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Abstract

The sensitivity of multilevel logistic regression models for misspecification of the
random effects distribution is studied. More specifically, it is investigated whether
using a nonparametric specification of the random effects distribution reduces bias
and increases efficiency when random effects are not normally distributed. For mod-
erate intraclass correlations, this turns out to be true as long as the level-1 sample
size is not too small. However, when the level-1 sample size is very small (say 3), the
standard parametric approach outperforms the nonparametric approach, even when
the random effects distribution is misspecified. For small intraclass correlations, the
two approaches perform equally well.
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1 Introduction

In the biomedical, social and behavioral sciences, it is common to collect data
with a nested, multilevel, or hierarchical structure. It is therefore not surpris-
ing that the last decades there has been an increase in the use of multilevel
models in these fields (Hox, 2002; Skrondal and Rabe-Hesketh, 2004; Snijders
and Bosker, 1999). Examples of nested data structures include persons nested
within families, pupils nested within schools, patients nested within primary
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care physicians, and repeated measurements nested within subjects. In more
general terms, lower-level or level-1 observational units (persons, pupils, pa-
tients, or repeated measurements) are nested within higher-level or level-2
observational units (families, schools, primary care physicians, or subjects).

Specific for multilevel data sets is that observations are correlated; that is,
level-1 units (pupils, time points) belonging to the same level-2 unit (schools,
subjects) tend to be more alike than level-1 units from different level-2 units.
Methods for dealing with correlated data are usually classified as marginal or
conditional models (Lee and Nelder , 2004). In marginal models such as the
GEE approach by Zeger, Liang, and Albert (1988), the correlation between
observations is treated as a nuisance factor. In contrast, in conditional mod-
els, specification of the dependence structure is part of the model building.
Random effects models — sometimes also referred to as subject-specific models
— belong to the family of conditional models, since results are conditional on
the level-2 units’ unobserved random effects. A limitation of random effects
models that may be problematic in particular types of applications is that
these can only capture positive associations between nested observations. Al-
ternative conditional models which can also yield negative associations are,
for example, transition models in which a person’s state at a particular time
point is modeled conditional on the state at the previous time point.

In this research, we focus on conditional models which use random effects.
Whereas initially random effects were introduced for linear regression models,
currently they were also applied in combination with the more general class
of generalized linear models, yielding what is often referred to as the family of
generalized linear mixed models (GLMMs) (Stiratelli et al., 1984; Breslow and
Clayton, 1993) or hierarchical generalized linear models (HGLMs) (Lee and
Nelder , 2004). Usually the unobserved random effects are assumed to come
from a particular parametric distribution, typically multivariate normal (Bres-
low and Clayton, 1993; Wolfinger and O’Connell, 1993). But it is clear that
parametric distributional assumptions about the random effects are unlikely
to hold in practice (Aitkin, 1999). Various studies found that misspecifica-
tion of the distribution of random effects results in a light loss of efficiency of
the regression estimators (Neuhaus et al., 1992; Heagerty and Kurland, 2001;
Maas and Hox, 2004).

As an alternative to using a mixing distribution from a parametric family,
one may use a nonparametric specification for the random effects distribution
(Laird, 1978; Heckman and Singer, 1982). This involves using a discrete mix-
ing distribution defined by a set of unknown locations and weights to approx-
imate an underlying continuous mixing distribution with an unknown form.
Maximum likelihood (ML) estimation of the resulting finite mixture or latent
class model is straightforward using the Expectation-Maximization (EM) al-
gorithm: since the likelihood is a finite mixture no (numerical) integration is



involved. By choosing the number of latent classes to maximize the likelihood,
the nonparametric maximum likelihood (NPML) estimator is obtained (Laird,
1978; Heckman and Singer, 1984; Béhning, 2000). When used in the context
of regression analysis, one obtains what is sometimes referred to as a latent
class or mixture regression model (Leisch , 2004; Vermunt and van Dijk, 2001;
Wedel and DeSarbo, 1994).

Latent class and random coefficients regression models have always been seen
as rather different approaches for dealing with dependent observations. Re-
cently, the connection between the two approaches was stressed and it was
shown that latent class regression methods cannot only be used to identify
latent classes with different regression coefficients, but may also yield the typ-
ical random-coefficient modelling output; that is, estimates for the fixed and
random effects (Aitkin, 1999; Hartzel et al., 2001; Rabe-Hesketh et al., 2005;
Vermunt and van Dijk, 2001). As pointed out by Aitkin (1999), an impor-
tant advantage of such a nonparametric approach is that there is no need
to introduce possibly inappropriate and unverifiable assumptions about the
distribution of the random effects. But this is certainly not enough to prefer
this particular method, which is generally available in mixture modelling soft-
ware such as GLLAMM (Skrondal and Rabe-Hesketh, 2004), Latent GOLD
(Vermunt and Magidson, 2005), and Mplus (Mithen and Mithen, 1998).

Based on a limited scope simulation study for a random intercept ordinal
logit model, Hartzel et al. (2001) concluded tentatively that the parametric
approach yields more reliable estimates for both the fixed and random inter-
cept terms, although it had some difficulties when the random effects distri-
bution was extremely skewed. For the remaining fixed effects both approaches
produce essentially unbiased estimates. They indicated that more research is
needed to provide a final conclusion about the relative performance of the two
methods. In contrast, based on another small simulation study for three types
of GLMMs, Agresti et al. (2004) advised always to use a nonparametric in-
stead of a parametric specification for the random effects distribution in order
to prevent loss of efficiency. Though the simulation studies by Hartzel et al.
(2001) and Agresti et al. (2004) seem to yield contradictory conclusions, closer
inspection of their designs provides a possible explanation for the encountered
differences. Hartzel et al. (2001) used small lower-level sample sizes (4 and
7) combined with a moderate higher-level sample size (100) and small values
of the random effects variances. Agresti et al. (2004) used moderate to large
lower-level sample sizes (10, 20, and 100) combined with small higher-level
sample sizes (10 and 30) and moderate to large random effects variances. Our
hypothesis is that the differences in conclusions are the result of these differ-
ences in simulation set up, and that lower-level and higher-level sample sizes
and random effects variances should be more systematically varied to provide
a complete answer.



This paper provides such a more systematic comparison of the two random
effects approaches for the two-level random intercept logistic regression model.
More specifically, the two research questions that are addressed are:

(1) Should the nonparametric model be preferred in situations in which un-
derlying assumptions of the parametric model do not hold?

(2) Does it harm using a nonparametric model — say for practical reasons —
when the assumptions of the parametric model hold?

A simulation study was conducted in which a broad range of data sets were
generated in order to cover all typical populations in biomedical, social, and
behavioral science research. More specifically, we varied the true distribution
of the random effects, the size of the intraclass correlation coefficient (ICC),
and the level-1 and level-2 sample sizes. We are interested in whether these
simulation design factors affect the answers to our two research questions.

The next section describes the models of interest. Section 3 discusses the set
up of the simulation study. Results of the simulation study are presented
in Section 4. In Section 5, we present an application of the parametric and
nonparametric random effects logistic regression model to a real life data set.
The last section provides the reader with a discussion along with conclusions
and practical recommendations.

2 The two-level random-intercept model

This section introduces two-level generalized linear models with either a para-
metric or a nonparametric random intercept. Let y;; denote the observed
response of the level-1 unit 7, ¢ = 1,...,n;, belonging to level-2 unit j,
J = 1,...,n, z;; the vector of explanatory variables, and u; the unobserv-
able common random effect for all level-1 units within level-2 unit j. The
vector x;; may contain different types of explanatory variables; that is, vari-
ables that vary between level-1 units, between level-2 units, or between both
level-1 and level-2 units, as well as (cross-level) interaction terms. In a GLMM,
the conditional mean of y;;, Eyi;|€i;, u;], denoted by s, is related to the linear
predictor as follows:

9(pij) = B'eij + uj, (1)
where ¢(-) is what is referred to as the link function. Note that this is the
special case in which only the intercept is random.

The typical specification for the random intercept term w;, j = 1,...,n, is
to assume that this is an independently and identically distributed normal



random variable with mean zero and variance o2; that is, u; ~ N(0,02).
An equivalent alternative is to treat the mean as a free parameter and fix
the g for the intercept to 0. Consistent with this distributional assumption,
parameters of GLMMs are usually estimated by ML, where construction of
the likelihood function is simplified by the fact that y;; can be assumed to
be independent within level-2 units conditionally on the observed predictors
and the unobserved random effects. ML estimation involves maximizing the
following marginal likelihood function:

8.0 =11 [ [T solenui8)| s o2y, 2)
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where f(yi;|€;;, u; B) represents the error distribution at level-1 or, equiva-
lently, the conditional density of y;;. Note that the fixed effects 8 and the
variance o> are the unknown parameters to be estimated. Except for the situ-
ation in which a continuous response variable is modelled with an identity link
function and a normal level-1 error distribution, maximization of the likeli-
hood requires the optimization of a numerically integrated likelihood. For this
numerical integration, one may use a technique called Gauss-Hermite quadra-
ture, which uses an optimal discrete approximations of the normal distribu-
tion. The most common algorithms for maximizing the resulting numerically
integrated marginal likelihood are the EM algorithm (Agresti et al., 2000;
Bock and Aitkin, 1981; Dempster et al., 1977) and gradient methods, such
as the Fisher scoring (Longford, 1987) and Newton-Raphson algorithm (Pan
and Thompson, 2003; Rabe-Hesketh et al., 2004). In our study we used nu-
merical integration with 50 nodes. For maximization a combination of EM
and Newton-Raphson was used, where the estimation process starts with EM
iterations and switches to Newton-Raphson when the relative change in the
parameter values is very small.

As was indicated in the introduction, usually nothing or very little it is known
about the underlying distribution of the random effects. To prevent possible
misspecification, it may therefore be attractive to assume the random effects
u; to come from an unspecified mixing distribution concentrated on a finite
number of latent classes or mass points (Aitkin, 1999; Béhning, 2000; Heckman
and Singer, 1984; Laird, 1978). Let K denote the number of latent classes,
k a particular latent class, and uj the unknown value of the random effect
u; when level-2 unit j belongs to latent class k, and let m, = P(u; = uj)
represent the probability that a randomly selected level-2 unit belongs to
latent class k. Using such a K-class discrete characterization of the random
effects distribution yields the following marginal likelihood function:

n K nj
L(B,u", ) HZHf Yij|Tij, uj = ug; B) T, (3)
j=1k=1i=1



where f(yij|®ij, u; = uj;B) is the class-specific conditional density function
of y;;. Note that m; > 0 and 21521 7, = 1, and that moreover one identifying
location constraint should be imposed on the u} parameters, e.g., Z,ﬁ(zl Uy T =
0, which implies that the wuj are centered. The unknown parameters to be
estimated are the fixed effects 8, K — 1 free mass point locations uj, and
K — 1 free mass point weights 7. Even though the random effects variance
itself is not a model parameter, it can easily be obtained as follows: 02. =

u* T
Sy (uf)? .

Maximization of the marginal likelihood function in equation (3) for a specific
K can, as in the parametric case, be achieved by means of the EM and/or
Newton-Raphson algorithm. The use of multiple sets of starting values is usu-
ally required because of the risk of ending up in a local maximum.

In a standard finite mixture modelling context one estimates the model of
interest for different values of K and stops increasing the number of classes
when the model fit no longer improves according to the BIC', AIC or another
criterion. However, to obtain the solution corresponding to the NPML estimate
of the random effects distribution, we not only have to maximize (3) for specific
values of K, but we simultaneously have to find the value of K —say Kypar
— that yields the largest marginal likelihood value. In other words, we have
to find the saturation point at which increasing K no longer results in an
increase of the likelihood function. A method to find Kxpys, proposed by
various authors involves introducing latent classes one by one using directional
(Gateaux) derivatives (Bohning, 2000; Lindsay, 1983, 1995; Rabe-Hesketh et
al., 2003). A much simpler alternative approach is to estimate the model with
a large number of latent classes, Kyax. When Ky ax > Kypap, the ML
estimates for uj will be equal for some latent classes and/or the estimate
for m, will be equal to zero for some latent classes (Bohning, 2000). In other
words, classes may be merged (equal u}) and/or removed (7 equal to zero).
To prevent local maxima this procedure should be repeated with several sets
of starting values. Moreover, to guarantee that also the more difficult to find
mass points located at —oo and 400 are encountered when needed in the
NPML solution, it is a good idea to include latent classes located at —oo and
+o00o in each starting set (Hartzel et al., 2001; Wood and Hinde, 1987). In
the dichotomous response case we will deal with in the next sections, these
correspond to success probabilities equal to 0 and 1, respectively.

3 Design of the simulation study

To keep the simulation study feasible, we will restrict ourselves to one partic-
ular type of GLMM, namely to the multilevel binary logistic regression model.
The reason for this choice is that whereas binary outcome variables are very



commonly used in sociological, behavioral, and biomedical studies, most at-
tention is typically paid to models for continuous responses. Moreover, it is
well documented that binary data are more sensitive to specification issues
in multilevel analysis than continuous variables: in linear regression analysis,
fully ignoring a random intercept does not bias parameter estimates, which is
not the case in logistic regression analysis (Agresti et al., 2000).

The population model we use is a two-level random-intercept logistic regression
model with one level-1 and one level-2 explanatory variable; that is,

logit(p1ij) = Bo + Biz1ij + Pogj + uj. (4)

We assume that x;; — the explanatory variable for level-1 unit ¢ in level-2
unit j — takes on the values 0 and 1 with probability 0.5, and that x5; — the
explanatory variable for level-2 unit j — takes on the values 0 and 1 with
probability 0.5 independently of z1;;. For the fixed intercept 3, and regression
slopes 31 and (5, we used the same values across simulation replications. More
specifically, we set their values to: fy = —2, f; = B, = 2. This yields large
but not too extreme differences between the response probabilities for u; = 0.
More specifically, the corresponding response probabilities for the four possible
combination of explanatory variables are

Ply=1lz=1,2=1u=0)=¢e*/(1+¢*) = 0.88,
Ply=1lz=1,2=0,u=0)=¢"/(1+¢% = 0.5,
Ply=1lz=0,z=1u=0)=€"/(1+¢€°) =05

and
Ply=1z=0,2=0,u=0)=¢e"2/(1+¢7?) =0.12.

So far we discussed only the elements that were not varied in the simulations
study. The factors that were varied are the specification of the random effects
distribution and the level-1 and level-2 sample sizes. We wish to assess how the
parametric and nonparametric models perform under different true random
effects distributions and whether the performance depends on the level-1 and
level-2 sample sizes.

Let us first look at the various specifications we used for the random effects
distribution. We not only varied the form of the distribution, but also its
variance. For the latter, it is important to note that in a logit model the level-
1 errors are assumed to come from a logistic distribution with mean 0 and
variance 72/3 & 3.29. The ICC is therefore equal to:

ICC = o2 /(02 + 3.29). (5)



Hox and Maas (2001) found that the value of the JCC may affect the accu-
racy of the estimates, which is why we included this factor in the simulation
design. We set the IC'C equal to 0.1 and 0.3, which corresponds to small and

moderate values. The random effects variance o2 is easily derived from the
above formula: 02 = 3.29- ICC /(1 — ICC).

Data sets were generated using six distributional forms for the random effects,
three continuous distributions — exponential, normal, and uniform — and three
two-class discrete mixing distributions with membership probabilities of 0.10,
0.25, and 0.50 for the first class. With these choices we have apart from the
normal distribution, distributions that considerably deviate from normal in
terms of skewness, kurtosis, and discontinuity.

The other two factors that were varied are the level-1 and level-2 sample sizes.
More specifically, for the number of level-2 units we used n = 30, 100, and
1000 and for the number of level-1 units n; = 3, 10, and 50. These sample
sizes were chosen to be in agreement with the simulation studies of Kreft and
de Leeuw (1998) and Maas and Hox (2004), and to cover the full range of small,
moderate, and large sample sizes encountered in biomedical, behavioral, and
social science research. For example, in family surveys and in panel studies the
combination of n = 1000 and n; = 3 is rather common. Moreover, according
to Kreft and de Leeuw (1998), n = 30 is the minimum number of level-2 units
required for a meaningful multilevel analysis with random effects models. In
organizational surveys, it is common to have about as many as 50 level-1 units
within each level-2 unit, mostly combined with 30 to 100 level-2 units.

Combining the 4 design factors — IC'C' value, distributional form, level-2 sam-
ple size, and level-1 sample size — yields a total of 2x 6 x3x3 = 108 conditions.
We generated 1000 data sets for each of these conditions. For each simulated
data set, the unknown model parameters were estimated using the parametric
approach assuming that random effects come from a normal distribution and
using the NPML approach.

4 Results of the simulation study

The aim of the simulation study was to determine the bias and relative effi-
ciency of the parametric and nonparametric random effects approaches under
different true random effects distributions and sample sizes. Let # be one of
the parameters of interest, in our case the fixed effects 5y, 51, and S, and
the standard deviation of the random effects distribution o,, which in the
nonparametric case is computed from the nodes’ locations and weights. The
ML estimate of 6 obtained in replication s, s = 1,...,1000, is denoted by
f,. Rather than using the standard definitions of bias and relative efficiency —



Table 1
Efficiency for the conditions n = 1000, ICC = 0.3, and n; = 50 or n; = 10

n; True distribution Model |BA0S — Bo| |ﬁA1S — 51| \ﬁgs —B2| |65 — o]
50 Exponential Normal 0.05 0.02 0.05 0.11
Nonparametric 0.04 0.02 0.03 0.06
Normal Normal 0.04 0.02 0.06 0.02
Nonparametric 0.04 0.02 0.06 0.02
Uniform Normal 0.04 0.02 0.06 0.02
Nonparametric 0.04 0.02 0.05 0.02
Discrete with 73 = 0.1 Normal 0.09 0.02 0.06 0.16
Nonparametric 0.03 0.02 0.02 0.04
Discrete with 71 = 0.25 Normal 0.07 0.02 0.06 0.02
Nonparametric 0.03 0.02 0.02 0.02
Discrete with 71 = 0.5 Normal 0.04 0.02 0.07 0.05
Nonparametric 0.03 0.02 0.02 0.01
10 Exponential Normal 0.08 0.04 0.06 0.11
Nonparametric 0.06 0.04 0.05 0.10
Normal Normal 0.05 0.04 0.06 0.04
Nonparametric 0.05 0.04 0.06 0.03
Uniform Normal 0.05 0.04 0.07 0.06
Nonparametric 0.05 0.04 0.07 0.03
Discrete with 71 = 0.1 Normal 0.13 0.04 0.05 0.23
Nonparametric 0.05 0.04 0.04 0.06
Discrete with 71 = 0.25 Normal 0.07 0.04 0.06 0.04
Nonparametric 0.05 0.04 0.05 0.03
Discrete with 71 = 0.5 Normal 0.06 0.04 0.08 0.11
Nonparametric 0.05 0.04 0.06 0.02

E(0, — 0) and E [(53 = 0)2} — we used a more robust definition to prevent that
the results are affected by a very small number of replications with boundary
estimates. More specifically, when using the NPML estimator, especially in
the conditions with large number of level-2 units and small number of level-1
units, there is a (small) positive probability that one of the latent classes is
located at —oo or +00. When such boundary estimates may occur E (0, — 0)
and E [(HAS — 9)2] do not exist. This not only to applies to o, but also to
Bo, B1, and S,. To prevent this problem from occurring we define bias as the
median of (6, — #) and relative efficiency as the median of |0, — 0|. For similar
approaches, see Agresti et al. (2004); Galindo-Garre et al. (2004).

Table 1 reports results on relative efficiency for a level-2 sample size of 1000,
level-1 sample sizes of 50 and 10, and IC'C' = 0.3. It can be observed, that the
assumption of a normally distributed random intercept can give a moderate
loss of efficiency compared to the NPML estimator when the true distribution
of random intercept is continuous but not normal. On the other hand, when
the true random intercept is normal, a nonparametric approach does not yield
any loss of efficiency. In all situations with a discrete true distribution, we find
a considerable loss of efficiency when a misspecified parametric model is used.
Though details are not provided here, very similar results were obtained for
the same level-1 and /C'C' conditions — thus with 50 and 10 level-1 units and
1CC = 0.3 — but with the smaller numbers of 100 and 30 level-2 units.



Table 2
Efficiency for the conditions n; = 3, ICC = 0.3, and n = 1000, n = 100, or n = 30

n True distribution Model |30s — Bo] |ﬁA1S — B \325 —B2| |65 — |
1000 Exponential Normal 0.10 0.08 0.09 0.12
Nonparametric 0.11 0.09 0.09 0.20
Normal Normal 0.07 0.08 0.10 0.07
Nonparametric 0.08 0.08 0.10 0.11
Uniform Normal 0.08 0.08 0.10 0.08
Nonparametric 0.09 0.08 0.10 0.08
Discrete with 73 = 0.1 Normal 0.11 0.07 0.08 0.17
Nonparametric 0.11 0.08 0.07 0.21
Discrete with 71 = 0.25 Normal 0.08 0.08 0.09 0.07
Nonparametric 0.09 0.08 0.09 0.07
Discrete with 71 = 0.5 Normal 0.08 0.08 0.10 0.06
Nonparametric 0.09 0.08 0.10 0.10
100 Exponential Normal 0.24 0.24 0.28 0.24
Nonparametric 0.30 0.26 0.29 0.33
Normal Normal 0.26 0.25 0.29 0.21
Nonparametric 0.28 0.27 0.28 0.26
Uniform Normal 0.24 0.25 0.29 0.21
Nonparametric 0.29 0.27 0.31 0.24
Discrete with 71 = 0.1 Normal 0.25 0.23 0.27 0.33
Nonparametric 0.29 0.24 0.26 0.54
Discrete with 71 = 0.25 Normal 0.25 0.25 0.30 0.22
Nonparametric 0.29 0.25 0.30 0.25
Discrete with 71 = 0.5 Normal 0.25 0.25 0.31 0.22
Nonparametric 0.28 0.26 0.32 0.22
30 Exponential Normal 0.46 0.45 0.52 0.45
Nonparametric 0.58 0.50 0.61 0.98
Normal Normal 0.46 0.47 0.54 0.42
Nonparametric 0.59 0.54 0.64 0.68
Uniform Normal 0.46 0.51 0.54 0.41
Nonparametric 0.63 0.58 0.65 0.80
Discrete with p (uo1) = 0.1 Normal 0.45 0.47 0.54 0.57
Nonparametric 0.58 0.53 0.59 1.19
Discrete with p (up1) = 0.25 Normal 0.46 0.49 0.55 0.44
Nonparametric 0.56 0.54 0.64 0.73
Discrete with p (ug1) = 0.5 Normal 0.46 0.48 0.58 0.42
Nonparametric 0.61 0.54 0.65 0.59

There is no need to present all the details on the results for IC'C = 0.1, the
condition corresponding to a small level-2 variance, since these can easily be
summarized. Irrespective of the level-1 and level-2 sample sizes and the form
of the true random effects distribution, the parametric and nonparametric
estimates are equally efficient. This holds even if the distribution of random
effects is misspecified.

The efficiency estimates obtained with the smallest level-1 unit sample size
(n; = 3) and the largest ICC (ICC = 0.3) are reported in Table 2. Under
these conditions, the parametric approach clearly outperforms the nonpara-
metric approach. The former is more efficient irrespective of whether the true
underlying distribution is misspecified or not. Even for the discrete true dis-
tributions, the parametric approach is the preferred one in terms of efficiency.
The differences become larger as the level-2 sample size decreases and are

10



Table 3
Bias for the conditions n = 1000, ICC = 0.3, and n; = 50 or n; = 10

n; True distribution Model Bos—Bo Brs—B1 Bas—B bs—a
50 Exponential Normal -0.04 0.00 0.01 -0.11%*
Nonparametric -0.02 0.00 0.00 -0.05
Normal Normal 0.00 0.00 0.00 -0.01
Nonparametric 0.00 0.00 0.00 0.00
Uniform Normal -0.01 0.00 0.01 0.02
Nonparametric 0.00 0.00 0.00 0.00
Discrete with p(u1) = 0.5 Normal 0.09 0.01 0.04 -0.16*
Nonparametric 0.00 0.00 0.00 0.00
Discrete with p(uo1) = 0.25 Normal 0.06 0.00 0.02 0.02
Nonparametric 0.00 0.00 0.00 0.00
Discrete with p (uo1) = 0.1 Normal -0.02 0.00 0.05 0.05
Nonparametric 0.00 0.00 0.00 0.00
10 Exponential Normal -0.07 0.01 0.00 -0.11%*
Nonparametric -0.04 0.01 0.01 -0.09%*
Normal Normal 0.00 0.00 0.01 0.00
Nonparametric 0.00 0.00 0.01 -0.01
Uniform Normal -0.01 0.00 0.02 0.06
Nonparametric 0.00 0.01 0.01 0.01
Discrete with p(uo1) = 0.5 Normal 0.13* 0.00 0.02 -0.23*
Nonparametric 0.01 0.01 0.01 -0.01
Discrete with p (ug1) = 0.25 Normal 0.06 0.00 0.00 0.02
Nonparametric -0.01 0.01 0.01 0.01
Discrete with p (uo1) = 0.1 Normal -0.03 0.01 0.05 0.11%*
Nonparametric -0.02 0.01 0.02 0.01

* Cases with medians absolute value over 5%.

larger for o, than for the 5 parameters.

The second evaluation criterion of interest is the bias in the parameter es-
timates. As was indicated above, we quantified bias as the median of the
difference between estimated and true parameter value across simulation repli-
cations. Table 3 provides the estimated biases of the parameter estimates for
a level-2 unit sample size of 1000, level-1 unit sample sizes of 50 or 10, and
ICC = 0.3, and Table 4 for the 3 conditions with level-1 sample size of 3 and
ICC = 0.3. Reported biases are marked by a “*” in these two tables when
they are larger than 5% of true parameter value.

The conclusions that can be derived from Tables 3 and 4 are similar to those
from Tables 1 and 2. Table 3 shows that the bias of the NPML estimator is
negligible for all true distributions. The parametric estimator yields biased
estimates for o, and Sy when the true distribution is discrete or when the
true distribution is continuous but asymmetric (exponential distribution). Al-
though not reported here, very similar results were obtained when the number
of level-2 units is decreased to 100 and 30 (and level-1 and IC'C' settings kept
constant).

As was also the case for efficiency, in the /CC = 0.1 conditions, the parametric
and nonparametric approach perform equally well in terms of bias (results are
not listed here). All biases are negligible, irrespectively of whether the random

11



Table 4
Bias for the conditions n; = 3, ICC = 0.3, and n = 1000, n = 100, or n = 30

n True distribution Model Bos —Bo Bis—B1 Pas—P2 bs—0
1000 Exponential Normal -0.08 0.01 0.01 -0.11%*
Nonparametric -0.08 0.02 0.02 -0.18%*

Normal Normal -0.01 0.01 0.01 0.00

Nonparametric -0.02 0.01 0.01 -0.07

Uniform Normal -0.01 0.01 0.02 0.06

Nonparametric -0.01 0.01 0.03 0.03

Discrete with p (up1) = 0.5 Normal 0.02 0.01 0.01 -0.05
Nonparametric 0.11%* 0.02 0.03 -0.21%*

Discrete with p (uo1) = 0.25 Normal 0.07 0.00 0.01 0.01

Nonparametric 0.00 0.02 0.03 -0.01

Discrete with p (up1) = 0.1 Normal -0.02 0.02 0.02 0.01
Nonparametric -0.03 0.03 0.03 0.10%*
100 Exponential Normal -0.07 0.02 0.00 -0.14*
Nonparametric -0.11%* 0.06 0.06 -0.17%

Normal Normal -0.02 0.03 0.03 -0.04

Nonparametric -0.06 0.07 0.10%* -0.06

Uniform Normal -0.02 0.01 0.02 0.03

Nonparametric -0.07 0.05 0.10%* 0.02
Discrete with p (ug1) = 0.5 Normal 0.06 0.00 0.02 -0.29*
Nonparametric 0.13* 0.08 0.10%* -0.34%*

Discrete with p (uo1) = 0.25 Normal 0.09 0.01 0.01 -0.04

Nonparametric -0.02 0.06 0.09 0.01

Discrete with p (ug1) = 0.1 Normal -0.02 0.03 0.04 0.06
Nonparametric -0.09 0.09 0.12% 0.09*
30 Exponential Normal -0.11%* 0.05 0.01 -0.19*
Nonparametric -0.21% 0.19* 0.19* -0.20%
Normal Normal -0.02 0.04 0.07 -0.10*
Nonparametric -0.19* 0.19* 0.31* -0.11%*

Uniform Normal -0.02 0.03 0.04 0.01

Nonparametric -0.19* 0.20%* 0.24* 0.07
Discrete with p (uo1) = 0.5 Normal 0.00 0.07 0.04 -0.48*
Nonparametric 0.11% 0.24* 0.26* -0.61%
Discrete with p (up1) = 0.25 Normal 0.09 0.08 0.02 -0.16*
Nonparametric -0.09 0.22%* 0.25% -0.08%

Discrete with p (ug1) = 0.1 Normal -0.05 0.04 0.05 0.00
Nonparametric -0.24* 0.18* 0.28%* 0.10%*

* Cases with medians absolute value over 5%.

effect distribution is correctly specified or not.

The results reported in Table 4 show that with a small level-1 sample size and
large ICC', the nonparametric approach performs worse than the parametric
one even when in the latter the underlying random intercept distribution is
misspecified.

5 Real data example

The use of logistic regression analysis with a random intercept is illustrated
with a data set from the 1988 Bangladesh Fertility Survey (Huq and Cle-
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Table 5
Parameter estimates and log-likelihood values for the logistic regression models
estimated with the 1988 Bangladesh Fertility Survey data set

No random intercept Parametric Nonparametric

Coef SE Coef SE Coef SE
Intercept -1.568 0.126 -1.690  0.148 -1.664
No children 0.000 . 0.000 .
1 child 1.059 0.152 1.109 0.158 1.100 0.159
2 children 1.288 0.167 1.377  0.175 1.368 0.176
3 or more children 1.216 0.171 1.346  0.180 1.327  0.181
Age -0.024 0.008 -0.027  0.008 -0.026  0.008
Urban 0.797 0.105 0.732 0.120 0.719 0.122
Intercept Std. Dev. 0.464  0.079 0.472
1cc 0.061 0.063
Log-likelihood -1228.365 -1206.674 -1204.523

land, 1990). It contains information on 1934 women who live in 60 areas of
Bangladesh. It is a two-level data set: women are the level-1 units which are
nested within living areas, the level-2 units. The dependent variable is the use
of contraceptives yes/no. Since this is a binary response variable, it is natural
to use a logit link function. Level-1 predictors are the woman’s number of
living children measured in four categories (no children, 1 child, 2 children,
3 or more children), and the woman’s age (centered around the mean). The
single level-2 predictor is type of region of residence (urban or rural). Number
of living children is used as a categorical predictor, which “no children” as the
reference category.

Using the Latent GOLD 4.0 software (Vermunt and Magidson, 2005), we esti-
mated a standard logistic regression model without random effects, as well as
parametric and nonparametric random intercept models. For the nonparamet-
ric model we used the “zero-inflated” option to make sure that mass points
at —oo and +oo are encountered. Table 5 reports the parameter estimates
and the value of the log-likelihood function for the three estimated models.
Comparison of the log-likelihood values indicates that the random intercept is
needed. The nonparametric specification yields a slightly larger log-likelihood
value than the parametric specification. The NPML solution contains 5 mass
points which are located at -1.138, -2.342, -1.608, -1.867, and —oo with weight
equal to 0.350, 0.255, 0.254, 0.1299, and 0.011, respectively.

The parameter estimates obtained with the parametric and nonparametric
approach are very similar in this application. This confirms the results of our
simulation study in which we found that the two approaches yield almost
indistinguishable results for small ICC values (note that the IC'C is about
0.06 in this application). It should be noted that we excluded the mass point
located at —oo and with a very small weight in the computation of the mean
and the standard deviation of the intercept for the NPML solution. Inclusion
of this mass point yields a mean equal to —oo and a standard deviation equal

13



to oo.

6 Conclusions and discussion

The two questions that we wished to answer using the simulation study were
1) whether the NPML estimator performs better in terms of bias and effi-
ciency compared the parametric model when the latter is misspecified, and
2) whether the NPML estimator performs equally well in terms of bias and
efficiency compared the parametric model when the latter is correctly spec-
ified. This was studied for small and large level-1 and level-2 sample sizes,
for small and moderate ICC' values, and for different types of random effects
distributions. We are now able to answer these two questions for the two-level
random intercept logistic regression model.

The simulation study showed that the results depend strongly on the level-
1 sample size and on the IC'C' values. More specifically for the larger IC'C
value and moderate or large level-1 sample size, we found exactly what we
expected: the NPML method performs better than the parametric method
when assumptions of the latter are violated and equally well when they are
not violated. In such cases we should thus always use a NPML estimator
since we do not know whether the assumptions hold. For small 7C'C' values,
both approaches perform equally well, so either of the two can be used in
such situations. Again, it does not harm using the NPML method when the
assumptions of the parametric approach hold.

In one set of conditions the NPML method turned out to be problematic;
that is, when the number of level-1 units is very small (n; = 3) and the ICC
is not very small (/CC = 0.3). In these conditions the parametric approach
outperformed the NPML estimator even when the true underlying distribution
of random intercept was far from normal. In other words, when the number
of level-1 units is very small, it is better to use a parametric random effects
model.

The results of our study are in agreement with the studies by Hartzel et al.
(2001) and Agresti et al. (2004), which as mentioned in the introduction,
yielded seemingly contradictory results. Similar to Hartzel et al. (2001), we
found that with small level-1 sample sizes it may be better to use a parametric
random effects model, even if this misspecifies the true random effects distribu-
tion. Moreover, similar to Agresti et al. (2004), we found that with moderate
and large level-1 sample sizes and larger ICC values, using a nonparamet-
ric approach is preferred when the underlying assumptions of the parametric
model do not hold and does not harm when they hold. In other words, the
level-1 sample size and the IC'C' value are the critical factors.
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One limitation of our study is that, as in the studies by Hartzel et al. (2001)
and Agresti et al. (2004), we investigated the performance of the methods
only in terms of bias and efficiency of the estimated fixed and random effects
parameters. We are aware of the fact that sometimes prediction of the random
effects may even be more important than estimation of the fixed and random
effects parameters. Another simulation study would be needed to determine
how well the various methods perform in terms of prediction.

Another limitation of our study is that it concerns logistic regression models
with only a random intercept. It is not clear whether our findings can be gen-
eralized to models containing also random slopes; that is, from the univariate
to the multivariate random effects case. Random slopes introduce several ad-
ditional complications, both in the parametric and nonparametric approach.
In future research, we will investigate whether the conclusions drawn here also
apply to models with random slopes.

In our study we investigated two different specifications for the random effects
distribution: the parametric approach with an underlying normal distribution
and the nonparametric approach using an unspecified discrete mixing distri-
bution. As a third alternative one may use a combination of these two: a finite
mixture of normal distributions (Magder and Zeger, 1996; Verbeke and Molen-
berghs, 2000). Whereas such an approach may have particular advantages,
such as that contrary to the nonparametric approach it yields non-discrete
random effects, Agresti et al. (2004) obtained somewhat disappointing results
with this approach in the context of a log linear model for an odds ratio.
Nevertheless, we believe that this hybrid approach may be promising in other
situations.

Another topic that we did not address in this article is the possibility to
use a semi-parametric approach in which the number of mass points is not
increased till the maximum of the log-likelihood is found, but in which instead
a penalized log-likelihood is maximized (or minimized). A possibility may, for
example, be to select the number of mass points minimizing the Bayesian
Information Criterion (BIC).
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