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Abstract

In order to accurately control the type I error rate (typically .05), a p-value should be

uniformly distributed under the null model. The posterior predictive p-value (ppp),

which is commonly used in Bayesian data analysis, generally does not satisfy this

property. For example there have been reports where the sampling distribution of the

ppp under the null model was highly concentrated around .50. In this case, a ppp of .20

would indicate model misfit, but when comparing it with a significance level of .05,

which is standard statistical practice, the null model would not be rejected. Therefore,

the ppp has very little power to detect model misfit. A solution has been proposed in

the literature, which involves calibrating the ppp using the prior distribution of the

parameters under the null model. A disadvantage of this “prior-cppp” is that it is very

sensitive to the prior of the model parameters. In this paper, an alternative solution is

proposed where the ppp is calibrated using the posterior under the null model. This

“posterior-cppp” (i) can be used when prior information is absent, (ii) allows one to test

any type of misfit by choosing an appropriate discrepancy measure, and (iii) has a

uniform distribution under the null model. The methodology is applied in various

testing problems such as testing independence of dichotomous variables, checking misfit

of linear regression models in the presence of outliers, and assessing misfit in latent class

analysis.

Keywords: Goodness-of-fit, posterior predictive check, p-values, calibration,

regression, latent class analysis
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Posterior Calibration of Posterior Predictive P-values

A crucial step in a statistical analysis is to assess whether the employed statistical

model fits the observed data. Different tools are available for this purpose. When one is

interested in testing whether one statistical model better fits the data than another

statistical model, model comparison tools are useful. Commonly used model comparison

tools are the AIC (Akaike, 1973), the BIC (Schwarz et al., 1978), or the Bayes factor

(Jeffreys, 1961; Kass & Raftery, 1995). These criteria penalize model complexity in the

sense that a simple model with few parameters is generally preferred over a more

complex model with many parameters if both models fit the data equally well (Mulder,

2014; Myung, 2000). On the other hand, when one is interested in testing whether one

specific model fits the observed data, model checking tools are useful. Such model

checks are often performed using Fisherian p-values in a classical framework and using

posterior predictive p-values (ppp’s) in a Bayesian framework (Berkhof, Van Mechelen,

& Gelman, 2003; Choi, Hui, & Bell, 2010; Meng, 1994). Although these methods come

from different paradigms, the p-value and the ppp are applied in a similar fashion to

assess misfit of the employed statistical model. If the p-value is smaller than a

pre-specified threshold value (typically .05), this indicates model misfit. If this is the

case, an extension of the employed model may be necessary to better fit the observed

data. Because the p-value and ppp are applied in a similar manner in practice, we shall

also refer to this threshold value as the “significance level” of the Bayesian test to avoid

additional terminology (despite the fact that the term “significance” is not commonly

used in Bayesian statistics). We shall also borrow frequentist terminology when

referring to the type I error rate, the type II error rate, and power as the probability of

incorrectly rejecting a Bayesian null model that is true, the probability of not rejecting

an incorrect null model, and the probability of correctly rejecting an incorrect null

model, respectively. Note that such frequentist properties are of interest in objective

Bayesian statistics (Berger et al., 2006).

In this paper we shall focus on model checking in the Bayesian framework using

the posterior predictive p-value (ppp) (Gelman, Meng, & Stern, 1996; Meng, 1994). The
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ppp has three useful properties. Firstly, it can straightforwardly be used for testing any

type of model misfit; we only need to formulate a discrepancy measure which is able to

detect the type of misfit of interest. Secondly, a ppp can easily be computed from

MCMC output because the discrepancy is allowed to depend on the (sampled) unknown

model parameters. Thirdly, the ppp can be computed using non-informative (or

objective) improper priors. This third property is useful when prior information is

unavailable or when a researcher does not want to include external information via the

prior distribution when evaluating the model. Because of these useful properties, the

ppp has been used in many different types of applications in psychology (Oravecz,

Faust, Batchelder, & Levitis, 2015), as well as in other fields such as marketing (Choi et

al., 2010), medicine (Chaves, Chakraborty, Benziger, & Tannenbaum, 2014), psychiatry

(Berkhof et al., 2003) and sociology (Hoverd & Sibley, 2013).

A potential problem of the ppp, however, lies in its interpretation. In order to

reliably interpret a ppp, the type I error rate should be equal to the significance level.

This equality only holds when the sampling distribution of the p-value is uniform. For

the ppp, however, the sampling distribution under the null model is typically not

uniformly distributed, but instead it is concentrated around .5 (Meng, 1994), possibly

with a lower bound that is larger than 0 (Robins, van der Vaart, & Ventura, 2000). As

a result, the type I error rate for the ppp is generally lower than the significance level.

Consequently a badly fitting model may not be rejected as a result of very low

statistical power of the ppp.

To resolve this issue and to accurately control the type I error probability, one can

calibrate the ppp under the employed null model. For this purpose, Hjort, Dahl, and

Steinbakk (2006) proposed calibrating the ppp using a proper informative prior,

yielding what we will refer to as a prior-calibrated ppp (prior-cppp). The prior-cppp is

uniformly distributed under the null model and the chosen prior, and therefore it

potentially resolves the problem associated with the standard ppp.

A key property of the prior-cppp is however that the employed statistical model

and the informative prior are simultaneously tested. It is therefore crucial to carefully
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formulate informative priors for the unknown model parameters based on one’s

substantive beliefs before observing the data. When prior information is weak or

unavailable the prior-cppp is not recommendable. On the other hand when prior

knowledge is available, the specification of the informative prior distribution for all

model parameters can be a rather difficult and time consuming exercise (Berger et al.,

2006; Hjort et al., 2006), which substantive researchers may prefer to avoid.

Furthermore, researchers may only be interested in assessing model misfit of the

employed statistical model and not in simultaneously testing the appropriateness of the

informative prior. By taking these considerations into account, the applicability of the

prior-cppp may be limited.

In this paper, a new type of calibrated ppp is proposed. Instead of calibrating the

ppp under an informative prior, as in the prior-cppp, the ppp is calibrated under the

posterior distribution of the unknown parameters of the employed null model. The

resulting ppp will be referred to as the posterior-calibrated ppp (posterior-cppp). Unlike

the prior-cppp, the posterior-cppp can be used when prior information is weak or when

one is only interested in testing model misfit. Furthermore, the posterior-cppp has all

the useful properties of the original ppp, with the additional advantage that it is

uniformly distributed under the null model.

The remainder of the paper is outlined as follows. In the next section we explain

how to obtain the ppp, the prior-cppp, and the posterior-cppp. Subsequently, in

Application I, the performance of the three posterior predictive checks is assessed for a

simple test for independence in contingency tables by looking at type I error

probabilities. In Application II, we apply the new methodology in a linear regression

analysis to test whether the model adequately explains extreme observations. A

simulation experiment is conducted to evaluate type I error rates and the power of this

test. The method is applied in an empirical example to predict the quality of life of

elderly people. In Application III, the methodology is applied in the context of latent

class analysis. We investigate type I error rates and power when testing bivariate

residuals and the number of latent classes. An empirical data set is used to illustrate
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the practical use and benefits of the posterior-cppp in testing for different sub-types of

depression. The paper ends with a discussion of the methods and results.

Posterior Predictive Checks

The posterior predictive check is a flexible and efficient tool to assess misfit of a

Bayesian statistical model for the observed data. The general idea of a posterior

predictive check is to assess systematic discrepancies between the observed data and

(hypothetical) replicated data generated from the fitted model (Gelman, Carlin, Stern,

& Rubin, 2004). When there is a small discrepancy between the replicated data and the

observed data, this suggests a good fit of the model. When there is a large discrepancy

between the replicated data and the observed data, this suggests model misfit.

The procedure works as follows. First we have to specify a prior distribution for

the unknown model parameters θ. The prior contains our knowledge or beliefs about

the model parameters before observing the data. The prior will be denoted by p(θ).

The model can be fitted to the observed data by deriving the posterior distribution of

θ. The posterior is a combination of the information in the prior, p(θ), and the

information in the observed data, yobs. The information about θ in the observed data is

formalized in the likelihood function of the model, which is denoted by p(yobs|θ).

Subsequently the posterior can be obtained using Bayes’ theorem,

p(θ|yobs) = p(yobs|θ)× p(θ)
p(yobs)

∝ p(yobs|θ)× p(θ), (1)

where p(θ|yobs) denotes the posterior of the unknown parameters θ given the observed

data yobs. The posterior contains our knowledge about the model parameters after

observing the data. In (1), the marginal likelihood p(yobs) does not depend on θ, and

therefore it does not play a role when deriving the posterior. Due to the many possible

specifications of likelihood and prior, the posterior does not always belong to a known

family of probability distributions. In such cases, the posterior is usually approximated

by sampling posterior draws of θ from p(θ|yobs) using an MCMC algorithm (for an
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extensive overview of MCMC algorithms, see Liang, Liu, & Carroll, 2011).

The posterior can be used to obtain estimates for the model parameters (such as

posterior means, modes, or medians) and credibility intervals (the Bayesian counterpart

of classical confidence intervals). Furthermore, the posterior can be used to draw a

replicated data set, denoted by yrep. A replicated data set can be viewed as data that

we could see tomorrow if the experiment that produced the observed data, yobs, were

replicated with the same model and with the same value for θ that produced the

observed data today (Gelman et al., 2004). The posterior predictive distribution of yrep

is given by

p(yrep|yobs) =
∫
p(yrep|θ)p(θ|yobs)dθ.

By looking at specific characteristics of the observed data and a replicated data

set we can check whether both data sets were likely to be generated from the employed

statistical model, similar as a classical test. If this is (not) the case, this suggests a good

(bad) model fit to the observed data. This can be done using a so-called discrepancy

measure, denoted by D(y; θ), which is a function of a data set y (which could be either

the observed data set, yobs, or a replicated data set, yrep) and the unknown model

parameters θ. For example, discrepancies can measure overall fit based on Pearson

χ2-type statistics (van Kollenburg, Mulder, & Vermunt, 2015), or specific aspects of the

model such as adequately capturing extreme values (Gelman et al., 2004). Note that

discrepancies can depend on both the data and the model parameters (Meng, 1994),

while classical fit statistics only depend on the data. Examples of discrepany measures

will be provided in the next sections. Through the posterior predictive check we assess

the probability – quantified by the ppp – that replicated data under the posterior are

more extreme than the observed data (Gelman et al., 2004). The following algorithm

describes how to obtain the ppp.

Algorithm 1: Computation of the ppp

Step 1: Specify a prior, p(θ), for the model parameters and choose a discrepancy

measure, D(y; θ).
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Step 2: Obtain the posterior based on the prior and the likelihood of the observed

data using (1).

Step 3: Obtain values for the chosen discrepancy measure for the observed data and

replicated data sets based on random draws from the posterior:

3a: Draw a random value for the model parameters, denoted by θ(k), from the

posterior:

θ(k) ∼ p(θ|yobs). (2)

3b: Sample a replicate data set, y(k)
rep, given the posterior draw θ(k):

y(k)
rep ∼ p(yrep|θ(k)) (3)

3c: Calculate the observed discrepancy D(yobs; θ(k)) and the replicated

discrepancy D(y(k)
rep; θ(k)).

3d: Repeat Steps 3a to 3c for k = 1, . . . , K (e.g., K = 1000).

Step 4: Compute the ppp as the proportion of replicated data sets where D(y(k)
rep; θ(k))

was greater than or equal to D(yobs; θ(k)):

ppp = K−1
K∑
k=1

I(D(y(k)
rep; θ(k)) ≥ D(yobs; θ(k))), (4)

where the indicator function I(·) equals 1 if the replicated discrepancy

D(y(k)
rep; θ(k)) is larger than or equal to the observed discrepancy D(yobs; θ(k)), and

0 otherwise.

Hence the goal of the algorithm is to obtain a large set of K draws from the

posterior (Step 3a), generate replicated data sets for all posterior draws (Step 3b), and

compute the discrepancy based on the posterior draw for the observed data and the

replicated data based on all posterior draws (Step 3c). This results in a set of K pairs

of observed discrepancies and replicated discrepancies. The ppp is defined as the

proportion of draws where the replicated discrepancy is larger than the observed
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discrepancy (Step 4). As an example Figure 1 displays K = 1, 000 pairs of observed and

replicated discrepancies in a posterior predictive check for independence of 4

dichotomous variables with a Pearson χ2 discrepancy measure (elaborated in the next

section). The ppp is equal to the proportion of pairs where replicated discrepancies are

at least as large as the observed discrepancies (above the line where Drep = Dobs). In

this example, the ppp was equal to .146.

Note that the prior that is specified in Step 1 does not play an important role

when computing the ppp because typically the prior is completely dominated by the

likelihood. It is even possible to specify a non-informative improper prior as long as the

resulting posterior in Step 2 is proper.

[Figure 1 about here]

Prior-calibrated posterior predictive p-values.

It has been shown in previous work that the ppp is generally non-uniform under

the null model (Hjort et al., 2006; Meng, 1994; Robins et al., 2000; van Kollenburg et

al., 2015). A solution to the non-uniformity of the ppp has been proposed in which the

ppp is calibrated with respect to a proper informative prior of the parameters (Hjort et

al., 2006). This proper prior is used to construct a reference distribution for the ppp to

check how extreme the observed ppp is. We shall refer to the resulting ppp as the

prior-calibrated ppp (prior-cppp). The prior-cppp is uniformly distributed under the

null model and the chosen proper prior, and therefore results in accurate type I error

rates under the null. The prior-cppp can be obtained as follows.

Algorithm 2: Computation of the prior-cppp

Step 1: Specify an informative proper prior, p(θ), based on one’s prior knowledge and

choose a discrepancy measure, D(y; θ).

Step 2: Compute the ppp for the observed data using Algorithm 1. The observed ppp

will be denoted by pppobs.

Step 3: Obtain a reference distribution of the ppp using the informative prior in Step 1:
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3a: Draw a parameter value, θ
(l)
prior, from the informative prior:

θ
(l)
prior ∼ p(θ).

3b: Sample a data set using the likelihood of the model given the prior draw:

y(l)
prior ∼ p(yprior|θ

(l)
prior) (5)

3c: Compute the corresponding ppp(l) for data set y(l)
prior using Algorithm 1.

3d: Repeat Steps 3a to 3c for l = 1, . . . , L (e.g., L = 1000).

Step 4: Calculate the prior-cppp as the proportion of ppp(l)’s that are smaller than or

equal than the observed ppp:

prior-cppp = L−1
L∑
l=1

I(pppobs ≥ ppp(l)), (6)

where the indicator function I(·) equals 1 if the observed ppp (pppobs) is larger

than or equal to the prior-based ppp (ppp(l)), and 0 otherwise.

Hence in the posterior predictive check using the prior-cppp, the ppp itself is

treated as a test statistic (Step 4) where the informative prior from Step 1 is used to

obtain a reference distribution.

Figure 2 shows the reference distribution of prior-based ppp’s, ppp(l) (obtained in

Step 3d of Algorithm 2), for the same test and data that resulted in the ppp in Figure 1.

Uniform priors were used for the response probabilities of the 4 items. The ppp of the

observed data was equal to pppobs = .146. The prior-cppp is estimated as the proportion

of prior-based ppp’s that are smaller than the ppp of the observed data (Step 4 in

Algorithm 2; grey area in Figure 2). In this example the prior-cppp was equal to .034.

[Figure 2 about here]

A central property of the posterior predictive check based on the prior-cppp is

that it simultaneously tests model fit and prior fit for the observed data. This implies
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that the prior-cppp may result in a rejection of the null model either in the case of

model misfit (i.e., the model does not fit the observed data) or in the case of prior misfit

(i.e., one’s prior beliefs about the unknown parameters conflict with the information in

the observed data). As a consequence, the prior-cppp may highly depend on the chosen

prior. This will be shown in the next section. We argue that the prior-cppp should only

be used if a researcher has clear prior information that can be translated to an

informative prior for all model parameters, and if the researcher is also interested in

testing these prior beliefs simultaneously with the statistical model.

Posterior-calibrated posterior predictive p-values.

In the absence of prior information or when one is only interested in evaluating

model misfit with accurate type I error rates, neither the prior-cppp nor the standard

ppp can be used. To keep the useful properties of the ppp (i.e., the flexibility to detect

any form of model misfit, straightforward computation using standard MCMC

algorithms, and its usage with non-informative (improper) priors), while maintaining an

accurate type I error rate if the null model is true, we propose to calibrate the ppp

under the posterior under the null model. The resulting ppp will be referred to as the

posterior-calibrated ppp (posterior-cppp). The exact steps to compute the

posterior-cppp are given in Algorithm 3.

Algorithm 3: Computation of the posterior-cppp

Step 1: Specify a prior, p(θ), and choose a discrepancy measure, D(y; θ).

Step 2: Derive the posterior via (1) and compute the ppp for the observed data using

Algorithm 1. The observed ppp will be denoted by pppobs.

Step 3: Obtain a reference distribution of the ppp using the posterior from Step 2:

3a: Draw a parameter value, θ
(m)
post, from the posterior:

θ
(m)
post ∼ p(θ|yobs).
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3b: Sample a data set using the likelihood of the model given the posterior draw:

y(m)
post ∼ p(ypost|θ

(m)
post) (7)

3c: Compute the corresponding ppp(m) for data set y(m)
post using Algorithm 1.

3d: Repeat Steps 3a to 3c for m = 1, . . . ,M (e.g., M = 1000).

Step 4: Calculate the posterior-cppp as the proportion of ppp(m)’s that are smaller

than or equal to the observed ppp:

posterior-cppp = M−1
M∑
m=1

I(pppobs ≥ ppp(m)), (8)

where the indicator function I(·) equals 1 if the constraint is satisfied, and 0

otherwise.

Note that the only difference between Algorithm 2 for the prior-cppp and

Algorithm 3 for the posterior-cppp is in the generation of parameters draws for θ where

either an informative prior is used (Step 3a in Algorithm 2) or the posterior is used

(Step 3a in Algorithm 3). When computing the posterior-cppp, we recommend to use

diffuse or non-informative priors that are completely dominated by the data. Note that

if an informative prior would be used for the computation of the posterior-cppp, the

testing criterion would become a hybrid of the prior-cppp and the posterior-cppp.

Though one could imagine very specific situations in which this may be useful,

researchers typically compute ppp’s using diffuse priors (Berkhof et al., 2003; Choi et

al., 2010; Hoverd & Sibley, 2013).

Figure 3 shows the reference distribution of posterior-based ppp’s, ppp(m)

(obtained in Step 3c of Algorithm 3), for the same test and data that resulted in the

ppp and the prior-cppp in Figures 1 and 2, respectively. Uniform priors were used for

the response probabilities of the 4 items. The posterior-cppp is estimated as the

proportion of posterior-based ppp’s that are smaller than the ppp of the observed data

(Step 4 in Algorithm 3; grey area in Figure 3). In this example the posterior-cppp was
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equal to .018.

[Figure 3 about here]

Next we will investigate the performance of the different posterior predictive

checks in various testing problems by looking at frequentist criteria such as type I error

rates and power.

Application I: A Monte Carlo Study of a Bayesian Test for Independence

The first application is a simple test of independence of J dichotomous items

(outcome 1 or 2). The goal of the application is (i) to illustrate how a posterior

predictive check can be conducted using the three different types of ppp’s, (ii) to get

insight about the type I error rates of the different posterior predictive checks for this

simple test, and (iii) to investigate to what degree the prior-cppp depends by the choice

of the proper prior. This will be assessed by means of a Monte Carlo study.

The data consists of responses of N individuals to J dichotomous items. We are

interested in the following test:

M0 : The J dichotomous variables are independent.

M1 : NotM0, i.e., there is a dependence between at least two variables.

It is standard practice to specify conjugate priors with independent beta

distributions for the response probabilities, denoted by π1j, for items j = 1, . . . , J . The

beta prior will be written as Beta(π1j|αj, βj), where αj and βj are the hyper parameters

discussed in the following subsection. In the case of independent items, as underM0,

the likelihood follows a binomial distribution, resulting in a posterior with independent

beta distributions, Beta(π1j|n1j + αj, N − n1j + βj), where n1j is the number of

individuals having response 1 to item j (see Appendix A).

We cross-tabulate the items resulting in a contingency table with S = 2J cells.

Thus cell s corresponds to a particular response pattern ys, for s = 1, . . . , S, e.g., y1 is a

vector of J ones. UnderM0 the probability of pattern ys, denoted by πs (with a slight
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abuse of notation), is given by

πs =
J∏
j=1

(π1j)djs(1− π1j)1−djs , (9)

where the dummy indicator djs equals 1 if the response to variable j in pattern s is 1,

and 0 otherwise. For example the response probability of pattern y1 with J ones equals

π1 = π11 × . . .× π1J . The number of individuals in the data having response pattern s

will be denoted by ns.

To assess overall model fit ofM0 we can use a discrepancy measure based on the

Pearson χ2-statistic, given by

Dχ2(n; π) =
S∑
s=1

ns − es
es

, (10)

where es is the expected number of individuals having response probability s based on

the pattern probabilities in π, i.e., es = Nπs.

To obtain the k-th posterior draw for the pattern probabilities π, first draw the

π
(k)
1j ’s from their beta posteriors, and subsequently, plug these draws in (9) to obtain

π(k) (Step 3a in Algorithm 1). Given the k-th posterior draw, the k-th replicated data

set can be drawn from the Multinomial(yrep,1, . . . , yrep,S|π(k)
1 , . . . , π

(k)
S ) distribution (Step

3b in Algorithm 1). Subsequently, the observed and replicated discrepancies (Step 3c of

Algorithm 1) are calculated as

Dχ2(nobs; π(k)) =
S∑
s=1

nobs,s − e(k)
s

e
(k)
s

(11)

Dχ2(n(k)
rep; π(k)) =

S∑
s=1

n(k)
rep,s − e(k)

s

e
(k)
s

, (12)

in which nobs,s and n(k)
rep,s are the frequencies of pattern s in the observed data and the

k-th replicated data, respectively.
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Simulation set-up.

The type I error rates of the ppp, prior-cppp and posterior-cppp were investigated

under conditions with J = 4 independent dichotomous variables and where the success

probabilities π1j in population A are equal to .2 and in population B follow a

Beta(6, 24)-distribution, for all variables j = 1, . . . , J . Sample sizes of N = 100 and

N = 1000 were considered. Under each condition, 2000 data sets were generated.

For the ppp, non-informative uniform priors were used for the response

probabilities π1j by setting the hyper parameters to αj = βj = 1, for all j = 1 . . . , J

(Step 1 of Algorithm 1), see also Appendix A. To compute the ppp, the number of

replicated data sets was set to K = 1, 000 (Step 3 of Algorithm 1). To compute the

posterior-cppp also non-informative uniform priors were used for the response

probabilities (Step 1 of Algorithm 3).

Three different prior-cppp’s were considered based on three different priors (Step 1

of Algorithm 2).

1. Prior 1: π1j ∼ Beta(6, 24) for all J = 4 variables (Figure 4, dotted line). This

prior is in agreement with population B, and therefore results in prior-cppp’s with

a uniform distribution in this case. Because this prior is concentrated around .2, it

is expected that the sampling distribution of the prior-cppp’s is also close to

uniform for data generated from population A where π1j = .2.

2. Prior 2: π1j ∼ Beta(15, 15) for all J = 4 variables (Figure 4, dashed line). This

prior is concentrated around .5 and therefore this prior is not in agreement with

both populations. It is expected that the sampling distributions of this

prior-cppp’s are not uniformly distributed under population A and B.

3. Prior 3: π1j ∼ Beta(1, 1) for all J = 4 variables (Figure 4, solid line). This

uniform prior assumes that every probability value is equally likely. This is a

standard prior choice if no prior information is available.

As noted earlier, the prior-cppp simultaneously tests the employed statistical model and
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the informative prior. Thus when using the prior-cppp the test can be formulated as

M0 : The J dichotomous variables are independent, and the response

probabilities for variable j follow a π1j ∼ Beta(αj, βj)-prior,

for j = 1, . . . , J .

M1 : NotM0, i.e., there is a dependency between at least two variables and/or

the priors underM0 are not in accordance with the information in the data.

[Figure 4 about here]

Results of the Monte Carlo study.

The type I error rates, which were based on the common significance level of

α = .05, can be found in the first row of Table 1. The corresponding Monte Carlo errors

were computed as
√

p̂(1−p̂)
2000 , where p̂ corresponds to the estimated type I error rates and

the denominator corresponds to 2000 because the estimate is based on 2000 randomly

generated data sets. As can be seen, the type I error rates for the ppp are around .002,

which is much too low. This can be understood by looking at the sampling distribution

of the ppp’s which are plotted in Figure 5 for each of the four scenarios (dotted lines).

As can be seen the sampling distributions of the ppp’s are peaked around .55, which

explains the dramatically low type I error rates. As a consequence the ppp test is too

conservative.

[Figure 5 about here]

Table 1 (second row, last two columns) shows that the type I error rates of the

prior-cppp are accurate when the prior is correctly specified, i.e., when using

Beta(6, 24)-priors in the case of Beta(6, 24)-distributions in the populations. Also the

corresponding sampling distributions are approximately uniform (Figure 5; right panels,

dash-dotted lines). In all other situations, the prior-cppp neither results in accurate

type I error rates nor in approximately uniform sampling distributions. This is even the

case when calibrating the prior-cppp under standard uniform priors for the response
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probabilities (Table 1; Beta(1, 1) in the fourth row). Furthermore, it is interesting to

observe that the rejection rates for the prior-cppp are lower than 5% in most case when

the prior does not correspond with the population distribution (except when using the

Beta(15, 15)-prior and N = 100). This is somewhat surprising because one might

expect a larger rejection rate than 5% due to the mismatch of the prior.

The results for the posterior-cppp are all acceptable. As can be seen in Figure 5

(thick solid lines), the sampling distributions are approximately uniform in all scenarios.

Furthermore, the last row in Table 1 shows that the type I error rates of the

posterior-cppp do not differ significantly from .05 in all scenarios.

In sum, this simple example provides the following useful insights about posterior

predictive checking. First, the standard ppp, even though it is flexible and simple to

compute, does not result in accurate type I error rates, not even in this very simple test

for independence. Second, the prior-cppp highly depends on the exact choice of the

specified proper prior. For this reason we cannot recommend the prior-cppp for default

model checking. Therefore, the prior-cppp will not be considered further in this paper.

Third, the posterior-cppp with standard diffuse priors clearly outperforms the ppp and

the prior-cppp by providing accurate type I error rates.

Application II: A Bayesian Test for Extreme Observations in Linear

Regression Analysis

To illustrate the generality of the proposed approach, we evaluate the type I error

rates and power of the posterior-cppp in a regression model. The standard linear

regression model assumes that a dependent variable can be explained by a linear

combination of certain predictor variables and a normally distributed error. The model

can be written as

yi ∼ N(x′iβ, σ2), (13)

for i = 1, . . . , N , where yi is the i-th observation of the dependent variable, xi is a

vector with k predictor variables of the i-th observation, β is a vector with k unknown

regression coefficients, and σ2 is the error variance. The standard independence Jeffreys
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prior is used for the unknown parameters (β, σ2) (Step 1 of Algorithm 1 and 3). The

posterior follows a normal-inverse-gamma distribution (Step 2 of Algorithm 1; Step 3 of

Algorithm 3). See Appendix B for details.

To illustrate the flexibility of posterior predictive checking we shall test whether

the employed linear regression model appropriately captures extreme observations. This

can be achieved using the following discrepancy measure (Hjort et al., 2006):

Dmax(y,X; β, σ2) = max
i∈{1,...,n}

|yi − x′iβ|/σ, (14)

where y = (y1, . . . , yn)′ is the vector containing the N observations of the dependent

variable, and X is a N × k matrix where the i-th row contains the k predictor variables,

denoted by xi. The discrepancy measure computes the largest standardized error

between the observations, yi, and their predictions according to the model, i.e., x′iβ.

Note that we are not interested in determining which observations are extreme (i.e., we

are not doing outlier detection); we are only interested in checking whether the

employed linear regression model appropriately captures extreme observations.

For a given posterior draw (β(k), σ2,(k)), a replicated data set y(k)
rep can be obtained

via (13) using the matrix of covariates from the observed data, Xobs. Note that is also

standard practice to assume the covariates to be fixed in Bayesian linear regression.

The observed and replicated discrepancies are then given by

Dmax(yobs,Xobs; β(k), σ2,(k)) = max
i∈{1,...,n}

|yobs,i − x′obs,iβ
(k)|/σ(k), (15)

Dmax(y(k)
rep,Xobs; β(k), σ2,(k)) = max

i∈{1,...,n}
|y(k)

rep,i − x′obs,iβ
(k)|/σ(k). (16)

Monte Carlo study when testing extreme observations.

A Monte Carlo simulation was conducted to investigate whether the ppp and the

posterior-cppp are able to pick up extreme observations using the discrepancy measure

in Equations (15) and (16). Two different forms of misfit were considered. First,

instead of a normal distribution, errors were generated using a Student t distribution
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with 1, 2, 5, 20, and 50 degrees of freedom. Note that when the degrees of freedom

equals ∞ the errors are normally distributed, while 1 degree of freedom corresponds to

a Cauchy distribution resulting in much more extreme observations than normally

distributed errors. Second, the residual standard deviation was set to be a monotonic

function of the sum of the explanatory variables, which results in heteroskedastic errors.

The residual standard deviation for the i-th observation was set to

σi = 1 + c× wi−wmin
wmax−wmin

, where wi = x′i1 is the sum of the explanatory variables, and

wmin = mini wi and wmax = maxi wi. Larger values for c imply larger error variances

for large values of the explanatory variables. Note that c = 0 implies homoskedastic

errors of N(0, 1). For the simulation we choose the following values c = 1, 2, 3, 5, and

10. Sample sizes were set to n = 50, 100, and 250. For every condition, 1000 datasets

were generated using 3 explanatory variables from independent standard normal

distributions and regression coefficients equal to β = (.3, .3, .3).

The results on the type I error rates and the power can be found in Table 2.

Again these results show that the ppp is too conservative with error rates that are too

small for all sample sizes. The posterior-cppp on the other hand results in reasonable

type I error rates. Furthermore, the posterior-cppp consistently has higher power than

the ppp in the case of model misfit.

[Table 2 about here]

An empirical analysis of quality-of-life in elderly.

A posterior predictive check was performed to detect model misfit for a regression

model testing the effects of physical, psychological and social frailty on the quality of

life with respect to social relationships of elderly people (Age, mean±SD 84.8±9.7,

range 55–101)(Gobbens, Krans, & van Assen, 2015). The sample consisted of n = 156

observations. The regression model consisted of the three explanatory variables of

frailty, presence of disease, and 8 control variables (such as marital status and income),

as well as an intercept.

The ppp and the posterior-cppp were computed with the discrepancy measure in
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Equation (14) using the standard independence Jeffreys prior. The ppp calculated with

K = 500 replications was equal to .064, which would generally not be considered to

indicate significant misfit. The posterior-cppp with M = 500, on the other hand, was

equal to .012, which would in most situations be considered to indicate significant

misfit. For this reason, it is recommendable to reconsider the employed regression

model before making inferences about the quality of life of elderly people.

Application III: Bayesian Tests for Latent Class Analysis

To get more insights about the performance of posterior predictive checks in more

complex situations, we shall test model misfit of latent class models. Latent class

models are commonly used to create typologies or classifications of observations, based

on their response patterns (Goodman, 1974). It has been shown that p-values based on

asymptotic sampling distributions, p-values based on the parametric bootstrap, and

posterior predictive p-values based on test statistics may not result in accurate type I

error rates for this type of model (van Kollenburg et al., 2015). For this reason, the

latent class model is a good test case to check the performance of the posterior-cppp.

Again note that in order to apply the prior-cppp, informative priors need to be

formulated for all the unknown model parameters in the latent class model, such as the

latent class proportions and the response probabilities for a given latent class. This is

not feasible from a practical point of view. Based on our experience researchers are

mainly interested in evaluating the fit of a latent class model, and not in evaluating the

prior beliefs about the unknown model parameters. These considerations again

exemplify the limited usability of the prior-cppp in more complex models. Therefore the

prior-cppp will not be considered in this application.

We shall consider a latent class model for a given data set of N individuals who

responded to J dichotomous items, when assuming the individuals can be divided into

C latent classes. Appendix D contains all the technical details of the latent class model.

Two Monte Carlo studies will be conducted: (i) testing the assumption of local

independence, and (ii) testing for the number of latent classes. Additionally, the
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posterior-cppp will be used for an empirical latent class analysis on sub-types of

depression in males.

Monte Carlo study on bivariate residuals

Let us first focus on the key assumption of the latent class model that the

observations of each pair of items are independent given the (unknown) latent class

memberships of the individuals. To test whether this property is violated for item pair

(j, j′), we use the bivariate residual (BVR) (Vermunt & Magidson, 2016):

DBV Rjj′ (n; ρ,π) =
4∑
s=1

(ns − es)2

es
, (17)

where the sum is over the S = 22 = 4 cells of the contingency table, ns is the observed

frequency of response pattern s, and es = Nπs denotes the expected frequency of

response pattern s of the variable pair (j, j′) given the latent class proportions ρ and

the response probabilities π of the latent class model (see Appendix D for the technical

details).

For a given posterior draw of the latent class proportions, ρ(k), and response

probabilities, π(k), the observed and replicated discrepancies are calculated as

DBV Rjj′ (nobs; ρ(k),π(k)) =
4∑
s=1

(nobs,s − e(k)
s )2

e
(k)
s

, (18)

DBV Rjj′ (n(k)
rep; ρ(k),π(k)) =

4∑
s=1

(n(k)
rep,s − e(k)

s )2

e
(k)
s

, (19)

where n(k)
rep denotes the frequencies of the response patterns of a replicated data set

generated using (ρ(k),π(k)) (see Appendix D).

A Monte Carlo simulation was conducted to evaluate the power and type I error

rates of the posterior-cppp when testing conditional independence for pairs of variables

using the BVR. We generated J = 6 dichotomous variables from a latent class model

with C = 2 equally sized classes (i.e., ρ1 = ρ2 = .5). Sample sizes were either N = 100,

500 or 1000. The conditional probabilities for a 1-response were π1jc = .8 in class 1 and
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π1jc = .2 in class 2 for variables j = 1 to 5. For class 1, the probability of 1-response to

variable 6 conditional on having a 1-response to variable 5 was set to

(π161|y5 = 1) = .8 + δ, where δ was used to add conditional association/local dependence

between the last two variables. For observations with a 2-response on variable 5, we set

(π161|y5 = 2) = .8. In class 2, all response probabilities were set to the complement of

the response probability of class 1, i.e., πrj2 = 1− πrj1. Thus the 2-class model fits when

δ = 0, while local independence is violated between variables 5 and 6 in the 2-class

model when δ 6= 0. Table 3 summarizes the response probabilities for all variables.

Under each condition 500 datasets were generated. The original ppp and the

posterior-cppp were computed using vague uniform Beta(1, 1)-priors for all model

parameters (i.e., class proportion ρc, and the probabilities of a 1-response in each class,

π1jc, for j = 1, . . . , 6, and c = 1, or 2). To compute the original ppp, K = 500

replications were generated. To compute the posterior-cppp, a reference distribution

was obtained using M = 500 posterior-based data sets. To compute each ppp for the

reference distribution K = 501 replications were used, so that there are no ties with the

observed ppp.

The results for the study on bivariate residuals are displayed in Table 4. The

condition in which δ = 0 confirms that the posterior-cppp has accurate type I errors

which is not the case for the standard ppp. Moreover, the results show that the power

to detect misfit (in the current example being local dependency between pairs of

variables) is greatly improved by calibrating the original ppp with respect to the

posterior distribution, as is done in the posterior-cppp.

[Table 4 about here]

Monte Carlo study on the number of latent classes.

The second major testing problems involves checking whether enough latent

classes are specified. To do this we can assess the overall misfit of the latent class

model. This can be done using the Pearson χ2 or the likelihood ratio G2 as discrepancy
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measure, which are given by

Dχ2(n; ρ,π) =
S∑
s=1

(ns − es)2

es
, (20)

and

DG2(n; ρ,π) = 2
S∑
s=1

ns ln(ns/es), (21)

where the sum is over all S possible response patterns, ns denotes the observed

frequency of response pattern s, and es = Nπs denotes the expected frequency of

response pattern s given the model parameters (Appendix D).

Type I error rates of the ppp and the posterior-cppp for the discrepancy measures

in (20) and (21) were investigated under a null model with two latent classes, by means

of a Monte Carlo simulation. The population under the null model had C = 2 equally

sized classes, with conditional response probabilities for a 1-response of π1jc = .8 in class

1 and π1jc = .2 in class 2 for all J = 6 dichotomous variables. The power of the tests

was investigated by assuming a population with C = 3 equally sized classes with the

same conditional probabilities for classes 1 and 2. For class 3, the probability of

1-response was π1jc = .8 for the first half of the variables and π1jc = .2 for the last half

of the variables. Table 5 shows the parameter values for the conditions in which data

was generated from a three-class model with six variables. Sample sizes were either

N = 100, or 500.

[Table 5 about here]

For these conditions we ran 500 Monte Carlo simulations per condition. The ppp

was calculated with K = 500 replications, and calibrated using M = 500 posterior-based

data sets on which we performed a posterior predictive check with K = 501 replications.

The ppp and the posterior-cppp were computed using default uniform Beta(1, 1)-priors.

The results for the study on the number of classes can be found in Table 6. The

conditions in which the fitted model holds (when the true number of classes equals 2)

confirm that the posterior-cppp has accurate type I error rates, unlike the ppp.
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Moreover, the posterior-cppp clearly has more power than the ppp to detect model

misfit.

[Table 6 about here]

An empirical analysis of sub-types of depression in males.

The posterior-cppp was used to analyse the depression scale data for white male

respondents from the problems of everyday life study (Pearlin & Johnson, 1977;

Schaeffer, 1988). Persons who reported to have a symptom in the previous week were

coded 1, all others were coded 0. Five symptoms were measured, namely, lack of

enthusiasm, low energy, sleeping problems, poor appetite, and feeling hopeless. The

data set consisted of 748 males. Research has shown that a 2-class model does not

adequately fit these data while a 3-class model does (Magidson & Vermunt, 2001).

Here, we will check whether the same result is obtained using the new posterior-cppp.

First a latent class model was fitted with 2 latent classes. Model misfit was

assessed using the Pearson χ2-statistic to test if conditional independence was violated

over all variables, as well as with the BVR to test if conditional independence was

violated between pairs of variables. This was done using the standard ppp and the

posterior-cppp. The results can be found in Table 7. As can be seen, the ppp for the χ2

test is not significant using a significance level of .05 while the posterior-cppp is

significant with a value of .001. Furthermore, none of the BVR-tests are significant using

the ppp while the posterior-cppp suggests there is model misfit for variable pairs (1,2),

(2,5), (3,4), (3,5), and (4,5) using a significance level of .05. Furthermore the BVR for

the variable pair (2,5) is still significant after a Bonferroni correction of the significance

level to .05/10 = .005. These results show that the standard ppp is unable to detect

model misfit and would thus result in incorrect conclusions about the true number of

latent classes. The posterior-cppp on the other hand does not have this problem.

Because of the misfit of the 2-class model as indicated by the posterior-cppp, a

3-class model was fitted as well. The ppp’s and posterior-cppp’s can be found in Table

7. In this case, the posterior-cppp’s do not indicate any serious form of model misfit.
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This analysis confirms that the depression scale data for males can be adequately

described using a 3-class model.

Discussion

Posterior predictive checking is a very flexible methodology to evaluate various

forms of model misfit without relying on large sample theory. The most commonly used

posterior predictive check is based on the posterior predictive p-value (ppp), which can

efficiently be computed using MCMC output (Gelman et al., 1996; Meng, 1994). A

problem with this approach however is that the ppp is generally too conservative, which

results in tests with very low statistical power.

The prior-calibrated posterior predictive p-value (prior-cppp) resolves this issue by

calibrating the ppp under a proper prior distribution for all model parameters. The

prior-cppp simultaneously checks model misfit and prior misfit. As a result, the choice

of the prior that is used for the calibration has a serious effect on the outcome of the

test. Therefore the prior-cppp should only be used when clear prior information is

available for all model parameters and one is interested in simultaneously testing the

model and the prior. In our experience however this is hardly ever the case. Either clear

prior information is not available for all model parameters, or researchers are only

interested in testing whether the employed statistical model fits the observed data.

As an alternative the posterior-calibrated posterior predictive p-value

(posterior-cppp) was proposed. The posterior-cppp is obtained by calibrating the ppp

under the posterior given the observed data under the null model. The posterior-cppp

has all the advantages of the original ppp, i.e., it can be used to detect any form of

misfit, it can be computed from MCMC output, and it can be computed using

non-informative improper priors. In addition, the posterior-cppp also results in accurate

type I error rates, which is not the case for the original ppp. Moreover, the

posterior-cppp results in more statistical power than the ppp. The usefulness of the

posterior-cppp was illustrated in different testing problems, such as testing

independence of dichotomous variables, assessing misfit of regression models in the case
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of extreme observations, and testing misfit in latent class models.

A potential drawback of the posterior-cppp (and the prior-cppp) is that it requires

more computational time than the standard ppp because an additional calibration step

is needed. In order to compute the posterior-cppp, say, 500 ppp’s need to be calculated

which takes maximally 500 times longer than computing the standard ppp. These 500

ppp’s however can be computed in parallel and therefore computation time can be

drastically reduced. In the empirical regression application, for example, the

computation of the standard ppp was .05 seconds and the computation of the

posterior-cppp was 7.1 seconds. For this reason we believe the additional computational

time of the posterior-cppp hardly limits its applicability.
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Table 1
Type I error rates with Monte Carlo errors for the ppp, three prior-cppp’s based on a
Beta(6, 24)-prior, a Beta(15, 15)-prior, and a Beta(1, 1)-prior, and the posterior-cppp.

Population π1j = .2 π1j ∼ Beta(6, 24)
Sample size N = 100 N = 1000 N = 100 N = 1000
ppp .002± .001 .002± .001 .002± .001 .000± .000
prior-cppp with Beta(6, 24)-prior .030± .004 .043± .005 .042± .004 .059± .005
prior-cppp with Beta(15, 15)-prior .643± .011 .043± .005 .646± .011 .037± .004
prior-cppp with Beta(1, 1)-prior .023± .003 .030± .004 .029± .004 .030± .004
posterior-cppp .043± .005 .048± .005 .047± .005 .047± .005
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Table 2
Estimated type I error rates (first row), power in the case of Student t(ν) distributed
errors with degrees of freedom ν (second to sixth row), and power in the case of
heterogeneous normally distributed errors with σi = 1 + c× wi−wmin

wmax−wmin
.

Sample Size
50 100 250

ε ∼ ppp post-cppp ppp post-cppp ppp post-cppp
N(0,1) .004± .002 .045± .007 .015± .004 .041± .006 .034± .006 .058± .007
t(50) .007± .003 .073± .008 .028± .005 .073± .008 .053± .007 .079± .009
t(20) .016± .004 .078± .008 .059± .007 .141± .011 .127± .011 .161± .012
t(5) .168± .012 .345± .015 .388± .015 .553± .016 .710± .014 .779± .013
t(2) .609± .015 .798± .013 .906± .009 .947± .007 .998± .001 .998± .001
t(1) .928± .008 .977± .005 .998± .001 .998± .001 1.000± .000 1.000± .000
c = 1 .045± .007 .184± .012 .103± .010 .226± .013 .204± .013 .283± .014
c = 2 .086± .009 .316± .015 .244± .014 .390± .015 .413± .016 .488± .016
c = 3 .144± .011 .408± .016 .319± .015 .480± .016 .548± .016 .621± .015
c = 5 .196± .013 .459± .016 .422± .016 .617± .015 .640± .015 .727± .014
c = 10 .270± .014 .569± .016 .528± .016 .687± .015 .778± .013 .852± .011
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Table 3
Class proportions ρc and response probabilities πrjc for response r on dichotomous
variable j under class c, for r = 1 or 2, j = 1, . . . , 6, and class c = 1 or 2. Note that
π2jc = 1− π1jc

class c = 1 c = 2
ρc .5 .5
π11c .8 .2
π12c .8 .2
π13c .8 .2
π14c .8 .2
π15c .8 .2

π16c|y5 = 1 .8 + δ .2− δ
π16c|y5 = 2 .8 .2
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Table 4
Estimated type-I error rates (row where δ = 0) and power (rows where δ 6= 0) when
testing local independence in a 2-class model using a significance level of .05.

Sample size
100 500 1000

δ ppp post-cppp ppp post-cppp ppp post-cppp
−.2 .012± .005 .186± .017 .246± .019 .912± .013 .764± .019 1.000± .000
−.1 .000± .000 .032± .008 .000± .000 .322± .021 .016± .006 .646± .021
−.05 .000± .000 .042± .009 .000± .000 .064± .011 .000± .000 .180± .017
.00 .000± .000 .058± .010 .000± .000 .048± .010 .000± .000 .040± .009
.05 .000± .000 .108± .014 .000± .000 .232± .019 .000± .000 .362± .021
.1 .000± .000 .208± .018 .000± .000 .548± .022 .000± .000 .840± .016
.2 .000± .000 .426± .022 .000± .000 .768± .019 .000± .000 .820± .017
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Table 5
Class proportions ρc and response probabilities πrjc for response 1 on dichotomous
variable j under class c, for r = 1 or 2, j = 1, . . . , 6, and class c = 1 or 2. Note that
π2jc = 1− π1jc

class c = 1 c = 2 c = 3
ρc 1/3 1/3 1/3
π11c .8 .2 .8
π12c .8 .2 .8
π13c .8 .2 .8
π14c .8 .2 .2
π15c .8 .2 .2
π16c .8 .2 .2
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Table 6
Estimated type-I error rates (rows where C = 2) and power (rows where C = 3) when
testing the global fit of a two-class model when using a significance level of .05.

χ2 G2

C N π1j1 ppp cppppost ppp cppppost
2 100 .8 .004± .003 .054± .010 .036± .008 .062± .011

.9 .008± .004 .028± .007 .018± .006 .052± .010
500 .8 .000± .000 .038± .009 .032± .008 .050± .010

.9 .002± .002 .046± .009 .032± .008 .046± .009
3 100 .8 .402± .022 .632± .022 .372± .022 .478± .022

.9 .416± .022 .660± .021 .372± .022 .470± .022
500 .8 1.000± .000 1.000± .000 1.000± .000 1.000± .000

.9 1.000± .000 1.000± .000 1.000± .000 1.000± .000
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Table 7
Model fit results for the depression data

2-class model 3-class model
Discrepancy ppp posterior-cppp ppp posterior-cppp
χ2 .140 .001 .489 .597
BV R12 .424 .013 .415 .011
BV R13 .549 .790 .545 .915
BV R14 .498 .341 .523 .768
BV R15 .500 .345 .557 .972
BV R23 .512 .558 .545 .934
BV R24 .502 .429 .509 .524
BV R25 .258 .002 .389 .031
BV R34 .143 .008 .314 .017
BV R35 .159 .018 .521 .719
BV R45 .239 .041 .527 .805
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Figure 1 . Plot of pairs of observed and replicated discrepancies, D(yobs; θ(k)) (Dobs)
and D(y(k)

rep; θ(k)) (Drep), for k = 1, . . . , 1000, when testing independence of 4
dichotomous variables using a Pearson χ2 discrepancy measure. The pairs were obtained
using Algorithm 1. The ppp is defined as the proportion of pairs where the replicated
discrepancies are at least as large as the observed discrepancies, which was equal to .146.
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Figure 2 . Reference distribution of prior-based ppp’s, ppp(l), for a test of independence
of 4 dichotomous variables using uniform priors for the response probabilities, for
l = 1, . . . , 1000 (Algorithm 2). The prior-cppp is estimated as the proportion of
prior-based ppp’s that are smaller than the observed ppp (grey area). The prior-cppp
was equal to .034.
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Figure 3 . Reference distribution of posterior-based ppp’s, ppp(m), for a test of
independence of 4 dichotomous variables using uniform priors for the response
probabilities, for m = 1, . . . , 1000 (Algorithm 3). The posterior-cppp is estimated as the
proportion of posterior-based ppp’s that are smaller than the observed ppp (grey area).
The posterior-cppp was equal to .018.



POSTERIOR CALIBRATION OF POSTERIOR PREDICTIVE P-VALUES 40

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

Beta(6,24)
Beta(15,15)
Beta(1,1)

π1j

Figure 4 . Three beta-priors for the probability of a success to variable j.



POSTERIOR CALIBRATION OF POSTERIOR PREDICTIVE P-VALUES 41

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

π j = .2 π j ~ beta(6,24)

N = 100

N = 1000

ppp

post-ppp
prior(1,1)-ppp
prior(6,24)-ppp
prior(15,15)-ppp

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Figure 5 . The sampling distribution of different posterior predictive p-values (ppp’s) in
the case of J = 4 dichotomous variables, N = 100 observations (upper panels) and
N = 1000 (lower panels), and a true population where π1j = .2 and π1j ∼ Beta(6, 24),
j = 1, . . . , 4. Distributions are displayed for the standard ppp using a uniform prior for
π1j (dotted line), three different prior-cppp’s based on a Beta(6, 24)-prior (dash-dotted
line), a Beta(15, 15)-prior (thin dashed line), and a Beta(1, 1)-prior (thick dashed line),
and the posterior-cppp using a uniform prior (thick solid line).



POSTERIOR CALIBRATION OF POSTERIOR PREDICTIVE P-VALUES 42

Appendix A

Deriving the Posterior when Testing for Independence

For a data set with sample size N , let n1j and N − n1j be the observed number of

persons with scores 1 and 0 on the j-th variable, and let π1j and 1− π1j be the

corresponding probabilities, for j = 1, . . . , J . Thus, the vector of model parameters

consists of the unknown probabilities (π11, . . . , π1J). Under the assumption that the J

variables are independent, the likelihood is obtained as a product of J independent

binomial distributions, i.e.,

p(n11, . . . , n1J |π11, . . . , π1J) =
J∏
j=1

p(n1j|π1j) (22)

where the term for the j-th variable is proportional to

p(n1j|π1j) ∝ (π1j)n1j (1− π1j)N−n1j . (23)

The beta distribution is the conjugate prior for the binomial model, i.e.,

p(π1j) = Beta(π1j|αj, βj)

∝ (π1j)αj−1(1− π1j)βj−1.

The hyper-parameters αj and βj can be specified in accordance with our prior

knowledge (or lack thereof) regarding the distribution of the response probability of

variable j, for j = 1, . . . , J . Note that when αj = βj = 1, a uniform prior is obtained for

π1j. Multiplying the prior and the likelihood according to (1), yields the posterior for

π1j which is given by

p(π1j|n1j) ∝ p(n1j|π1j)× p(π1j)

∝ (π1j)n1j+αj−1(1− π1j)N−n1j+βj−1

∝ Beta(π1j|n1j + αj, N − n1j + β).
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Appendix B

Posterior Distributions for the Regression Model Parameters

We use the standard independence Jeffreys prior π(β, σ2) ∝ σ−2 throughout our

regression analyses (e.g., Kass & Wasserman, 1996). The (conditional) posteriors used

in Step 2 of Algorithm 1 are then given by

σ2|y,X ∼ IG(n−J2 ,
s2

y
2 )

β|σ2,y,X ∼ N(β̂, σ2(X′X)−1),

where the ML estimate is given by β̂ = (X′X)−1 X′y, the sum of squares equals

s2
y = (y−Xβ̂)′(y−Xβ̂), and IG(α, γ) denotes an inverse gamma distribution with

shape parameter α and scale parameter γ. The annotated Julia Bezanson, Edelman,

Karpinski, and Shah (2014) code used for the computation of the posterior-cppp can be

found in Appendix C.
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Appendix C

Julia Code for the Regression Analysis

#I n s t a l l i n g r equ i r ed Ju l i a l i b r a r i e s

Pkg . add ( " D i s t r i bu t i o n s " )

Pkg . add ( " I t e r a t o r s " )

#Updating any package i f necessary , which may take some time .

# Pkg . update ( )

#Loading the packages

us ing D i s t r i bu t i o n s

us ing I t e r a t o r s

#This Ju l i a code computes a p o s t e r i o r p r e d i c t i v e p−value based on a d i sc repancy t e s t i n g o u t l i e r s in the e r r o r terms .

#input :

# y = vecto r o f N obse rva t i on s on the dependent va r i ab l e .

# X = N∗J matrix o f N obse rva t i on s on J p r ed i c t o r v a r i a b l e s . To inc lude an i n t e r c e p t in the model , X should inc lude a column with a constant .

# K = number o f r e p l i c a t e data s e t s to c a l u l a t e a ppp .

# M = number o f po s t e r i o r−based ppps to c a l i b r a t e the ppp with .

##################################################################

# Algorithm 1 : Ca l cu l a t i on o f a p o s t e r i o r p r e d i c t i v e p−value f o r the Regres s ion model

##################################################################

func t i on pppREG(y , X, K)

# Sample s i z e N = number o f ob s e rva t i on s in y .

N = length (y )

i f N != s i z e (X, 1)

throw ( "Number o f ob s e rva t i on s in dependent and independent v a r i a b l e s d i f f e r " )
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end

# Check whether f i r s t column i s a constant 1 . I f so , the number o f va r i ab l e s , J = (number o f columns in X) − 1 .

J = i f e l s e ( a l l (X[ : , 1 ] == 1) , s i z e (X, 2) − 1 , s i z e (X, 2 ) )

# the p r e c i s i o n matrix PreMat ( i nv e r s e o f covar iance matrix ) o f the p r ed i c t o r v a r i a b l e s . Used o f t en in c a l c u l a t i o n s .

PreMat = inv (X'X)

##################################################################

# Algorithm 1 , STEP 1 : Spec i f y a p r i o r and choose d i s c repancy

##################################################################

# Je f f r e y s ' p r i o r was used .

# di sc repancy t e s t i n g f o r o u t l i e r s in the observed e r r o r s .

f unc t i on Dmax(Dependent , PredMat , e f f e c t s , sigma2 )

maximum( abs (Dependent − PredMat ∗ e f f e c t s ) )/ sq r t ( sigma2 )

end

# d i f f e r e n t d i s c r e p an c i e s could be s p e c i f i e d o f course .

# E. g . i f one i s only i n t e r e s t e d in the abso lu te range o f the dependent va r i ab l e :

# func t i on Drange (Dependent )

# max(y ) − min(y )

# end

# I n i t i a l i s a t i o n o f the ppp ob j e c t .

ppp = 0 .

##################################################################

# Algorithm 1 , STEP 2 : Obtain the p o s t e r i o r d i s t r i b u t i o n

##################################################################

# Given dependent va r i ab l e y and the p r ed i c t o r v a r i a b l e s in matrix X, we obta in the p o s t e r i o r f o r the r e g r e s s i o n e f f e c t s and var iance .
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## Pos t e r i o r modes/maximum l i k e l i h o o d e s t imate s f o r r e g r e s s i o n e f f e c t s b .

bhat = PreMat∗X' y

# The hyperparameter f o r the p o s t e r i o r d i s t r i b u t i o n o f the var iance parameter ( c f . Gelman et a l . , 2003 , p . 3 5 6 ) .

s2 = (1/(N − J ) ) ∗ ( ( y − X ∗ bhat ) ' ∗ ( y − X ∗ bhat ) ) [ 1 ]

# Star t o f the ac tua l PPC.

#####################

# Algorithm 1 : STEP 3

#####################

fo r k in 1 :K

##################################################################

# Algorithm 1 , STEP 3a : Obtain draws from po s t e r i o r

##################################################################

# We f i r s t take a draw from the marginal p o s t e r i o r o f the var i ance sigma2

# Note . Re−parameter i sed , the inve r s e−gamma i s equ iva l en t to a inve r s e−chi−squared d i s t r i b u t i o n

sigma2draw = rand ( InverseGamma ( (N − J )/2 , (N − J ) s2 /2) , 1 ) [ 1 ]

# We c a l c u l a t e the var iance in the p o s t e r i o r o f b , g iven the drawn value o f sigma2

varb = PreMat ∗ sigma2draw

# And then draw va lue s f o r b from i t s condt i ona l mu l t i v a r i a t e normal p o s t e r i o r .

bdraw = rand (MvNormal( bhat , varb ) )

##################################################################

# Algorithm 1 , STEP 3b : Generate r e p l i c a t e d data

##################################################################

# The model assumes normally d i s t r i b u t e d e r r o r terms , which have as var iance sigma2
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# So we generate those as randomly drawn from a Normal d i s t r i b u t i o n f o r each r e p l i c a t e obse rvat i on .

erep = rand (Normal (0 , s q r t ( sigma2draw ) ) , N)

# Generating r e p l i c a t e data yrep as s p e c i f i e d by the r e g r e s s i o n model .

yrep = X ∗ bdraw + erep

##################################################################

# Algorithm 1 , STEP 3c : Ca l cu la te the r e a l i s e d and r e p l i c a t e d d i s c r e p an c i e s

##################################################################

####

# Rea l i s ed

Dreal = Dmax(y , X, bdraw , sigma2draw )

# Repl i cated d i sc repancy f o r the r e p l i c a t e d e r r o r s , which were generated from a normal d i s t r i b u t i o n .

Drep = Dmax( yrep , X, bdraw , sigma2draw )

##################################################################

# Algorithm 1 , STEP 4 : Compute the ppp

##################################################################

# Here we increment the ppp each time the value o f the Rep l i cated d i sc repancy i s g r e a t e r than the Rea l i s ed Discrepancy .

# This prov ide s the same r e s u l t as tak ing the sum desc r ibed in Algorithm 1 to c a l c u l a t e a ppp .

# f o r example , i f the r e p l i c a t e d D i s c r ep enc i e s are never g r e a t e r than the Rea l i s ed d i s c r epanc i e s , the ppp w i l l be 0

ppp += (Drep > Dreal )/K

end

ppp # Returns ppp as output .

end

##################################################################
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# Algorithm 3 : Po s t e r i o r Ca l i b r a t i on o f the ppp in the r e g r e s s i o n example .

# Algorithm 3 Step 1 and Step 2 are a l r eady done above , but used again here :

##################################################################

func t i on cpppREG(y , X, ppp , K, M) #note that Step 1 o f the a lgor i thm can be automated by in c l ud ing the argument ppp=pppREG(y , x , K)

N = length (y )

i f N != s i z e (X, 1)

throw ( "Number o f ob s e rva t i on s in dependent and independent v a r i a b l e s d i f f e r " )

end

# Sample s i z e N = number o f ob s e rva t i on s in y .

N = length (y )

# Check whether f i r s t column i s a constant 1 . I f so , the number o f va r i ab l e s , J = (number o f columns in X) − 1 .

J = i f e l s e ( a l l (Xmat [ : , 1 ] == 1) , s i z e (Xmat,2)−1 , s i z e (Xmat , 2 ) )

# the p r e c i s i o n matrix PreMat ( i nv e r s e o f covar iance matrix ) o f the p r ed i c t o r va r i ab l e s , Used o f t en in c a l c u l a t i o n s .

PreMat = inv (X'X)

# Given dependent va r i ab l e y and the p r ed i c t o r v a r i a b l e s in matrix X, we obta in the p o s t e r i o r f o r the r e g r e s s i o n e f f e c t s and var iance .

## Pos t e r i o r modes/maximum l i k e l i h o o d e s t imate s f o r r e g r e s s i o n e f f e c t s b

bhat = PreMat∗X' y

# The hyperparameter f o r the p o s t e r i o r d i s t r i b u t i o n o f the var iance parameter ( c f . Gelman et a l . , 2003 , p . 3 5 6 ) .

s2 = (1/(N − J ) ) ∗ ( ( y − X ∗ bhat ) ' ∗ ( y − X ∗ bhat ) ) [ 1 ]

# I n i t i a l i s a t i o n o f the po s t e r i o r−cppp ob j e c t .

cppp = 0 .

##################################################################

# Algorithm 3 , STEP 3 : Obtain a r e f e r e n c e d i s t r i b u t i o n o f the ppp

##################################################################



POSTERIOR CALIBRATION OF POSTERIOR PREDICTIVE P-VALUES 49

# Next , we generate M pos t e r i o r−based data s e t s f o r which we c a l c u l a t e a ppp .

f o r i = 1 :M

##################################################################

# Algorithm 3 , STEP 3a : Obtain draws from the p o s t e r i o r

##################################################################

# Draw value from the marginal p o s t e r i o r f o r the var iance :

sigma2drawpost = rand ( InverseGamma ( (N − J )/2 , (N − J ) s2 /2) , 1 ) [ 1 ]

# Ca lcu la te the var iance in the p o s t e r i o r o f b , g iven the drawn value o f sigma2 .

varbpost = PreMat ∗ sigma2drawpost

# And then draw va lue s f o r b from i t s condt i ona l mu l t i v a r i a t e normal p o s t e r i o r .

bdrawpost = rand (MvNormal( bhat , varbpost ) )

##################################################################

# Algorithm 3 , STEP 3b : Generate po s t e r i o r−based data s e t s

##################################################################

#e r r o r s f o r the po s t e r i o r−based data .

epost = rand (Normal (0 , s q r t ( sigma2drawpost ) ) , N)

# gene ra t ing data ypost as s p e c i f i e d by the r e g r e s s i o n model .

ypost = X∗bdrawpost + epost

##################################################################

# Algorithm 3 , STEP 3c : Ca l cu la te a ppp f o r the po s t e r i o r−based data s e t

##################################################################

#Cal l i ng PPC. We use K+1 such that the ppp and postppp are never exac t l y equal .

postppp = pppREG( ypost , X, K + 1)

##################################################################

# Algorithm 3 , STEP 4 : Ca l cu la te the po s t e r i o r−cppp .

##################################################################
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# Here we increment the cppp each time the value o f the ppp i s g r e a t e r than the postppp

# This prov ide s the same r e s u l t as tak ing the sum desc r ibed in Algorithm 3 to c a l c u l a t e a po s t e r i o r−cppp .

# For example , i f the ppp i s never g r e a t e r than the postppp , the po s t e r i o r−cppp w i l l be 0 .

cppp += (ppp > postppp )/M

end

return [ ppp cppp ] #re tu rn s a 1x2 matrix with e lements the ppp and cppp .

end

####### Running a dummy example ############

# Set the number o f r e p l i c a t i o n s used to c a l c u l a t e a ppp .

K = 500

# Set number o f po s t e r i o r−based ppps to c a l i b r a t e the ppp with .

M = 500

# genera t ing a dummy matrix o f N standard normal i . i . d . ob s e rva t i on s on explanatory v a r i a b l e s .

J = 3

N = 200

Xvars = randn (N, J )

#adding constant vec to r so that an i n t e r c e p t w i l l be inc luded in the ana l y s i s .

Xmat = [ ones (N) Xvars ]

#gene ra t ing a dummy dependent va r i ab l e o f N standard normal i . i . d . ob s e rva t i on s .

yobs = randn (N)

#c a l l i n g the PPC func t i on to c a l c u l a t e a ppp f o r the g iven d i sc repancy ( see pppREG func t i on f o r Dmaxreal and Dmaxrep ) .

#Note . With r e a l data , the re i s no need to s p e c i f y N or J

ppp = pppREG( yobs , Xmat , K)
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#c a l l i n g the c a l i b r a t i o n func t i on to c a l i b r a t e the ppp . This outputs both the ppp ( f i r s t element ) and the cppp ( second element ) .

cppp = cpppREG( yobs , Xmat , ppp , K, M)

#We can , o f course , f o r any p a r t i c u l a r ppp c a l c u l a t e i t s c a l i b r a t e d value . E . g . ,

cppp = cpppREG( yobs , Xmat , . 361 , K, M)
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Appendix D

Latent Class Analysis Technical Details

For a data set with sample size N , suppose there are C latent classes. Let νc be the

(unobserved) class size of the latent class c and let n1jc and νc − n1jc be the observed

number of persons with scores 1 and 2 on the j-th variable within class c. Then let ρc

be the class proportions, and let π1jc and 1− π1jc be the corresponding conditional

response probabilities, for variables j = 1, . . . , J and classes c = 1, . . . , C. Thus, the

vector of model parameters θ consists of the class proportions (ρ1, . . . , ρC) and the

unknown conditional response probabilities (π11c, . . . , π1Jc). Under the main latent class

model assumption that the J variables are conditionally independent, the likelihood is

obtained as a weighted sum of the product of J conditionally independent binomial

distributions, i.e.,

p(n11c, . . . , n1Jc|π11c, . . . , π1Jc) =
C∑
c=1

ρc
J∏
j=1

p(n1jc|π1jc) (24)

where the term for the j-th variable is proportional to

p(n1jc|π1jc) ∝ (π1jc)n1jc(1− π1jc)νc−n1jc . (25)

Again, it is standard practice to use the conjugate Beta(π1jc|αjc, βjc) priors for

the conditional response probabilities. Since the number of classes can be greater than

two, we assume a multinomial (rather than a binomial) likelihood for the class

proportions. The conjugate prior for the multinomial likelihood is the multivariate

generalisation of the Beta distribution given as Dirichlet(ρc|α1, . . . , αC).

By combining the likelihood and the prior using (1), the posterior distribution for

π1jc used in Step 2 of Algorithm 1 has a beta distribution given by

p(π1jc|yj) = Beta(π1jc|n1jc + αjc − 1, νc − n1jc + βjc − 1) and the posterior for the vector

of class proportions is given by

p(ρ1, . . . ρC |y) = Dirichlet(ρ1, . . . , ρC |ν1 + α1 − 1, . . . , νC + βC − 1). These posteriors

assume that it is known which observations belong to which class, in order to obtain the
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observed frequencies νc and nrjc. In order to do this, the data needs to be augmented

with starting values for the latent class memberships Tanner and Wong (1987), after

which a Gibbs sampler is run to iteratively draw values from the posteriors and then

updating the latent class memberships. When the Gibbs sampler has converged (usually

after thousands of iterations), values for the parameters are obtained by retaining every

50th, or so, draw.

Calculating the bivariate residual.

Cross-tabulating two dichotomous variables, results in a contingency table with

22 = 4 cells. Each cell corresponds to one of the four response patterns, denoted by ys,

for s = 1, . . . , 4. with pattern probability denoted by πs and given by

πs =
C∑
c=1

ρc(π1jc)djs(1− π1jc)1−djs × (π1j′c)dj′s(1− π1j′c)1−dj′s , (26)

where the dummy indicator djs and dj′s equal 1 if the response to variable j and j′ in

pattern s are 1, and 0 otherwise. For example the response probability for the pattern

(1,1) equals ∑C
c=1 ρcπ11cπ12c. For example, the expectations used to calculate in the

DBVR for pattern (1,1), given the model parameters at iteration k would equals

e(k)
s = N

∑C
c=1 ρ

(k)
c π

(k)
11cπ

(k)
12c. Annotated Julia code for calculating a posterior-cppp for the

BVRs can be found in Appendix E.

Calculating the Pearson χ2 and the likelihood ratio.

Cross-tabulating all J dichotomous variables, results in a contingency table with

S = 2J cells. Each cell corresponds to one of the possible response patterns (which now

comprise J responses), again denoted by ys, for s = 1, . . . , S. The pattern probability is

denoted by πs and given by

πs =
C∑
c=1

ρc
J∏
j=1

(π1jc)djs(1− π1jc)1−djs , (27)
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where the dummy indicator djs equals 1 if the response to variable j in pattern s is 1,

and 0 otherwise. For example the response probability for only ones on all J variables

equals ∑C
c=1 ρcπ11c× . . .× π1Jc (which may differ across iterations of the Gibbs sampler).
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Appendix E

Julia Code for the Bivariate Residuals in Latent Class Analysis

#I n s t a l l i n g r equ i r ed Ju l i a l i b r a r i e s

Pkg . add ( " D i s t r i bu t i o n s " )

Pkg . add ( " I t e r a t o r s " )

Pkg . add ( " DataFrames " )

#Updating any package i f nece s sa ry

# Pkg . update ( )

#Loading the packages

us ing D i s t r i bu t i o n s

us ing I t e r a t o r s

us ing DataFrames

#This Ju l i a code computes a p o s t e r i o r p r e d i c t i v e p−value f o r a t e s t i n g problem in l a t e n t c l a s s ana l y s i s ,

#based on a d i sc repancy which t e s t the remaining a s s o c i a t i o n s between pa i r s o f dichotomous v a r i a b l e s

#input :

# FreqObs = vecto r with l enght equal to the number o f p o s s i b l e re sponse patterns , 2^J , g i v ing the observed f r e qu en c i e s ( i n c l ud ing 0 obs e rva t i on s ) f o r each pattern .

# J = the number o f dichotomous v a r i a b l e s .

# C = number o f c l a s s e s to use in the l a t e n t c l a s s a n a l y s i s .

# Al lPat t e rns = a 2^J x J matrix with a l l p o s s i b l e re sponse pat t e rn s on a new l i n e ( in the same order as FreqObs ) .

# K = number o f r e p l i c a t e data s e t s to c a l u l a t e a ppp .

# M = number o f po s t e r i o r−based ppps to c a l i b r a t e the ppp with .

#

# We used an ad hoc C program f o r our l a t e n t c l a s s model Gibbs sampler ,

# but other t o o l s that y i e l d p o s t e r i o r draws f o r l a t e n t c l a s s models may a l s o be used here , such as Winbugs , Mplus , or LatentGOLD

# The code l ead ing up to Step 3b in Algorithm 1 and Algorithm 3 w i l l have to be be rep laced with cor re spond ing code to accomodate other MCMC samplers .

# When us ing t h i s code , make sure that the MCMC sampler i s in the working d i r e c t o r y s e t by cd ( "D:\\ workingDir \ \ " ) .

# to i n i t i a l i s e the func t i on pppBVR, s e l e c t a l l code be long ing to i t and run the s e l e c t i o n .
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##################################################################

# Algorithm 1 : Ca l cu l a t i on o f a p o s t e r i o r p r e d i c t i v e p−value

# f o r the b i v a r i a t e r e s i d u a l s in a l a t e n t c l a s s a n a l y s i s

##################################################################

func t i on pppBVR(DataPPC , J , C, K)

#PPC f o r LCA us ing BVRs as Discrepancy

N=sum(DataPPC)

NPat = length (DataPPC) #number o f pa t t e rn s

GibbsDataPPC = [ Al lPat t e rns DataPPC ] #add column DataObs to f i l e the matrix Al lPat t e rns

open ( "DataPPC . dat " , "w" ) do fd

writedlm ( fd , GibbsDataPPC , ' ' )

end

##################################################################

# Algorithm 1 , STEP 1 : Obtain a p o s t e r i o r d i s t r i b u t i o n

# We used a Gibbs sampler program , wr i t t en in C c a l l e d LCAgibbsCount

# Uniform p r i o r s were s p e c i f i e d in the l i n e below as " p r i 1 1"

# As discrepancy , we chose the BVR (which i s c a l c u l a t ed in−l i n e l a t e r )

##################################################################

open ( " gibbsPPC . inp " , "w" ) do inp

wr i t e ( inp , [ s t r i n g ( " tab " , 2^J , " " , J , "\n " ) ,

s t r i n g ( " c l a " , C, "\n " ) ,

s t r i n g ( " i t e " , 1000 , " " , 10∗K, " " , 10 , "\n " ) ,

s t r i n g ( " rco " , "\n " ) ,
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s t r i n g ( " dat DataPPC . dat \n " ) ,

s t r i n g ( " p r i " , 1 , " " , 1 , "\n " ) ] )

end

#i n i t i a l i s i n g the ppp ob j e c t f o r the 10 BVR−based d i s c r e p an c i e s

ppp = rep ( 0 . , i n t ( J∗(J−1)/2))

##################################################################

# Algorithm 1 , STEP 2 : Obtain the p o s t e r i o r d i s t r i b u t i o n

##################################################################

# the f o l l ow i ng c a l l s the Gibbs sampler program c a l l e d LCAgibbsCount , which takes as arguments :

# the . inp f i l e wr i t t en above as input

# the f i l e to which i t wr i t e s the aggregated Latent Class model r e s u l t s

# a f i l e in which i nd i v i dua l draws f o r the parameter s e t s are s to r ed .

Foo = r e a d a l l ( `LCAgibbsCount " gibbsPPC . inp " " gibbsoutPPC . txt " "paramsPPC . txt " `)

# We read in the f i l e with the draws from the p o s t e r i o r

ParaMatPPC = array ( r eadtab l e ( " paramsPPC . txt " , header=f a l s e , s epa ra to r = ' ' ) )

#####################

# Algorithm 1 : STEP 3

#####################

fo r i in 1 :K

##################################################################

# Algorithm 1 , STEP 3a : Obtain draws from po s t e r i o r

##################################################################

# One row in ParaMatPPC corresponds to a s i n g l e draw f o r the parameter s e t from the p o s t e r i o r

ParamsPPC = ParaMatPPC [ i , : ]



POSTERIOR CALIBRATION OF POSTERIOR PREDICTIVE P-VALUES 58

# the f i r s t C va lue s o f the vec to r prov ide the draw f o r the c l a s s s i z e s , pi_c .

PClassPPC = ParamsPPC [ 1 :C]

# The r e s t o f the vec to r g i v e s the p i_r j c va lue s in the o rde r ing [ pi_111 , pi_211 , . . . , pi_11C , pi_21C , . . . , pi_1JC , pi_2JC ]

#Creat ing a ' P r o f i l e matrix ' in which each column has the c ond i t i o na l re sponse p r o b a b i l i t i e s per c l a s s .

PRespPPC = Array ( Float64 , 2J , C)

i f C == 1

PRespPPC = ParamsPPC [ 2 : ( 2 ∗ J+1)]

e l s e

f o r a in 1 :C

PRespPPC [ : , a ] = ParamsPPC [C+so r t ( [ (1+2∗ ( a−1)) : (2∗C) : ( 4 J−1) ,2+(2∗(a−1)) : (2∗C) : ( 4 J ) ] ) ]

end

end

# We generate r e p l i c a t e data ( pattern f r e qu en c i e s ) by a draw from a mult inomial d i s t r i b u t i o n .

# To do that we c r e a t i n g a matrix f o r s e l e c t i n g the c o r r e c t p r o b a b i l i t i e s from PrespPPC f o r each response pattern

MatSelect = Array ( Int64 , NPat , J )

f o r f in 1 : J

MatSelect [ : , f ] = Al lPat t e rns [ : , f ] + ( f −1)∗2

end

# Then we c a l c u l a t e the c ond i t i o na l pattern p r o b a b i l i t i e s

PPatternCondPPC = Array ( Float64 , NPat , C)

i f C==1

PPatternPPC = Array ( Float64 , NPat)

f o r p in 1 :NPat

PPatternPPC [ p ] = prod (PRespPPC [ MatSelect [ p , : ] [ 1 : J ] , : ] )

end

e l s e
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f o r cc in 1 :C

f o r p in 1 :NPat

PPatternCondPPC [ p , cc ] = prod (PRespPPC [ MatSelect [ p , : ] [ 1 : J ] , cc ] )

end

PPatternCondPPC [ : , cc ] = PPatternCondPPC [ : , cc ] / sum(PPatternCondPPC [ : , cc ] )

end

# And f i n a l l y c a l c u l a t e the ( uncond i t i ona l ) pattern p r o b a b i l i t i e s g iven the cur r ent va lue s .

PPatternPPC = PPatternCondPPC ∗ PClassPPC #c f . Equation 27

end

##################################################################

# Algorithm 1 , STEP 3b : Generate r e p l i c a t e d data

##################################################################

# genera t ing r e p l i c a t e d data

DataRep = rand ( Multinomial (N, PPatternPPC ) )

##################################################################

# Algorithm 1 , STEP 3c : Ca l cu la te the d i s c r e p an c i e s

##################################################################

# We make a matrix with in the f i r s t columns the r e a l i s e d and in the second column the r e p l i c a t e d BVRs

BVRTable = Array ( Float64 , i n t ( J ∗ ( J − 1)/2) , 2)

# We make a matrix with a l l the combination o f v a r i a b l e

A l lPa i r s = Array ( Int64 , 0 , 2)

f o r y in 1 : J

f o r x in (y+1): J

i f y!=x

Al lPa i r s = [ Al lPa i r s , [ y x ] ]

end

end
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end

# Then f o r each pa i r o f va r i ab l e s , we determine the observed f r e qu en c i e s f o r the p o s s i b l e pat t e rn s

f o r i i in i n t ( 1 : ( J ∗ ( J − 1 )/2 ) )

itemA = Al lPa i r s [ i i , 1 ]

itemB = Al lPa i r s [ i i , 2 ]

i f (C == 1) # PRespPPC i s a vec to r

probsA = PRespPPC [ ( itemA∗2−(2−1)):( itemA ∗2 ) ]

probsB = PRespPPC [ ( itemB∗2−(2−1)):( itemB ∗2 ) ]

e l s e # PRespPPC i s a Matrix

probsA = PRespPPC [ ( itemA∗2−(2−1)):( itemA ∗ 2 ) , : ]

probsB = PRespPPC [ ( itemB∗2−(2−1)):( itemB ∗ 2 ) , : ]

end

TabObs = Array ( Float64 , 2 , 2)

TabPred = Array ( Float64 , 2 , 2)

TabRep = Array ( Float64 , 2 , 2)

f o r a in 1 :2

f o r b in 1 :2

# For each pattern we c a l c u l a t e the observed f r e qu en c i e s

# f i r s t f o r the observed data

TabObs [ a , b ] = sum(DataPPC [ ( Al lPat t e rns [ : , itemA].==a )

& ( Al lPat t e rns [ : , itemB].==b ) ] )

# then f o r the r e p l i c a t e data

TabRep [ a , b ] = sum(DataRep [ ( A l lPat t e rns [ : , itemA].==a ) & ( Al lPat t e rns [ : , itemB].==b ) ] )

# Calcu la te the expec ta t i on s under the model parameters ( c f . Equation 26)

i f C == 1

TabPred [ a , b ] = N∗ ( probsA [ a ]∗ probsB [ b ] ' )

end
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i f C == 2

TabPred [ a , b ] = N∗ ( probsA [ a , 1 ] ∗ probsB [ b , 1 ] ∗ PClassPPC [ 1 ] + probsA [ a , 2 ] ∗ probsB [ b , 2 ] ∗ PClassPPC [ 2 ] )

end

i f C == 3

TabPred [ a , b ] = N∗ ( probsA [ a , 1 ] ∗ probsB [ b , 1 ] ∗ PClassPPC [ 1 ] + probsA [ a , 2 ] ∗ probsB [ b , 2 ] ∗ PClassPPC [ 2 ] + probsA [ a , 3 ] ∗ probsB [ b , 3 ] ∗ PClassPPC [ 3 ] )

end

end

end

#Ca l cu la t i on o f the BVR ( as a X2 s t a t i s t i c f o r a 2x2 tab l e )

BVRReal = sum( (TabObs−TabPred ) . ^ 2 . / ( TabPred ) )

BVRRep = sum( (TabRep−TabPred ) . ^ 2 . / ( TabPred ) )

BVRTable [ i i , : ] = [ BVRReal BVRRep]

end

##################################################################

# Algorithm 1 , STEP 4 : Compute the ppp

##################################################################

# th i s l i n e increments the cor re spond ing ppp every time the r e p l i c a t e d BVR i s g r e a t e r than the r e a l i s e d BVR

ppp .+= (BVRTable [ : , 1 ] .< BVRTable [ : , 2 ] ) . / K

end

return (ppp)

end

##################################################################

# Algorithm 3 : Po s t e r i o r Ca l i b r a t i on o f the ppp in the r e g r e s s i o n example .

# Algorithm 3 Step 1 and Step 2 are a l r eady done above , but used again here :

##################################################################

func t i on cpppBVR(DataObs , ppp , J , C, K, M)
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N=sum(DataObs )

open ( " gibbsObs . inp " , "w" ) do inp

wr i t e ( inp , [ s t r i n g ( " tab " , 2^J , " " , J , "\n " ) ,

s t r i n g ( " c l a " , C, "\n " ) ,

s t r i n g ( " i t e " , 1000 , " " , 10∗K, " " , 10 , "\n " ) ,

s t r i n g ( " rco " , "\n " ) ,

s t r i n g ( " dat DataObs . dat \n " ) ,

s t r i n g ( " p r i " , 1 , " " , 1 , "\n " ) ] )

end

NPat = length (DataObs )

DataRecords = [ Al lPat t e rns DataObs ] #add column DataObs to f i l e " Al lPat te rnsJ . txt "

writedlm ( " DataObs . dat " , DataRecords , header = f a l s e )

foo = r e a d a l l ( `LCAgibbsCount " gibbsObs . inp " " gibbsoutObs . txt " " paramsObs . txt " `)

ParaMat = array ( r eadtab l e ( " paramsObs . txt " , header=f a l s e , s epa ra to r = ' ' ) )

cppp = rep ( 0 . , i n t ( J∗(J−1)/2)) #i n i t i a l i s i n g the vec to r o f po s t e r i o r−cppps

##################################################################

# Algorithm 3 , STEP 3 : Obtain a r e f e r e n c e d i s t r i b u t i o n o f the ppp

##################################################################

fo r nn = 1 :M

##################################################################

# Algorithm 3 , STEP 3a : Obtain draws from the p o s t e r i o r

##################################################################

# One row in ParamsPost cor re sponds to a s i n g l e draw f o r the parameter s e t from the p o s t e r i o r

ParamsPost = ParaMat [ nn , : ]
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# the f i r s t C va lue s o f the vec to r prov ide the draw f o r the c l a s s s i z e s , pi_c .

PClassPost = ParamsPost [ 1 :C]

# The r e s t o f the vec to r g i v e s the p i_r j c va lue s in the o rde r ing [ pi_111 , pi_211 , . . . , pi_11C , pi_21C , . . . , pi_1JC , pi_2JC ]

#Creat ing a ' P r o f i l e matrix ' in which each column has the c ond i t i o na l re sponse p r o b a b i l i t i e s per c l a s s .

i f C == 1

PRespPost = ParamsPost [ 2 : ( 2 ∗ J+1)]

e l s e

PRespPost = Array ( Float64 , 2J , C)

f o r a in 1 :C

PRespPost [ : , a ] = ParamsPost [C+so r t ( [ (1+2∗ ( a−1)) : (2∗C) : ( 4 J−1) ,2+(2∗(a−1)) : (2∗C) : ( 4 J ) ] ) ]

end

end

# matrix f o r s e l e c t i n g c o r r e c t P r o b a b i l i t i e s

MatSelect = Array ( Int64 , NPat , J )

f o r f = 1 : J

MatSelect [ : , f ] = Al lPat t e rns [ : , f ] + ( f −1)∗2 #Need to implement 'm' here ( See Rcode )

end

#Calcu la te c ond i t i o na l pattern p r o b a b i l i t i e s

PPatternCondPost = Array ( Float64 , NPat , C)

i f C==1

PPatternPost = Array ( Float64 , NPat)

f o r p in 1 :NPat

PPatternPost [ p ] = prod (PRespPost [ MatSelect [ p , : ] [ 1 : J ] , : ] )

end
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e l s e

f o r cc in 1 :C

f o r p in 1 :NPat

PPatternCondPost [ p , cc ] = prod (PRespPost [ MatSelect [ p , : ] [ 1 : J ] , cc ] )

end

PPatternCondPost [ : , cc ] = PPatternCondPost [ : , cc ] / sum(PPatternCondPost [ : , cc ] )

end

#Calcu la te Pattern p r o b a b i l i t i e s g iven Parameter va lue s .

PPatternPost = PPatternCondPost ∗ PClassPost

end

##################################################################

# Algorithm 3 , STEP 3b : Generate po s t e r i o r−based data s e t s

##################################################################

DataPost = rand ( Multinomial (N, PPatternPost ) )

##################################################################

# Algorithm 3 , STEP 3c : Ca l cu la te a ppp f o r the po s t e r i o r−based data s e t

##################################################################

#Cal l i ng PPC. We use K+1 such that the ppp and postppp are never exac t l y equal .

postppp = pppBVR(DataPost , J , C, K+1)

##################################################################

# Algorithm 3 , STEP 4 : Ca l cu la te the po s t e r i o r−cppp .

##################################################################

# Here we increment the cppp each time the value o f the ppp i s g r e a t e r than the postppp

# This prov ide s the same r e s u l t as tak ing the sum desc r ibed in Algorithm 3 to c a l c u l a t e a po s t e r i o r−cppp .

# For example , i f the ppp i s never g r e a t e r than the postppp , the po s t e r i o r−cppp w i l l be 0 .

cppp .+= (ppp .> postppp ) . / M
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end

return [ ppp cppp ] # re tu rn s a 10x2 matrix , with in the f i r s t column the ppps and in the second column the cppps f o r the BVRs

end

# Running dummy example

# data s e t generated from a 2− c l a s s populat ion , with c ond i t i o na l p r o b a b i l t i e s pi_1j1 = .8 and pi_1j2 = .2 f o r a l l v a r i a b l e s

FreqObs = [19 , 5 , 4 , 2 , 4 , 3 , 3 , 8 , 5 , 2 , 3 , 6 , 3 , 6 , 6 , 21 ]

C = 1 # or C = 2

J = 4

K = 100

M = 100

#requ i r ed matrix with a l l pa t t e rn s

Al lPat t e rns =

[ [ 1 1 1 1 ] ,

[ 1 1 1 2 ] ,

[ 1 1 2 1 ] ,

[ 1 1 2 2 ] ,

[ 1 2 1 1 ] ,

[ 1 2 1 2 ] ,

[ 1 2 2 1 ] ,

[ 1 2 2 2 ] ,

[ 2 1 1 1 ] ,

[ 2 1 1 2 ] ,
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[ 2 1 2 1 ] ,

[ 2 1 2 2 ] ,

[ 2 2 1 1 ] ,

[ 2 2 1 2 ] ,

[ 2 2 2 1 ] ,

[ 2 2 2 2 ] ]

cd ( "D:\\ workingDir \\" ) #th i s i s where the . exe o f the MCMC sampler should be l o ca t ed

pppObs = pppBVR(FreqObs , J , C, K)

postcppp = cpppBVR(FreqObs , ppp , J , C, K, M)


