard deviation equal
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to 1.

6 Conclusions and discussion
The two questions that we wished to answer using the simulation study were1) whether the NPML estimator performs better in terms of bias and e�-ciency compared the parametric model when the latter is misspeci�ed, and2) whether the NPML estimator performs equally well in terms of bias ande�ciency compared the parametric model when the latter is correctly spec-i�ed. This was studied for small and large level-1 and level-2 sample sizes,for small and moderate ICC values, and for di�erent types of random e�ectsdistributions. We are now able to answer these two questions for the two-levelrandom intercept logistic regression model.
The simulation study showed that the results depend strongly on the level-1 sample size and on the ICC values. More speci�cally for the larger ICCvalue and moderate or large level-1 sample size, we found exactly what weexpected: the NPML method performs better than the parametric methodwhen assumptions of the latter are violated and equally well when they arenot violated. In such cases we should thus always use a NPML estimatorsince we do not know whether the assumptions hold. For small ICC values,both approaches perform equally well, so either of the two can be used insuch situations. Again, it does not harm using the NPML method when theassumptions of the parametric approach hold.
In one set of conditions the NPML method turned out to be problematic;that is, when the number of level-1 units is very small (nj = 3) and the ICCis not very small (ICC = 0:3). In these conditions the parametric approachoutperformed the NPML estimator even when the true underlying distributionof random intercept was far from normal. In other words, when the numberof level-1 units is very small, it is better to use a parametric random e�ectsmodel.
The results of our study are in agreement with the studies by Hartzel et al.(2001) and Agresti et al. (2004), which as mentioned in the introduction,yielded seemingly contradictory results. Similar to Hartzel et al. (2001), wefound that with small level-1 sample sizes it may be better to use a parametricrandom e�ects model, even if this misspeci�es the true random e�ects distribu-tion. Moreover, similar to Agresti et al. (2004), we found that with moderateand large level-1 sample sizes and larger ICC values, using a nonparamet-ric approach is preferred when the underlying assumptions of the parametricmodel do not hold and does not harm when they hold. In other words, thelevel-1 sample size and the ICC value are the critical factors.
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One limitation of our study is that, as in the studies by Hartzel et al. (2001)and Agresti et al. (2004), we investigated the performance of the methodsonly in terms of bias and e�ciency of the estimated �xed and random e�ectsparameters. We are aware of the fact that sometimes prediction of the randome�ects may even be more important than estimation of the �xed and randome�ects parameters. Another simulation study would be needed to determinehow well the various methods perform in terms of prediction.
Another limitation of our study is that it concerns logistic regression modelswith only a random intercept. It is not clear whether our �ndings can be gen-eralized to models containing also random slopes; that is, from the univariateto the multivariate random e�ects case. Random slopes introduce several ad-ditional complications, both in the parametric and nonparametric approach.In future research, we will investigate whether the conclusions drawn here alsoapply to models with random slopes.
In our study we investigated two di�erent speci�cations for the random e�ectsdistribution: the parametric approach with an underlying normal distributionand the nonparametric approach using an unspeci�ed discrete mixing distri-bution. As a third alternative one may use a combination of these two: a �nitemixture of normal distributions (Magder and Zeger, 1996; Verbeke and Molen-berghs, 2000). Whereas such an approach may have particular advantages,such as that contrary to the nonparametric approach it yields non-discreterandom e�ects, Agresti et al. (2004) obtained somewhat disappointing resultswith this approach in the context of a log linear model for an odds ratio.Nevertheless, we believe that this hybrid approach may be promising in othersituations.
Another topic that we did not address in this article is the possibility touse a semi-parametric approach in which the number of mass points is notincreased till the maximum of the log-likelihood is found, but in which insteada penalized log-likelihood is maximized (or minimized). A possibility may, forexample, be to select the number of mass points minimizing the BayesianInformation Criterion (BIC).
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