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Abstract. An overview is provided of recent developments in the use
of latent class (LC) models in social science research. Special attention
is paid to the application of LC analysis as a factor-analytic tool and as
a tool for random-effects modeling. Furthermore, an extension of the LC
model to deal with nested data structures is presented.

1 Introduction

Latent class (LC) analysis was introduced by Lazarsfeld in 1950 as a way of
formulating latent attitudinal variables from dichotomous survey items (see [11]).
During the 1970s, LC methodology was formalized and extended to nominal
variables by Goodman [6] who also developed the maximum likelihood algorithm
that has served as the basis for most LC programs. It has, however, taken many
years till the method became a generally accepted tool for statistical analysis.
The history and state-of-art of LC analysis in social science research is described
in the recent volume “Applied Latent Class Analysis” edited by Hagenaars and
McCutcheon [8].

Traditionally, LC models were used as clustering and scaling tools for di-
chotomous indicators. Scaling models, such as the probabilistic Guttman scales,
involved specification of simple equality constraints on the item conditional prob-
abilities in order to guarantee that the latent variable would capture a single
underlying dimension. A more recent development is to parametrize the item
conditional by means of logit models, yielding restricted variants of LC analysis
which are similar to latent trait models (see [4], [9], and [19]). The log-linear
modeling framework with latent variables implemented in the LEM software
package yields are general class of probability models (graphical models) for cat-
egorical observed and latent variables in which each of the model probabilities
can be restricted by logit constraints (see [7] and [17]). The LEM framework con-
tains most types of LC models for categorical observed variables as special cases,
including models with several latent variables, models with covariates, models
for ordinal variables, models with local dependencies, causal models with latent
variables, and latent Markov models.

A very much related field is the field of finite mixture (FM) modelling
(see[15]). Traditionally, finite mixture models dealt with continuous outcome
variables. The underlying idea of LC and FM models is, however, the same: the



population consists of a number of subgroups which differ with respect to the
parameters of the statistical model of interest. It is, therefore, not surprising
that in recent years, the fields of LC and FM modeling have come together and
that the terms LC model and FM model have become interchangeable with each
other. For example, mixture model clustering and mixture regression analysis
are now also known as LC clustering and LC regression analysis.

The software package Latent GOLD (see [20] and [21]) implements the most
important social science application types of LC and FM models – clustering,
scaling, and random-effects modeling – in three modules: LC cluster, LC factor,
and LC regression. What is very important for applied researchers is that the
models are implemented in a SPSS-like graphical user interface. The use of LC
analysis for clustering purposes is also well-known outside the social science field.
LC factor is a factor-analytic tool for discrete or mixed outcome variables (see
[12]). LC regression makes it possible to take into account unobserved population
heterogeneity with respect to the coefficients of a regression model (see [23] and
[24]). In this paper, I will explain the basic ideas underlying the LC factor and
LC regression models and present several empirical examples.

LC models are models for two-level data structures. The data consists of a set
of indicators or a set of repeated responses which are nested within individuals.
Recently, models have been proposed for nested data structures consisting of
more than two levels, such as repeated measures nested within persons and
persons nested with groups – teams, countries, or organizations (see [18]). At the
end of this paper, I will pay attention to this hierarchical or multilevel extension
of the LC model and present a procedure called upward-downward algorithm
that can be used to solve the maximum likelihood estimation problem.

2 The LC Factor Model

Let us start introducing some notation. Let yik denote the realized value of
person i on the kth indicator, item, or response variable. The total number of
response variables is denoted by K. A category of the `th latent class variable
will be denoted as x`, its total number of categories as T`, and the total number
of latent variables by L.

The standard LC model that I will refer to as the LC cluster model assumes
that responses are independent of each other given a single latent variable with
T1 unordered categories. The density of yi is defined as

f(yi) =
T1∑

x1=1

P (x1)
K∏

k=1

f(yik|x1),

where the exact form of the class-specific densities f(yik|x1) depends on the
scale type of the response variable concerned. The f(yik|x1) are taken from the
exponential family.

The main difference between the LC factor and the LC cluster model is that
the former may contain more than one latent variable. Another difference is



that in the factor model the categories of the latent variables are assumed to be
ordered. Thus, rather than working with a single nominal latent variable, here
we work with one or more dichotomous or ordered polytomous latent variables
(Magidson and Vermunt in [12]). The advantage of this approach is that it
guarantees that each of the factors capture no more than one dimension.

The primary difference between our LC factor and the traditional factor anal-
ysis model is that the latent variables (factors) are assumed to be dichotomous
or ordinal as opposed to continuous and normally distributed. Because of the
strong similarity with traditional factor analysis, this approach is called LC fac-
tor analysis. There is also a strong connection between LC factor models and
item response or latent trait models. Actually, LC factor models are discretized
variants of well-known latent trait models for dichotomous and polytomous items
(see [9], [19], and [22]).

As in maximum likelihood factor analysis, modeling under the LC factor
approach can proceed by increasing the number of factors until a good fitting
model is achieved. This approach to LC modeling provides a general alternative
to the traditional method of obtaining a good fitting model by increasing the
number of latent classes. In particular, when working with dichotomous uncor-
related factors, there is an exact equivalence in the number of parameters of the
two models. A LC factor model with 1 factor has the same number of parameters
as a 2-class LC cluster model, a model with 2 factors as a 3-class model, a model
with 3 factors as a 4-class model, etc. Thus, in an exploratory analysis, rather
than increasing the number of classes one may instead increase the number of
factors until an acceptable fit is obtained.

2.1 A Two-factor Model for Nominal Indicators

To illustrate the LC factor model, let us assume that we have a two-factor model
for four nominal categorical indicators. The corresponding probability structure
is of the form

P (yi1, yi2, yi3, yi4) =
T1∑

x1=1

T2∑
x2=1

P (x1, x2)
4∏

k=1

P (yik|x1, x2).

The conditional response probabilities P (yik|x1, x2) are restricted by means of
multinomial logit models with linear terms

η(yik|x1, x2) = β0yk
+ β1yk

· vx1 + β2yk
· vx2 .

Because the factors are assumed to be ordinal (or discrete interval) variables,
the two-variable terms are restricted by using fixed category scores for the levels
of the factors. Note that the factors are treated as metric variables, which are,
however, not continuous but discrete. The scores vx`

for the categories of the
`th factor are equidistant scores ranging from 0 to 1. The first level of a factor
gets the score 0 and the last level the score 1. The parameters describing the
strength of relationships between the factors and the indicators – here, β1yk

and
β2yk

– can be interpreted as factor loadings.



Note that the above logit model does not include the three-variable inter-
action term of the two factors and the indicator. These higher-order terms are
excluded from the model in order to be able to distinguish the various dimen-
sions. If we would include the three-variable interaction term, our two-factor
model would be equivalent to an unrestricted 4-cluster model. By excluding this
term, we obtain a restricted 4-cluster model in which each of the four clusters
can be conceived as being a combination of two factors.

In the standard LC factor model, the factors are specified to be dichotomous,
which means that the scoring of the factor levels does not imply a constraint. An
important extension of this standard model is, however, increasing the number
of levels of a factor, which makes it possible to describe more precisely the
distribution of the factor concerned. Note that the levels of the factors remain
ordered by the use of fixed equal-interval category scores in their relationships
with the indicators. Therefore, each additional level costs only one degree of
freedom; that is, there is one additional class size to be estimated.

In the default setting, the factors are assumed to be independent of one an-
other. This is specified by the appropriate logit constraints on the latent prob-
abilities. In the two-factor case, this involves restricting the linear term in the
logit model for P (x1, x2) by

ηx1x2 = γx1 + γx2 .

Working with correlated factors is comparable to performing an oblique rotation.
The association between each pair of factors is described by a single uniform
association parameter:

ηx1x2 = γx1 + γx2 + γ12 · vx1 · vx2 .

It should be noted that contrary to traditional factor analysis, the LC factor
model is identified without additional constraints, such as setting certain factor
loadings equal to zero. Nevertheless, it is possible to specify models in which
factor loadings are fixed to zero. Together with the possibility to include factor
correlation in the model, this option can be used for a confirmatory factor anal-
ysis. Other extensions are the use of indicators which are ordinal, continuous,
or counts, the inclusion of local dependencies, and the inclusion of covariates
affecting the factors.

Zhang [25] proposed a LC model with several latent variables called hierarchi-
cal LC model that is similar to our LC factor model presented. Three important
differences are that his factors are nominal instead of ordinal, that indicators are
allowed to be related to only one factor, and that factor correlations are induced
by higher-order factors.

2.2 Graphical Displays

Magidson and Vermunt [12] proposed a graphical display similar to the one
obtained in correspondence analysis to depict the results of a LC factor analysis.



These displays help in detecting which indicators are related to which factors.
The measures that are display are derived from the posterior factor means.

Case i’s posterior mean on factor ` equals

E(vi`) =
T∑̀

x`=1

vx`
P (x`|yi).

The basic idea is to aggregate these posterior means (factor scores) and plot the
resulting numbers in a two-dimensional display. Note that these numbers will be
in the 0-1 range because the category score vx`

is 0 for the lowest factor level
and 1 for the highest level. The most important aggregation is within categories
of the indicators; that is,

E(v`|yk) =
∑N

i=1 E(vi`)I(yik = yk)∑N
i=1 I(yik = yk)

,

where I(yik = yk) equals 1 if person i’s value on indicator k is yk, and 0 otherwise.
This yields the mean of factor ` for persons who give response yk on indicator
k. These category-specific factor means will be very different if an indicator is
strongly related to a factor.

Aggregation can be done for any relevant subgroup and not just for categories
of the indicators. Often it is useful to depict the position of groups formed
on the basis of socio-demographic characteristics. It is also possible to depict
the posterior means of individual cases in the plot, yielding what is sometimes
referred to as a bi-plot.

2.3 Application: Types of Survey Respondents

We will now consider an example that illustrates how the LC factor model can
be used with nominal variables. It is based on the analysis of 4 variables from the
1982 General Social Survey given by McCutcheon [13] to illustrate how standard
LC modeling can be used to identify different types of survey respondents. Two
of the variables ascertain the respondent’s opinion regarding the purpose of
surveys (Purpose) and how accurate they are (Accuracy), and the others are
evaluations made by the interviewer of the respondent’s levels of understanding
of the survey questions (Understanding) and cooperation shown in answering the
questions (Cooperation). McCutcheon initially assumed the existence of 2 latent
classes corresponding to ’ideal’ and ’less than ideal’ types. The study included
separate samples of white and black respondents. Here, I use the data of the
white respondents only.

The two-class LC model – or, equivalently, the 1-factor LC model – does not
provide a satisfactory description of this data set (L2 = 75.5; df = 22; p < .001).
Two options for proceeding are to increase the number of classes or to increase
the number of factors. The 2-factor LC model fits very well (L2 = 11.1; df = 15;
p = .75), and also much better than the unrestricted 3-class model (L2 = 22.1;
df = 15; p = .11) that was selected as final model by McCutcheon.



Table 1. Logit Parameter Estimates for the 2-Factor LC Model as Applied to the
GSS’82 Respondent-Type Items

Item Category x1 x2

Purpose good -1.12 2.86
depends 0.26 -0.82
waste 0.86 3.68

Accuracy mostly true -0.52 -1.32
not true 0.52 1.32

Understanding good -1.61 0.58
fair/poor 1.61 -0.58

Cooperation interested -2.96 -0.57
cooperative -0.60 -0.12
impatient/hostile 3.56 0.69

The logit parameter estimates obtained from the 2-factor LC model are given
in Table 1. These show the magnitude of the relationship between the observed
variables and the two factors. As can be seen, the interviewers’ evaluations of
respondents and the respondents’ evaluations of surveys are clearly different
factors: Understanding and Cooperation are more strongly affected by the first
factor and Purpose and Accuracy by the second factor.

Fig. 1 depicts the bi-plot containing the category-specific factor means of the
four indicators. The plot shows even more clearly than the logit coefficients that
the first dimension differentiates between the categories of Understanding and
Cooperation and the second between the categories of Purpose and Accuracy.

3 LC Regression Analysis

One of the differences between LC regression analysis and the other forms of
LC analysis discussed so far is that it concerns a model for a single response
variable. This response variable is explained by a set of predictors, where the
predictor effects may take on different values for each latent class (see [10], [23],
[24], and section 13.2 in [1]).

An important feature of LC regression models is that for each case we may
have more than one observation. These multiple observations may be experimen-
tal replications, repeated measurements at different time points or occasions,
clustered observations, or other types of dependent observations. Here, I will use
the term replications, where the replication number will be denoted by k. The
value of the response variable for case i at replication k is denoted by yik. The
number of replications, which is not necessarily the same for all cases, is denoted
by Ki. Because we are dealing with models with a single latent variable, we drop
the index ` from x`.

Note that I am describing a two-level data structure in which a predictor may
either have the same value or change its value across replications. The former



Fig. 1. Graphical Display of Category-Specific Posterior Factor Means for the 2-Factor
LC Model as Applied to the GSS’82 Respondent-Type Items
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are the higher-level or level-2 predictors and the latter are lower-level or level-
1 predictors. Here, k indexes the (dependent) lower-level observations within a
certain higher-level observation. Level-1 predictors will be denoted as zikp and
level-2 predictors as wiq. The LC regression model can be used to define (non-
parametric) two-level or random-coefficient models. Using k as an index for time
points or time intervals, one obtains models for longitudinal data, such as growth
or event-history models with non-parametric random coefficients (see [17] and
[23]).

Using the same notation as above, the probability structure underlying the
LC regression model can be defined as

f(yi|wi, zi) =
T1∑

x=1

P (x)
Ki∏
k=1

f(yik|x,wi, zik) .

Similarly to other LC models, replications are assumed to be independent given
class membership. For nominal or ordinal dependent variables, the probability
density f(yik|x,wi, zik) will usually be assumed to be multinomial, for contin-
uous variables, univariate normal, and for counts, Poisson or binomial.



The linear predictor in f(yik|x,wi, zik) equals

η(yik|x,wi, zik) = β0x +
P∑

p=1

βpx zikp +
Q∑

q=1

βP+qwiq

where P and Q denote the number of level-1 and level-2 predictors. This regres-
sion model contains a class-specific intercept, P class-specific regression coeffi-
cients, and Q class-independent regression coefficients. The P +1 coefficient that
are class dependent are random coefficients.

The conceptual equivalence between the LC regression model and a two-level
random-coefficient model becomes even clearer if one realizes that it is possible
to compute the means, variances, and covariances of the class-specific coefficients
from the standard LC class output. These are obtained by elementary statistics
calculus:

µp =
T∑

x=1

βpxP (x)

τpp′ =
T∑

x=1

(βpx − µp) (βp′x − µp′)P (x),

This shows that LC regression analysis results can be summarized to yield infor-
mation that is equivalent to the one obtained in regression models with random
coefficients coming from a normal distribution; that is, it possible to obtain the
mean vector and the covariance matrix of the random coefficients.

3.1 Application: Longitudinal Study on Attitudes Towards
Abortion

In order to demonstrate the non-parametric random-coefficient model, I used
a data set obtained from the data library of the Multilevel Models Project, at
the Institute of Education, University of London. The data consist of 264 par-
ticipants in 1983 to 1986 yearly waves from the British Social Attitudes Survey
(see [14]). It is a three-level data set: individuals are nested within constituencies
and time-points are nested within individuals. I will only make use of the latter
nesting, which means that we are dealing with a standard repeated measures
model. As was shown by Goldstein [5], the highest level variance – between con-
stituencies – is so small that it can reasonably be ignored. Below, I will show
how to extend the LC model to deal with higher-level data structures.

The dependent variable is the number of yes responses on seven yes/no ques-
tions as to whether it is woman’s right to have an abortion under a specific
circumstance. Because this variable is a count with a fixed total, it most natural
to work with a logit link and binomial error function. Individual level predictors
in the data set are religion, political preference, gender, age, and self-assessed
social class. In accordance with the results of Goldstein, I found no significant ef-
fects of gender, age, self-assessed social class, and political preference. Therefore,



Table 2. Test results for the estimated models with the attitudes towards abortion
data

Model Log-likelihood # parameters BIC

No random effects
Ia. empty model -2309 1 4623
Ib. time linear + religion -2215 5 4458
Ic. time dummies + religion -2188 7 4416

Ic + Random intercept
IIa. 2 classes -1755 9 3560
IIb. 3 classes -1697 11 3456
IIc. 4 classes -1689 13 3451
IId. 5 classes -1689 15 3461

Ic + Random intercept and slope
IIIa. 2 classes -1745 12 3558
IIIb. 3 classes -1683 17 3460
IIIc. 4 classes -1657 22 3436
IIId. 5 classes -1645 27 3441

I did not used these predictors in the further analysis. The predictors that were
used are the level-1 predictor year of measurement (1=1983; 2=1984; 3=1985;
4=1986) and the level-2 predictor religion (1=Roman Catholic, 2=Protestant;
3=Other; 4=No religion). Effect coding is used for nominal predictors.

The LC regression models were estimated by means of version 3.0 of the
Latent GOLD program (see [21]), which also provides the multilevel type pa-
rameters µ and

√
τ2. I started with three models without random effects: an

intercept-only model (Ia), a model with a linear effect of year (Ib), and a model
with year dummies (Ic). Models Ib and Ic also contained the nominal level-2
predictor religion. The test results reported in the first part of Table 2 show
that year and religion have significant effects on the outcome variable and that
it is better to treat year as non-linear. I proceeded by adding a random intercept.
The test results show that the model with 4 classes is the best one in terms of
BIC value. Subsequently, I allowed the time effect to be class specific. Again, the
4-class model turned out to be the best according to the BIC criterion.

Table 3 reports the parameter estimates for Model IIIc. The means indicate
that the attitudes are most positive at the last time point and most negative
at the second time point. Furthermore, the effects of religion show that people
without religion are most in favor and Roman Catholics and Others are most
against abortion. Protestants have a position that is close to the no-religion
group.

As can be seen, the 4 latent classes have very different intercepts and time
patterns. The largest class 1 is most against abortion and class 3 is most in favor
of abortion. Both latent classes are very stable over time. The overall level of
latent class 2 is somewhat higher than of class 1, and it shows somewhat more
change of the attitude over time. People belonging to latent class 4 are very



Table 3. Parameters estimates obtained with Model IIIc for the attitudes towards
abortion data

Parameter Class 1 Class 2 Class 3 Class 4 Mean Std.Dev.

Class size 0.30 0.28 0.24 0.19
Intercept -0.34 0.60 3.33 1.59 1.16 1.38
Time
1983 0.14 0.26 0.47 -0.58 0.12 0.35
1984 -0.11 -0.46 -0.35 -1.11 -0.45 0.34
1985 -0.04 -0.44 -0.26 1.43 -0.10 0.66
1986 -0.06 0.64 0.14 0.26 0.24 0.27

Religion
Catholic -0.53 -0.53 -0.53 -0.53 -0.53 0.00
Protestant 0.20 0.20 0.20 0.20 0.20 0.00
Other -0.10 -0.10 -0.10 -0.10 -0.10 0.00
No Religion 0.42 0.42 0.42 0.42 0.42 0.00

instable: at the first two time points they are similar to class 2, at the third
time point to class 4, and at the last time point again to class 2 (this can be
seen by combining the intercepts with the time effects). Class 4 could therefore
be labelled as random responders. It is interesting to note that in a three-class
solution the random-responder class and class two are combined. Thus, by going
from a three- to a four-class solution one identifies the interesting group with
less stable attitudes.

3.2 Application: Choice-Based Conjoint Study

The LC regression model is a popular tool for the analysis of data from conjoint
experiments in which individuals rate separate product or choose between sets of
products having different attributes (see [10]). The objective is to determine the
effect of product characteristics on the rating or the choice probabilities or, more
technically, to estimated the utilities of product attributes. LC analysis is used
to identify market segments for which these utilities differ. The class-specific
utilities can be used to estimate the market share of possible new products; that
is, to simulate future markets.

For illustration of LC analysis of data obtained from choice-based conjoint
experiments, I will use a generated data set. The products are 12 pairs of shoes
that differ on 3 attributes: Fashion (0=traditional, 1= modern), Quality (0=low,
1=high), and Price (ranging from 1 to 5). Eights choice sets offer 3 of the 12
possible alternative products to 400 individuals. Each choice task consists of
indicating which of the three alternatives they would purchase, with the response
”none of the above” allowed as a fourth choice option.

The regression model that is used is a multinomial logit model with choice-
specific predictors, also referred to as the conditional logit model. The BIC values
indicated that the three-class model is the model that should be preferred. The
parameter estimates obtained with the 3-class model are reported in Table 4.



Table 4. Estimates of the parameters for 3-class choice model

Parameter Class 1 Class 2 Class 3 Mean Std.Dev.

Class size 0.51 0.26 0.24
Fashion 3.03 -0.17 1.20 1.77 1.37
Quality -0.09 2.72 1.12 0.92 1.16
Price -0.39 -0.36 -0.56 -0.42 0.08
None 1.29 0.19 -0.43 0.60 0.73

As can be seen, Fashion has a major influence on choice for class 1, Quality for
class 2, and both Fashion and Quality affect the choice for class 3. The small
differences in price effect across the three classes turned out to be insignificant.

In addition to the conditional logit model which shows how the attributes
affect the likelihood of choosing one alternative over another, differentially for
each class, I specified a second logit model to describe the latent class variable as
a function of the covariates sex and age. Females turn out to belong more often
to class 1 and males to class 3. Younger persons have a higher probability of
belonging to class 1 (emphasize Fashion in choices) and older persons are most
likely to belong to class 2 (emphasize Quality in choices).

4 LC Models for Nested Data Structures

As explained in the context of the LC regression model, LC analysis is a technique
for analyzing two-level data structures. In most cases, this will be repeated mea-
sures or item responses that are nested within individuals. Here, I will present a
three-level extension of the LC model and discuss the complications in parameter
estimation, as well as indicate how these complications can be resolved.

Before proceeding, some additional notation has to introduced. Let yijk de-
note the response of individual j within group i on indicator or item k. The
number of groups is denoted by N , the number of individuals within group i by
ni, and the number of items by K. The latent class variable at the individual
level is denoted as xj . For reasons that will be clear below, I will use the index j
in x when referring to the latent class membership of a certain individual within
a group.

The standard method for analyzing such grouped data structures is the
multiple-group LC model (see [3]). A multiple-group LC model with group-
specific class sizes would be of the form

P (yi) =
ni∏

j=1

T∑
x=1

{
K∏

k=1

P (yijk|x)

}
P (xj |i).

As can be seen, observations within a group are assumed to be independent of
each other given the group-specific latent distribution P (xj |i).



A disadvantage of this “fixed-effects ”approach is that the number of un-
known parameters increases rapidly as the number of groups increases. An al-
ternative is to assumed that groups belong to latent classes of groups, denoted
by w, that differ with respect to the latent distribution of individuals. This yields
a LC model of the form

P (yi) =
M∑

w=1

 ni∏
j=1

T∑
xj=1

{
K∏

k=1

P (yijk|xj)

}
P (xj |w)

P (w).

This model can be represented as a graphical model containing one latent vari-
able at the group level and one latent variable for each individual within a group.
The fact that the model contains so many latent variables makes the use of a
standard EM algorithm for maximum likelihood estimation impractical.

The contribution of group i to the completed data log-likelihood that has to
be solved in the M step of the EM algorithm has the form

log Li =
M∑

w=1

T∑
x=1

ni∑
j=1

K∑
k=1

P (xj , w|yi) log P (yijk|xj)

+
M∑

w=1

T∑
x=1

ni∑
j=1

P (xj , w|yi) log P (xj |w)

+
M∑

w=1

P (w|yi) log P (w).

This shows that the “only” thing that has to be obtained in the E step of the
EM algorithm are the T ·M marginal posteriors P (xj , w|yi) for each individual
within a group. It turns out that these can be obtained in an efficient manner by
making use of the conditional independence assumptions implied by underlying
graphical model. More precisely, the new algorithm makes use of the fact that
lower-level observations are independent of each other given the higher-level class
memberships. The underlying idea of using the structure of the model of interest
for the implementation of the EM algorithm is similar to what is done in hidden
Markov models. For these models, Baum et al. in [2] developed an efficient EM
algorithm which is known as the forward-backward algorithm because it moves
forward and backward through the Markov chain. Vermunt in [18] called the
version of EM for the new LC model the upward-downward algorithm because
it moves upward and downward through the hierarchical structure: First, one
marginalizes over class memberships going from the lower to the higher levels.
Subsequently, the relevant marginal posterior probabilities are computed going
from the higher to the lower levels. The method can easily be generalized to data
structures consisting of more than three levels. Moreover, it cannot only be used
in LC cluster-like applications, but also in the context of LC regression analysis.

The upward-downward algorithm makes use of the fact that

P (xj , w|yi) = P (w|yi)P (xj |yi, w) = P (w|yi)P (xj |yij , w);



that is, that given class membership of the group (w), class membership of the
individuals (xj) is independent of the information of the other group members.
The terms P (w|yi) and P (xj |yij , w) are obtained with the model parameters:

P (xj |yij , w) =
P (xj ,yij |w)

P (yij |w)
=

P (xj |w)
∏K

k=1 P (yijk|xj)
P (yij |w)

P (w|yi) =
P (w)

∏ni

j=1 P (yij |w)∑M
w=1 P (w)

∏ni

j=1 P (yij |w)
,

where P (yij |w) =
∑T

x=1 P (xj |w)
∏K

k=1 P (yijk|xj). In the upward part, we com-
pute P (xj ,yij |w) for each individual, collapse these over xj to obtain P (yij |w),
and use these to obtain P (w|yi) for each group. The downward part involves
computing P (xj , w|yi) for each individual using P (w|yi) and P (xj |yij , w).

In the upward-downward algorithm computation time increases linearly with
the number of individuals within groups instead of exponentially, as would be
the case in a standard E step. Computation time can be decreased somewhat
more by grouping records with the same values for the observed variables within
groups. A practical problem in the implementation of the upward-downward
method is that underflows may occur in the computation of P (w|yi). More
precisely, because it may involve multiplication of a large number (1 + ni ·K) of
probabilities, the term P (w)

∏ni

j=1 P (yij |w) may become equal to zero for each
w. Such underflows can, however, easily be prevented by working on a log scale.
Letting aiw = log[P (w)] +

∑ni

j log[P (yij |w)] and bi = max(aiw), P (w|yi) can
be obtained as follows:

P (w|yi) =
exp [aiw − bi]∑M
w exp [aiw − bi)]

.

4.1 Application: Team Differences in Perceived Task Variety

In a Dutch study on the effect of autonomous teams on individual work condi-
tions, data were collected from 41 teams of two organizations, a nursing home
and a domiciliary care organization. These teams contained 886 employees. For
the example, I took five dichotomized items of a scale measuring perceived task
variety (see [16]). The item wording is as follows (translated from Dutch):

1. Do you always do the same things in your work?
2. Does your work require creativity?
3. Is your work diverse?
4. Does your work make enough usage of your skills and capacities?
5. Is there enough variation in your work?

The original items contained four answer categories. In order simplify the
analysis, I collapsed the first two and the last two categories. Because some



Table 5. Test results for the estimated models with the task variety data

Model Individuals Groups Log-likelihood # parameters BIC

I 1 class 1 class -2685 5 5405
II 2 classes 1 class -2385 11 4844
III 3 classes 1 classes -2375 16 4859
IV 2 classes 2 classes -2367 13 4822
V 2 classes 3 classes -2366 15 4835

respondents had missing values on one or more of the indicators, the estimation
procedure was adapted to deal with such partially observed indicators.

The fact that this data set is analyzed by means of LC analysis means that it
is assumed that the researcher is interested in building a typology of employees
based on their perceived task variety. On other hand, if one would be interested
in constructing a continuous scale, a latent trait analysis would be more appro-
priate. Of course, also in that situation the multilevel structure should be taken
into account.

Table 5 reports the log-likelihood value, the number of parameters, and the
BIC value for the models that were estimated. I first estimated models without
taking the group structure into account. The BIC values for the one to three
class model (Models I-III) without a random latent class distribution show that
a solution with two classes suffices. Subsequently, I introduced group-specific
latent distributions in the two-class model (Models IV and V). From the results
obtained with these two models, it can be seen that there is clear evidence
for between-team variation in the latent distribution: These models have much
lower BIC values than the two-class model without group-specific class sizes. The
model with three classes of groups (Model V) has almost the same log-likelihood
value as Model IV, which indicates that no more than two latent classes of teams
can be identified.

The conditional response probabilities obtained with Model IV indicated that
the first class has a much lower probability of giving the high task-variety re-
sponse than class two on each of the five indicators. The two classes of team
members can therefore be named “low task-variety” and “high task-variety”.
The two classes of teams contained 37 and 63 percent of the teams. The pro-
portion of team members belonging to the high task-variety class are .41 and
.78, respectively. This means, for instance, that in the majority of teams (63%)
the majority of individuals (78%) belong to the high task-variety group. The
substantive conclusion based on Model IV would be that there are two types
of employees and two types of teams. The two types of teams differ consider-
ably with respect to the distribution of the team members over the two types of
employees.
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