
13. Mixture models 

Jeroen K. Vermunt and Leo J. Paas 

13.1. INTRODUCTION 

Marketing research literature, and most quantitative literature in other fields, addresses two main 

topics: (1) Categorization and (2) Prediction. Categorization can involve the following types of units: 

variables, companies, countries, consumers, customers, brands, websites, etc. For example, 

variables can be categorized using factor analysis or other techniques to assess the dimensionality 

underlying response patterns to the observed items (Paas and Sijtsma, 2008). Categorization can 

also assess which brands may be competing for the same market of consumers and which brands 

can be considered as non-competitive, by allocating brands in groups (Rossiter and Bellman, 2005). 

A very common categorization in the marketing research literature concerns the allocation of 

consumers or clients to different segments, where needs and wants differ across segments (Wedel 

and Kamakura, 2000) and result in segment-specific strategies. This will be the emphasis of the 

current contribution. 

Consumer and client-base segmentation have received much attention (Wedel and 

Kamakura, 2000) since the basic concepts were introduced by Smith (1956). Traditional heuristic-

based clustering procedures have been used extensively for deriving segments from databases on 

clients or consumers. However, since the first application of latent class analysis, a type of mixture 

model, was reported in a marketing journal (Green et al., 1976), the model-based mixture modeling 

approach has been the preferred method for market segmentation (Leeflang et al., 2000). 

Interestingly, the marketing literature was early in adopting mixture modeling, two years after the 

seminal publication of the Goodman (1974) and even one year before the publication of the article 

on the EM-algorithm (Dempster et al, 1977), which made estimation of mixture models more 

feasible.  



Mixture models are highly flexible, enabling the modeling of data with various types of 

structures (Leeflang et al., 2000). Table 13.1 summarizes the main types of data structures with the 

corresponding type of mixture model. Basically, we distinguish between data sets with either a single 

or multiple columns for the response variable(s), and with a single or multiple rows per observational 

unit, where for the latter we make a further distinction between an arbitrary and a meaningful 

(longitudinal) ordering of the rows. Simple mixture models are typically used only for density 

estimation and are of less interest for marketing applications. Mixture regression and mixture growth 

models are random-effects like models: the aim is to describe the heterogeneity in the regression or 

growth parameters by assuming that individuals belong to finite number of latent classes. These 

models will always contain predictors affecting the responses (in mixture growth models these are 

time-variables). In the second row, we see the more typical cluster analysis like applications of LC 

analysis. Here one may also include predictors affecting the responses, yielding multivariate 

extensions of mixture regression and growth models.  

Table 13.1: Typology of mixture models based other type of data structure 

 
 Independent 

observations 
Dependent 
observations or 
multilevel data 

Longitudinal or 
panel data 

Univariate 
response  

(1) simple 
mixture model 

(2) mixture 
regression model 

(3) mixture 
growth model 

Multivariate 
responses 

(4) LC model (5) multilevel LC 
model  

(6) (mixture) 
latent Markov 
model 

 

In this chapter we further discuss the model types 4 and 5 in Table 13.1, starting with the 

basic idea of a simple mixture model (category 1 in Table 13.1). After that we focus on models for 

multivariate responses, which correspond to cluster-analysis like applications of mixture models, i.e., 

the standard latent class model (category 4), with covariates, as well as its multilevel extension for 

situations in which lower-level observations (e.g. individuals) are nested within higher-level units 

(e.g. regions), and in which we wish to cluster/segment both lower- and higher-level units, i.e., the 

multilevel LC model (category 5). Note that, (mixture) latent Markov models (category 6), which can 

be used for studying how individuals move between latent states, clusters, or segments over time, 



have been discussed previously in this series by Leeflang et al. (2000), and will also be addressed in 

detail in the next chapter of the current book. We illustrate applications of the standard and multilevel 

LC models based on applications in international marketing. We end with a discussion of statistical 

software implementing these models and a brief summary, which also introduces other marketing 

applications of the LC model and the multilevel LC model. 

13.2. MIXTURE MODELS 

13.2.1. The simple mixture model 

The basic assumption of any type of mixture model is that the population consists of a finite number 

of unobserved groups which differ with respect to the parameters of a statistical model. These 

unobserved groups are referred to as mixture components or latent classes. The assumed statistical 

model within latent classes is typically rather simple; for example, a Poisson distribution for a count 

variable, a linear regression model with normal errors for a continuous outcome variables, or an 

independence model for a set of categorical variables. 

 Let us first look at a simple mixture model (category 1 in Table 13.1) , say a count variable 

denoted by   , where   refers to one of the individuals in the sample and      . The aim of the 

analysis is to describe the sample distribution of this variable assuming 1) there are C latent classes 

and 2)    follows a Poisson distribution with mean    within the classes, where c refers to a particular 

latent class. The corresponding mixture model can be expressed as follows:   

         
 
              

 
   

      
  

   
        (13.1) 

Here,    is the class proportion or the probability of belonging to class c, where      and    
 
    

 . As can be seen, the probability of observing a count value of   ,      , is assumed to be a 

weighted average of the class-specific probabilities        , where class proportions are weights 

(McLachlan and Peel, 2000). The         are Poisson distributions with means   .  

Table 13.2 illustrates application of this model. It presents the observed frequency 

distribution of a count variable as well as its estimated frequency distributions under a standard and 

three-class Poisson model. As can be seen, while the standard Poisson model does not fit the data, 



the observed distribution is approximated very well with three latent classes. This shows a general 

result: complex observed distributions can typically be approximated well using a mixture of simple 

distributions, which is why mixture models are well suited for density estimation. 

 
Table 13.2: Observed and estimated frequency distributions under a standard and 3-class mixture 

Poisson model 

Count Observed 
Standard 
Poisson 

3-Class 
Poisson 

0 102 8.43 101.99 

1 54 33.63 53.93 

2 49 67.11 50.20 

3 62 89.28 54.23 

4 44 89.09 47.42 

5 25 71.11 34.14 

6 26 47.30 21.93 

7 15 26.97 14.28 

8 15 13.46 10.95 

9 10 5.97 10.13 

10 10 2.38 10.14 

11 10 0.86 9.95 

12 10 0.29 9.19 

13 3 0.09 7.90 

14 3 0.03 6.32 

15 5 0.01 4.72 

16 5 0.00 3.31 

17 4 0.00 2.18 

18 1 0.00 1.36 

19 2 0.00 0.80 

20 1 0.00 0.45 
Note: In the standard model, the Poisson rate equals 3.99. In the 3-class model, the class-specific rates are .29, 3.48, 

and 11.22, and the class proportions are .28, .54, and .18, respectively. 

 

13.2.2. The unrestricted LC model for multivariate responses 

In the LC model (category 4), which can be considered as cluster- or segmentation-like applications 

of mixture models, we will typically have multiple responses per individual. We denote these 

responses by    , where   denotes a particular response variable and K  the number of response 



variables (     ). Denoting the full response vector of person   as   , a LC model can be 

defined as follows (Lazarsfeld, 1950; Goodman, 1974): 

         
 
              

 
             

 
         (13.2) 

As can be seen, similar to the simple mixture model presented above, we assume       to be a 

mixture of class-specific distributions        . However, here we make a second important 

assumption, namely that the K responses are independent of one another conditional on a person’s 

class membership. That is, we assume                  
 
   . This is usually referred to as the 

local independence assumption. This assumption is also used in other types of latent variable 

models, such as in factor analysis and Item Response Theory (IRT) modeling, as well as in random-

effects models, meaning that it is not specific for LC analysis. Note that IRT models will be discussed 

further in section 13.2.3. As shown by Hagenaars (1988) and Oberski, van Kollenburg, and Vermunt 

(2013), this assumption can be tested and also be relaxed for some item pairs. 

The specific form used for the class-specific probability density          depends on the 

scale type of    : Examples include a normal distribution for continuous    , a Poisson distribution for 

count    , a Bernoulli distribution for dichotomous    , and a multinomial distribution for polytomous 

      Moreover, different forms can be combined within the same model (Vermunt and Magidson, 

2002). Let us look in more detail at the Bernoulli case, in which             
          

       , 

meaning that the class-specific parameters are the success probabilities    . Table 13.3 presents a 

small illustrative data set consisting of three dichotomous responses from a hypothetical customer 

survey asking whether respondents own three types of electronic devices. Table 13.4 reports the 

parameter estimates (class proportions    and class-specific success probabilities   ) obtained with 

a 2-class model. For a subject belonging to the first latent class, the ownership probabilities equal 

.844, .912, and .730 for products 1, 2, and 3, respectively. The local independence assumption 

implies, for example, that the probability of owning only the first two products equals .844×.912× (1-

.730) = 0.208 in Latent Class one, and 0.091 in Latent Class two. Furthermore, a LC model defines 

the overall probability of having a particular response pattern, which turns out to be 0.161 for the 

owning of products 1 and 2. The latter number is obtained as a weighted average of the class-



specific joint response probabilities taking into account the class proportions (.601 and .399); that is, 

.601×0.208+.399×0.091=0.161. The LC model was used in the first marketing application of mixture 

modeling reported by Green et al. (1976). 

Table 13.3: Small data set with three dichotomous responses 

yi1 yi2 yi3 Frequency                                               Modal 

0 0 0 239 0.004 0.272 0.111 0.020 0.980 2 

0 0 1 101 0.010 0.102 0.047 0.128 0.872 2 

0 1 0 283 0.038 0.271 0.131 0.175 0.825 2 

0 1 1 222 0.104 0.102 0.103 0.605 0.395 1 

1 0 0 105 0.020 0.092 0.049 0.248 0.753 2 

1 0 1 100 0.054 0.035 0.046 0.703 0.297 1 

1 1 0 348 0.208 0.091 0.161 0.774 0.226 1 
1 1 1 758 0.562 0.034 0.352 0.961 0.039 1 

 

Table 13.4: Parameters (class proportions and ownership probabilities) obtained with a 2-class 

model for the data in Table 13.3 

Parameter Class 1 Class 2 

   0.601 0.399 

    0.844 0.252 

    0.912 0.499 

    0.730 0.273 

 

Similar to cluster analysis, one of the purposes of the LC model might be to assign 

individuals to latent classes (LCs). The probability of belonging to LC c given responses    – often 

referred to as the posterior class membership probability – can be obtained by the Bayes rule: 

         
         

     
           (13.3) 

Table 13.2 reports         for each answer pattern. For example,           equals 0.774 

for the (1,1,0) pattern, which is obtained as .601×.208/.161. The most common classification rule is 

modal assignment, which amounts to assigning each individual to the LC for which          is largest. 

The last column of Table 3 reports the modal assignments and shows that consumers that own at 

least 2 products are assigned to class 1 and the others to class 2. 

The assigned class membership can among others be used to investigate the relationship 

between class-membership and external variables (for example, concomitant variables). Such 



variables can however also be included in the LC model itself. We discuss this in more detail in 

section 13.2.6. 

Table 13.5: Parameters (class proportions and ownership probabilities) obtained with a Proctor 
model for the data in Table 13.3 

Parameter Class 1 Class 2 Class 3 Class 4 

   0.160 0.155 0.126 0.559 

    0.167 0.833 0.833 0.833 

    0.167 0.167 0.833 0.833 

    0.167 0.167 0.167 0.833 

 

13.2.3. Some restricted LC models for categorical responses  

Interesting types of restricted LC models for categorical items have been proposed, which involve 

imposing (linear) constraints on either the conditional probabilities or the corresponding logit 

coefficients. Of particular interest are probabilistic Guttman scaling models for dichotomous 

responses, which are LC models with C=K+1 classes, in datasets with K items. Various marketing 

papers presented applications of such restricted LC models, e.g., Bijmolt el. (2004), Feick (1987) 

and Paas and Molenaar (2005).  

The basic rationale on which Guttman scaling is based can be explained using Figure 1, 

which is based on a hypothetical dataset in which five persons reacted to four items, e.g., survey 

questions. The line represents the underlying latent trait on which both persons and items are 

ordered. A latent trait could be brand knowledge, with low values representing a low level of 

knowledge and higher positions on the latent trait representing much knowledge on the focal brand. 

Person1 has the lowest position on the latent trait, a position below all items, implying this person 

possesses too little knowledge to answer any of the items correctly. Person2 is found between item1 

and item2, implying Person2 will probably answer item1 correctly, but not the four other items. 

Person3’s knowledge is likely to lead to correct answers on items 1 and 2, but not on the other 

items. Moving all the way up the latent trait will lead to person5, who possesses sufficient brand 

knowledge for answering all items correctly.  

 



Figure 1: Hypothetical Guttman scale 

0     Item1  Item2   Item3   Item4  ∞ 

Person1  Person2  Person3  Person4    Person5 

 

The hierarchical ordering of items and persons implies that if a person answers a difficult 

brand knowledge item correctly, such as item 4, this person should also answer the easier items 

correctly, items 1 to 3 in this example. Stated more formally and in terms of LC models, apart from 

measurement error, class c should provide a positive answer to the c-1 easiest items and a negative 

answer to the remaining K-(c-1) items. This rather basic Guttman scale model forms the 

fundamentals for various types of IRT models. Most relevant herein is that the answer patterns of 

respondents will not be deterministic, some answers maybe be inconsistent with the hierarchical 

ordering of items. In our hypothetical example a Guttman error occurs if a respondent answers the 

more difficult item4 correctly but not the easier item2. Probabilistic IRT models accommodate for the 

occurrence of such Guttmann errors in various ways. Refer to Hambleton and Swaminathan (1985) 

or Sijtsma and Molenaar (2002) for a more formal and elaborate description of item response theory. 

These different models can be represented in a LC model framework, as we will discuss briefly in 

this section.  

The various types of probabilistic Guttman models differ in the constraints they impose on 

the measurement error. The simplest and most restricted model is the Proctor (1970) model. Table 

13.5 presents the parameter estimates obtained when fitting the Proctor model to the data set in 

Table 13.3. As can be seen, the ownership probability is either .833 or .167=1-.833. The 

measurement error – or the probability of owning a product which is not in agreement with the class 

– is estimated to be equal to .167.  Whereas the Proctor model assumes that the measurement error 

is constant across items and classes, less restricted models can be defined, with different error 

probabilities across items, classes, or both (Dayton, 1999). 

Croon (1990) proposed a restricted LC model that similarly to non-parametric IRT (Sijtsma 

and Molenaar, 2000) assumes monotonic item response functions; that is,           . A restricted 



version, in which not only classes but also items are ordered, is obtained by imposing the additional 

set of restrictions,           ; that is, by assuming double monotony. Vermunt (2001) discussed 

various generalizations of these models. In the marketing literature such model restrictions were 

applied for predicting consumer’s future product acquisition using cross sectional data on ownership 

of financial products (Paas and Molenaar, 2005). 

 Various authors described the connection between restricted LC models and parametric IRT 

modeling (see, for example, Heinen, 1996; Lindsay, Clogg, and Grego, 1991); that is, IRT models 

with a discrete specification of the distribution of the underlying trait or ability can be defined as LC 

models in which the response probabilities are parametrized using logistic equations with constraints 

on the logit parameters, where LC locations represent the C possible values of the discretized latent 

trait. These locations may be fixed a priori, for example, at    -2, -1, 0, 1, and 2 in the case of C=5, 

but may also be treated as free parameters to be estimated. Depending on whether the items are 

dichotomous, ordinal, or nominal, this yields a 2-parameter logistic, generalized partial credit, or 

nominal response model. Further restrictions involve equating slope parameters across items, 

yielding Rasch and partial credit models, and imposing across category and across item restrictions 

on intercept parameters as in rating scale models for ordinal items. Multidimensional variants can be 

obtained using what Magidson and Vermunt (2001) refer to as discrete factor models. 

13.2.4. Parameter estimation by maximum likelihood 

The parameters of LC models are typically estimated by means of maximum likelihood (ML). The 

log-likelihood function that is maximized is based on the probability density      , that is, 

            
 
              (13.4) 

With categorical responses one will typically group the data and construct a frequency table as we 

did in Table 3. The log-likelihood function for grouped data equals 

               
             (13.5) 

where   is a data pattern,   the number of different data patterns, and    the cell count 

corresponding to data pattern  . Notice that only nonzero observed cell entries contribute to the log-



likelihood function, a feature that is exploited by the more efficient LC software packages that have 

been developed over the last decades. These packages will be discussed in section 13.4. 

One of the problems in the estimation of LC models for discrete     is that model parameters 

may be nonidentified, even if the number of degrees of freedom – the number of independent cells in 

the  -way cross-tabulation minus the number of free parameters – is larger than or equal to zero. 

Non-identification means that different sets of parameter values yield the same maximum of the log-

likelihood function or, worded differently, that there is no unique set of parameter estimates. The 

formal identification check is via the Jacobian matrix (matrix of first derivatives of      ), which 

should be column full rank. Another option is to estimate the model of interest with different sets of 

starting values. Except for local solutions (see below), an identified model gives the same final 

estimates for each set of the starting values. 

 Although there are no general rules with respect to the identification of LC models, it is 

possible to provide certain minimal requirements and point to possible pitfalls. For an unrestricted LC 

model, one needs at least three responses (   ’s) per individual, but if these are dichotomous, no 

more than two latent classes can be identified. Consideration is required when analyzing four 

dichotomous response variables, in which case the unrestricted three-class model is not identified, 

even though it has a positive number of degrees of freedom. With five dichotomous items, however, 

even a five-class model is identified. Usually, it is possible to achieve identification by constraining 

model parameters. 

 A second problem associated with the estimation of LC models is the presence of local 

maxima. The log-likelihood function of a LC model is not always concave, which means that hill-

climbing algorithms may converge to a different maximum depending on the starting values. Usually, 

we are looking for the global maximum. The best way to proceed is, therefore, to estimate the model 

with different sets of random starting values. Typically, several sets converge to the same highest 

log-likelihood value, which can then be assumed to be the ML solution. Some software packages 

have automated the use of multiple sets of random starting values to reduce the probability of getting 

a local solution. 



 Another problem in LC models is the occurrence of boundary solutions, which are 

probabilities equal to 0 (or 1) or logit parameters equal to minus (or plus) infinity. These may cause 

numerical problems in the estimation algorithms, occurrence of local solutions, and complications in 

the computation of standard errors and number of degrees of freedom of the goodness-of-fit tests. 

Boundary solutions can be prevented by imposing constraints or by taking into account other kinds 

of prior information on the model parameters. 

 The most popular methods for solving the ML estimation problem are the expectation-

maximization (EM) and Newton-Raphson (NR) algorithms. EM is a very stable iterative method for 

ML estimation with incomplete data (Dempster et al, 1977). NR is a faster procedure that, however, 

needs good starting values to converge. The latter method makes use of the matrix of second-order 

derivatives of the log-likelihood function, which is also needed for obtaining standard errors of the 

model parameters. 

13.2.5. Model selection issues 

A challenging and fundamental decision for LC models and other categories of models, in Table 

13.1, concerns model specification. With most available data sets model specifications can differ in 

various ways. Models may differ in the number of latent classes, the specification of the 

measurement model, freely estimated or restricted as discussed in section 13.2.4, the relationship 

between the measured indicators and the latent classes, nominal, ordinal or metric, specification of 

the form of the covariate effects, nominal, ordinal or metric, etc.  

The goodness-of-fit of such alternative formulation of LC models for categorical responses 

can be tested using Pearson and likelihood-ratio chi-squared tests. The latter is defined as 

         
  

       
 
             (13.6) 

As in log-linear analysis, the number of degrees of freedom (df) equals the number of cells in the 

frequency table minus 1, minus the number of independent parameters (     . In an unrestricted LC 

model, 

      
 
              

 
                 

          (13.7) 



where    is the number of categories of the k
th
 response variable. Although it is no problem to 

estimate LC models with 10, 20, or 50 indicators, in such cases, the frequency table may become 

very sparse and, as a result, asymptotic p-values can no longer be trusted. An elegant but time-

consuming solution to this problem is to estimate the p-values by parametric bootstrapping. This 

procedure constructs the sampling distribution of the statistic of interested using Monte-Carlo 

simulation. More specifically, one generates M samples from the population defined by the estimated  

parameters and estimates the model with each of these M samples. The p-value is the proportion of 

samples in which the statistic is larger than in the original sample. 

Another alternative for assessing model fit in sparse tables is to look at the fit in lower-order 

marginal tables (e.g., in the two-way marginal tables). An example is the bivariate residual, which is 

a Pearson chi-squared statistic for a two-way table divided by the number of degrees of freedom 

(Oberski, van Kollenburg, and Vermunt, 2013); that is,  

         
                             

                
                   

    
  
        (13.8) 

Here           is the observed number of persons with responses   and    on item pair   and   , and 

               is the probability of this response pattern according to the estimated LC model. It 

can be computed by 

                                        
          (13.9) 

thus basically by applying the LC formula to an item pair. Larger BVR values point at possible 

violations of the local independence assumption for the item pairs concerned.  

Even though LC models with C and C + 1 classes are nested, one cannot test them against 

each other using a standard likelihood-ratio test because it does not have an asymptotic chi-squared 

distribution. A way out to this problem is to approximate its sampling distribution using bootstrapping. 

But since this bootstrap likelihood-ratio method is computationally demanding, alternative methods 

are often used for comparing models with different numbers of classes. Most popular are information 

criteria, e.g., the Bayesian Information Criterion (BIC), the Akaike Information Criterion (AIC), and 



the AIC3 measure, defined as:                                    , and      

            . Lower values imply better fit and parsimony.  

Usually, we are not only interested in (relative) goodness-of-fit but also in how well class 

memberships can be predicted from the observed responses or, worded differently, how well classes 

are separated. This is can among other be quantified based on the estimated proportion of 

classification errors under modal classification, which equals 

    
 

 
              

 
            (13.10) 

This number can be compared to the proportion of classification errors based on the unconditional 

probabilities   , yielding a reduction of errors measure called Lambda: 

          
  

         

 
            (13.11) 

The closer this nominal pseudo R
2
 measure is to 1, the better the model performs in terms of 

classification accuracy. Other types of R
2
 measures have been proposed based on entropy and 

qualitative variance; that is, using                       
   

 
    and             

     
   

 
    as 

measures for class separation. 

 Finally, there is a class of measures which are similar to information criteria, but which also 

take into account classification performance. In other words, these measures try to balance fit, 

parsimony, and classification performance. The best-known of these measures are AWE and ICL-

BIC.  

13.2.6. LC analysis with concomitant variables 

An important extension of the LC model involves inclusion of concomitant variables or covariates 

predicting class membership (Dayton and Macready, 1988; Kamakura, Wedel and Agrawal, 1994). 

Denoting a person’s covariate vector by     this extended LC model is defined as: 

               

 
                 

 
             

 
         (13.12) 

The main change compared to the LC model is that the class membership probabilities may now be 

dependent on   , whereas the definition of         remains unchanged. Note that an additional 



assumption is made, namely that the effect of the    on the    is fully mediated by the latent classes. 

Section 13.3.1 provides an example of such a LC model, in which country of residence is the 

covariate of interest. It is possible to test this assumption using local fit measures similar to those 

discussed earlier, as well as to relax it by allowing for direct effects, which implies replacing          

by             for one or more of the    . 

Typically,      
 is modeled using a multinomial logistic specification; that is,  

     
 

            
 
    

                  
 
     

    

          (13.13) 

Where     represents the intercept and     the slope for predictor     for latent class    For 

identification, we will typically assume parameters to sum to 0 across classes (effect coding) or to be 

equal to 0 for one class (dummy coding). 

The simultaneous modeling of responses    and concomitant variables    may sometimes be 

impractical, especially when the number of possibly relevant concomitant variables is large. 

Therefore, researchers often prefer using a three-step analysis approach. This involves: 

1) estimating a LC model without covariates, 

2) obtaining the individuals’ class assignment using the posterior membership probabilities, and  

3) investigating how the class assignments are related to covariates. 

The advantage of this approach is that it does not lead to a segmentation structure that is 

determined by the chosen covariates, only indicator variables influence this. This is particularly 

relevant when there is little theory on the relationship between covariates and latent class 

membership and possible direct effects of covariates on responses, which is often the case in the 

more or less exploratory clustering analyses conducted in marketing research.  

However, as shown by Bolck, Croon, and Hagenaars (2004), this yields downward biased 

estimates of the covariate effects. Based on the work of these authors, Vermunt (2010) proposed a 

simple method to adjust for this bias (see also Bakk, Tekle, and Vermunt, 2013). The adjustment is 

based on the following relationship between the class assignments    and the true class 

membership c: 



               

 
                    (13.14) 

Note that this is again a LC model, but with    as a single “response” variable. The adjustment 

proposed by Vermunt (2010) therefore involves estimating a LC model with    as concomitant 

variables and    as the single response variable, while fixing the         at the values computed 

using the parameter estimates from the first step.  

13.2.7. Multilevel LC analysis 

Another important extension of the LC model concerns its adaptation for the analysis of multilevel 

data sets (Vermunt, 2003). Description of this multilevel extension of the LC model requires 

expansion of our notation. We refer to a particular higher-level unit as   and to the response vector of 

a group and an individual within a group as    and    , respectively. The number of individuals within 

a group is denoted by   , a group-level latent class or cluster by  , and the number of group-level 

clusters by  . The lower-level part of the multi-level LC model (category 5), a two-level LC model in 

this case, has the following form: 

              
 
                 

 
             

 
         (13.15) 

which is the same as a LC model, except for the fact that the class proportions are allowed to differ 

across higher-level clusters. For         , as in the LC model, we assume local independence. The 

higher-level model equals 

         
 
             

  

   
         (13.16) 

As can be seen, the main additional model assumptions are that there are   group-level classes and 

that the individuals’ responses within a group are independent given the group’s class membership. 

Combining the above two equations yields the full equation of a two-level LC model: 

         

 

   

      

 

   

          

 

   

 

  

   

 

As in a LC class model, we include concomitant variables predicting the higher- and lower-level 

class memberships, either using a simultaneous analysis or a three-step approach. Moreover, the 

assumption that the      are independent of the groups’ class memberships given the individuals’ 



class memberships can be tested and relaxed (Nagelkerke, Oberski, and Vermunt, 2016). Section 

13.3.2 presents an application of the multilevel LC model, with two levels.  

13.3. APPLICATIONS IN INTERNATIONAL MARKETING 

We illustrate the concepts discussed in section 13.2 in the context of international marketing. Ter 

Hofstede et al. (1999) point out that international marketing has become more important for 

developing, positioning and selling products. This results from globalization, implying that firms are 

reacting to international competitors in the local market and competing with local competitors in 

markets outside their country of origin (Yip, 1995). International marketing strategies require 

thorough understanding of the various national and cross-national markets (Bijmolt et al., 2004; Ter 

Hofstede at al., 1999). For example, firms that operate internationally may aim to detect segments 

that occur across multiple countries, allowing the development of internationalized marketing 

strategies (Ter Hofstede et al., 1999). Conversely, firms operating in a single country can detect and 

target segments that only occur in their country and are therefore more likely to react positively to a 

local strategy implemented by a local company. Detection of such cross-national or country-specific 

segments relies on segmentation techniques that accommodate for the hierarchy in international 

data (Bijmolt et al., 2004, Paas et al., 2015; Ter Hofstede et al., 1999). Note that international data 

are hierarchical in the sense that there are units at two levels, consumers or respondents at the 

lower level and country represents are the higher level unit (Bijmolt et al., 2004) 

We discuss two international segmentation applications of mixture modeling, using a LC 

model, category (4) in Table 13.1, and the multilevel LC model, (category 5). We show how data 

from multiple countries can be analyzed in different ways, without ignoring similarities and 

differences across the countries analyzed and thereby taking into regard the hierarchical nature of 

international data.  



13.3.1. International segmentation using a covariate 

The first discussed application (Ter Hofstede et al., 1999) involves a LC model that accommodates 

the incorporation of within- and cross-country heterogeneity by using country membership of the 

individual respondent as a concomitant variable or covariate, as discussed in section13.2.6. Ter 

Hofstede et al. (1999) analyse data on consumer’s yoghurt preferences in 11 European Union (EU) 

countries. Data were part of an EU survey conducted for the European commission; refer to Ter 

Hofstede et al. (1999) for details. The segmentation basis concerns variables describing consumer 

Means-End Chains (MECs). MECs assume that consumers obtain desired ends, represented as 

values through the attributes of specific types of yoghurt. In MECs product attributes are linked to 

values via benefits (Gutman, 1982). Thus, in this hierarchy there are two key links: attribute-benefit 

(AB) and benefit-value (BV). As an example of an AB link, Ter Hofstede et al. (1999) find that the 

product attribute low fat is strongly linked to the benefit good health. A related BV-link connects good 

health to the value security. The AB and BV links vary in strength from 0 to 1. Similarities and 

differences between consumers, concerning strengths of the links, are used to segment these 

individuals.  

 In the resulting LC model (category 4) Ter Hofstede et al. (1999) obtain four segments, using 

information criteria (see section 13.2.5), with varying strengths in the links. As an example, their 

segment two is defined by consumers who chose yoghurt mostly accruing to fulfilment of the value 

fun and enjoyment. Through BV-links we find that the value fun and enjoyment is linked to the 

following benefits: convenient to use, good taste, good quality, good health, good for digestion and 

diet. In turn the AB-links show that the abovementioned segment 2 benefits are strongly linked to the 

attributes: individually packed, with fruit, high priced, mild, organically produced, biobifidus and low 

fat. Refer to Ter Hofstede et al. (1999) for a more comprehensive discussion of segment two and the 

other three segments.  

Most relevant for the current discussion is that differences in the occurrence of the four 

segments across the 11 analyzed EU countries are accommodated for using a country-covariate in 

the LC model (see section 13.2.6.), which leads to different segment sizes across the countries. 



Note that Ter Hofstede et al. (1999) included other covariates in their model, which are not 

discussed in our chapter. Table 13.6 shows segment sizes in the 11 analyzed countries. Large 

proportions of consumers are in segment 4 across all analyzed countries. Therefore, a cross-

national marketing strategy can be developed targeting segment 4 across the 11 EU countries 

analyzed. Contrarily, the previously discussed segment 2 with the dominant fun and enjoyment value 

is particularly large in Germany and is also relatively large in Portugal and France. Strategies aimed 

at targeting this segment are most important for the first mentioned country and can possibly also be 

applied in France and Portugal. Refer to Ter Hofstede et al. (1999) for a more comprehensive 

discussion on implications.  

Table 13.6: Occurrence of segments in Ter Hofstede et al study* 

Country p(S1) p(S2) p(S3) p(S4) 

Belgium 12.2 17.5 8.5 61.8 

Denmark 47.6 2.6 27.0 22.8 

France 2.4 21.8 3.3 72.4 

Germany 3.2 45.1 26.3 25.4 

Great Britain 41.2 7.0 26.0 25.9 

Greece 28.2 13.4 6.5 52.0 

Ireland 40.6 12.1 17.9 29.5 

Italy 5.9 10.2 5.1 78.8 

Netherlands 31.5 14.3 17.9 36.3 

Portugal 35.2 27.8 4.9 32.1 

Spain 24.1 8.5 3.8 62.6 

*Note that these figures are copied from Table 5 in Ter Hofstede et al. (1999, p.8) 

 

13.3.2. Multilevel international segmentation 

The analysis reported by Ter Hofstede et al. (1999) can be applied to international data with any 

number of countries. However, the interpretation of the covariate effects becomes cumbersome as 

the number of higher-level units, such as countries, increases. Under such circumstances, it may be 

more insightful to simultaneously cluster lower-level units, consumers, and higher-level units, 

countries, using a multilevel LC model (category 5). Bijmolt et al. (2004) applied this model to 

consumer ownership data on eight financial products across 15 EU countries. Two countries are split 

over two regions, i.e., Germany over East and West Germany and Great Britain over Northern 



Ireland versus the rest, resulting in 17 higher-level units. Paas et al. (2015) and Paccagnella and 

Varriale (2013) reported similar, less extensive analyses. 

 Bijmolt et al. (2004) apply the multilevel LC model to the Eurobarometer 56.0 database, 

resulting in 14 consumer-level segments and seven higher-level segments for categorizing the 17 

countries and regions, using information criteria (see section 13.2.5). That is, models with up to 15 

lower level classes, for clustering respondents, and eight higher level classes, for clustering 

countries, were estimated. Amongst the 120 estimated model the multilevel LC model with 14 

respondent segments and seven higher level country-segments led to the lowest value on the 

information criterion, CAIC. Hence this model has the optimal fit to the data and was selected as the 

final model. Refer to Bijmolt et al. (2004) for a further description of the analysed data and the model 

selection.  

The 14 consumer-level segments are defined by differing propensities for owning each of the 

8 analyzed financial products. For example, in the highly active respondent-level segment 14, we 

find 100% of the respondents owning the current account, 85.7% a savings account, 83.3% a credit 

card, 87.1% other bank card, 100% a cheque book, 60.3% an overdraft, 89.3% a mortgage and 

39.2% a loan. Contrarily, in segment 1 we find that 4.9% of the respondents owns the current 

account, 38.7% a savings account, 0.0% a credit card, 0.2% other bank card, 8.5% a cheque book, 

0.0% an overdraft, 0.8% a mortgage and 2.2% a loan. Covariate effects on the 14 respondent-level 

segments are incorporated in the model, as discussed in section 13.2.6. Bijmolt et al. (2004) find that 

respondents aged 30-59, with above average incomes and with a partner are overrepresented in the 

consumer segments that are characterised by high penetrations of the products, such as segment 

14 that is discussed above.  

 Next to incorporating covariates, Bijmolt et al (2004) also assessed alternative model 

specifications, linked to the respondent-level segmentation, such as those discussed in section 

13.2.3. Results of previously published studies on developments in consumer financial product 

portfolios suggest that most consumers will acquire financial products in a similar order, those 

products relevant for the satisfaction of more basic financial needs before more advanced products 



(Dickenson and Kirzner, 1986; Kamakura et al., 1991; Paas and  Molenaar, 2005). Bijmolt et al. 

(2004) test whether such an order of acquisition applies for the eight financial products in their 15-

country data set by assessing whether IRT-based assumptions, as those presented in section 

13.2.3, lead to better a model, according to the information criteria in section 13.2.5. The model 

without the restrictions leads to lower information criterion values, CAIC, thus, a common order of 

acquisition in the Bijmolt et al. (2004) data is not supported.  

 Bijmolt et al. (2004) also present results of applying a multilevel LC model to internationally 

collected consumer data. Instead of using covariates to assess similarities and differences in 

segmentation structures across countries analyzed, the countries themselves are clustered on the 

basis of these similarities and differences. That is, countries with similar respondent-level 

segmentation structures are allocated to the same higher-order segment. We present the country 

clustering reported in Bijmolt et al. (2004) in our Table 13.7. As pointed out by Bijmolt et al. (2004), 

the classification of countries in Table 13.7 reflects European geography to a certain degree, which 

supports face validity of the results.  

Table 13.7: Higher level country segments* 

Country 
Segment 

Relative 
Size 

Country Prob. 

1 0.256 Belgium, Germany (East and West), The Netherlands 
Luxembourg 

100% 
81.1% 

2 0.260 Austria, Denmark, Sweden, Finland 
Luxembourg 

100% 
18.9% 

3 0.175 Great Britain, Ireland, Northern Ireland 100% 

4 0.119 Italy, Portugal 100% 

5 0.064 Spain 100% 

6 0.064 Greece 100% 

7 0.064 France 100% 

* The content of this Table is derived from Table 3 in Bijmolt et al. (2004, p. 330).  

13.4. SOFTWARE 

One of the first LC analysis programs, MLLSA, made available by Clifford Clogg in 1977, was limited 

to a relatively small number of nominal variables. Today’s programs can handle many more 

variables, as well as other scale types. For example, the LEM program (Vermunt, 1997) provides a 



command language that can be used to specify a large variety of models for categorical data, 

including LC models. Mplus is a command language based structural equation modeling package 

that implements many types of LC and mixture models. In addition, routines for the estimation of 

specific types of LC models are available as SAS, R, and Stata packages/macros (see, for example, 

Lanza et al., 2007; Skrondal and Rabe-Hesketh, 2004). 

 Latent GOLD (Vermunt and Magidson, 2000-2016) is a program that was specifically 

developed for LC analysis, and which contains both an SPSS-like point-and-click user interface and 

a syntax language. It implements all important types of LC models, such as models for response 

variables of different scale types, restricted LC models, models with predictors, models with local 

dependencies, models with multiple discrete latent variables, LC path models, LC Markov models, 

mixture factor analysis and IRT, and multilevel LC models, as well as features for dealing with 

partially missing data, performing bootstrapping, performing simulation studies, power computation, 

and dealing with complex samples.  

13.5. SUMMARY AND OTHER APPLICATIONS 

We introduced different types of mixture models that can be used for classifying entities, such as 

consumers. Consecutively we discussed the simple mixture model for a univariate response and 

extended this to the LC model for multivariate observed responses. Then we discussed the 

restrictions that may be imposed on the observed responses followed by more technical issues, i.e., 

parameter estimation and model selection. After this we discussed the LC model for multivariate 

responses, restricted LC models, LC models with concomitant variables and the multilevel LC model 

for accommodating data with lower- and higher- level units. The LC model and the multilevel LC 

model were then illustrated in the context of international segmentation, in which we emphasized the 

use of a covariate or alternatively a multilevel structure to accommodate for similarities and 

differences between consumers within and across countries. Last of all software programs 

applicable for mixture modelling were briefly pointed out.  



 To conclude this contribution we point out that the marketing literature reports many other 

applications of the LC model (category 4 in Table 13.1). A selection of these applications is 

presented in Table 13.8, in order to illustrate some of the possibilities. Note that this list is far from 

exhaustive. The other category of mixture model discussed in this chapter was the multilevel LC 

model (category 5 in Table 13.1). We did not find other applications of this model in the marketing 

literature, besides the application discussed in 13.3.2. However, applications of multilevel LC models 

to marketing issues have been presented in statistical journals, e.g., Paas et al. (2015) and 

Paccagnella and Varriale (2013). Thus, this paper may be concluded by pointing out that the 

marketing research applications of the various types of multilevel LC models should also be 

exploited.  

Table 13.8: Studies based on standard latent class analysis model 

Paper Description 

Green, Carmone, 
Wachspress, JCR, 1976 

Modelling consumer adoption of a new telecommunications service 

Feick, JMR, 1987 Analysis of behavioral hierarchies in terms of consumer 
complaining behavior 

Grover, Srinivasan, JMR, 
1987 

Assessing the competitive market structure of different brands in 
the coffee product category  

Kamakura, Novak, JCR, 
1992 

Identifying segments based on consumer values in the LOV 
instrument  

Kamakura, Wedel, 
Agrawal, IJRM, 1994 

Modeling consumer preferences for bank services 

Gupta and Chintagunta, 
JMR, 1994 

Analyzing the relationship between segments characterized by 
profiles of brand preferences and marketing variable sensitivity in 
relation to household demographics 

Bhatnagar, Ghose, JBR, 
2004 

Segmentation of web-shoppers based on their purchase behavior 
across various product categories 

Paas and Molenaar, 
IJRM, 2005 

Analysing orders in which consumers acquire financial products – 
Acquisition Pattern Analysis 

Kamakura, Mazzon, 
IJRM, 2013 

Social-economic stratification of consumers to explain consumption 
of various product categories 

De Keyser, Schepers, 
Komus, IJRM, 2015 

Clustering respondents on the basis of self-reported after-sales 
channel usage 
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