
27/01/19 

 

 

 

 

 

LATENT CLASS MODELS 

 

Jay Magidson,  

Statistical Innovations Inc. 

 

Jeroen K. Vermunt,  

Tilburg University 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This is an updated version of Magidson, J., and Vermunt, J.K, (2004). Latent class models. D. 

Kaplan (ed.), The Sage Handbook of Quantitative Methodology for the Social Sciences, Chapter 

10, 175-198. Thousand Oaks: Sage Publications. 

 

 

 

 



 2 

1.  INTRODUCTION 

 

Latent class (LC) modeling was initially introduced by Lazarsfeld and Henry (1968) as a way of 

formulating latent attitudinal variables from dichotomous survey items. In contrast to factor 

analysis, which posits continuous latent variables, LC models assume that the latent variable is 

categorical, and areas of application are more wide-ranging. The methodology was formalized and 

extended to categorical variables with more than two categories by Goodman (1974a, 1974b) who 

also developed the maximum likelihood (ML) algorithm that serves as the basis for many of 

today’s LC software programs.  In recent years, LC models have been extended to include 

observable variables of mixed scale type (nominal, ordinal, continuous and counts), covariates, 

and to deal with sparse data, boundary solutions, and other problem areas. 

 In this chapter, we describe three important special cases of LC models for applications 

in cluster, factor and regression analysis. We begin by introducing the LC cluster model as applied 

to nominal variables (the traditional LC model), discuss some limitations of this model and show 

how recent extensions can be used to overcome them.  We then turn to a formal treatment of the 

LC factor model and an extensive introduction to LC regression models before returning to show 

how the LC cluster model as applied to continuous variables can be used to improve upon the K-

means approach to cluster analysis. We use the Latent GOLD computer program (Vermunt and 

Magidson, 2000, 2015) to illustrate the use of these models as applied to several data sets. 

 

2.  TRADITIONAL LATENT CLASS MODELING 

 

Traditional LC analysis defines a model for a set of categorical (or nominal) variables. Suppose 

we are dealing with 4 nominal observed (manifest) variables, which we denote 

by ,1y ,2y ,3y and 4y . The number of categories of these variables is denoted by ,1M ,2M ,3M and 

4M , implying that 111 My  , 221 My  , and so on. In total, there are 

4321 MMMM  possible combinations of responses (or response patterns). We denote the 

probability of occurrence of a specific combination of scores on these 4 variables 

by ),,,( 4321 yyyyP . LC analysis involves defining a specific type of model for these probabilities 

for response patterns.  

 The key assumption of any type of LC model is that each observation is a member of one 

and only one of C latent (unobservable) classes (i.e., Goodman, 1974a). Worded differently, the 

population of interest contains C subgroups, but we do not know to which subgroup an individual 
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belongs. More technically, the population is a mixture of C latent classes. Let us look at the 

statistical implication of this mixture assumption for the case of a traditional LC model for four 

categorical responses. We will denote the latent variable by X and a particular latent class by c. 

The first basic equation of a LC model can now be defined as follows: 

 

   
1 2 3 4 1 2 3 4

1

( , , , ) ( ) ( , , , | )
C

c

P y y y y P X c P y y y y X c
=

= = = , 

 

where ( )P X c=  is the probability of belonging to latent class c and 1 2 3 4( , , , | )P y y y y X c=  is the 

probability of having the set of responses concerned given that one belongs to latent class c. The 

above formula shows that each latent class or subgroup has its own (joint response) 

probability 1 2 3 4( , , , | )P y y y y X c=  and that the overall probability ),,,( 4321 yyyyP for the total 

population is obtained as a weighted average of the former using the class proportions ( )P X c=  as 

weights. As an example, suppose we have 2 latent classes (C =2) and the probability of belonging 

to class 1 and 2 equals .6 and .4, respectively. Moreover, the probability of say response pattern 

(1,2,1,1) equals .2 in the first class and .05 in the second class. The overall probability of this 

response pattern will then equal .14.05.4+.2.6 = . 

 The second key assumption of a traditional LC model is that local independence exists 

between the observed (manifest) variables.  That is, conditional on latent class membership, the 

observed variables are mutually independent of each other. Using the same example with 4 

variables, this can be expressed in an equation as follows: 

 

    1 2 3 4 1 2 3 4( , , , | ) ( | ) ( | ) ( | ) ( | )P y y y y X c P y X c P y X c P y X c P y X c= = = = = = ,  (1) 

 

where 1( | )P y X c=  denotes the probability of giving response 1y  on the first observed variable 

given that one belongs to latent class c, 2( | )P y X c=  is the corresponding conditional response 

probability for the second observed variable, and so on. As can be seen, conditional on the class 

one belongs to, the probability for a specific combination of 4 responses is a product of the 

probabilities of each of the separate responses, which is, in fact, the definition of (conditional) 

independence. This can be illustrated with a numerical example. Suppose that for latent class 1 the 

probability of choosing the first, second, first, and first response category on variables 1 to 4 equal 
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.8, .4, .9, and .7, respectively, then the probability for the full response pattern, )1|1,1,2,1( =XP , 

will be equal to .2..7.9.4.8 =  

 Combining the above mixture and local independence equations into a single equation 

yields the full formula for a traditional LC model for 4 observed variables; that is,  

 

   
1 2 3 4 1 2 3 4

1

( , , , ) ( ) ( | ) ( | ) ( | ) ( | )
C

c

P y y y y P X c P y X c P y X c P y X c P y X c
=

= = = = = = .        

 

A more general formulation for any number of variables can be obtained as follows:  

 

   1

1 1

( ,..., ) ( ) ( | )
JC

J j

c j

P y y P X c P y X c
= =

= = =  . 

 

Here, we denote the number of observed variables by J and use the index j to refer to a particular 

observed variable. Note that 
1

( | )
J

jj
P y X c

=
=  is the shorthand notation for the product of the 

class-specific response probabilities for all J variables. 

 A LC model can be depicted graphically in terms of a path diagram (or a graphical 

model) in which manifest variables are not connected to each other directly, but indirectly through 

the common source X.  The latent variable is assumed to explain all of the associations among the 

manifest variables.  A goal of traditional LC analysis is to determine the smallest number of latent 

classes C that is sufficient to explain away (account for) the associations (relationships) observed 

among the manifest variables. 

 The analysis typically begins by fitting the C=1 class baseline model (H0), which 

specifies mutual independence among the variables. Model H0:  

 

   )()()()(),,,( 43214321 yPyPyPyPyyyyP = .        

 

Assuming that this null model does not provide an adequate fit to the data, a LC model with C=2 

classes is then fitted to the data.  This process continues by fitting successive LC models to the 

data, each time adding another dimension by incrementing the number of classes by 1, until the 

simplest model is found that provides an adequate fit. 

 

2.1 Assessing Model Fit 
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Several complimentary approaches are available for assessing the fit of traditional LC models and 

determining the required number of latent classes.  A widely-used approach utilizes the 

likelihood-ratio chi-squared goodness-of-fit statistic L2 to assess the extent to which estimates for 

the expected cell frequencies according to the specified LC model, 
1 ,..., jy y , differ from the 

corresponding observed frequencies, 
1 ,..., Jy yn : 

 

   
1 1 1

2

,..., ,..., ,...,2 ln( / )
J J Jy y y y y yL n n =  , 

 

where the sum is over all cells in the analyzed frequency table. The estimated frequencies
1 ,..., jy y  

are obtained by multiplying the estimated values of the probabilities ),...,( 1 JyyP for the response 

patterns by the sample size N. As an alternative to L2, we may also use the Pearson or the Cressie-

Read chi-squared statistic. 

 A model fits the data if the value of L2 is sufficiently low to be attributable to chance 

(within normal statistical error limits --generally, the .05 level). In the case that n =  for each 

cell, the model fit will be perfect and L2 equals zero. To the extent that the value for L2 exceeds 0, 

the L2 measures lack of model fit, quantifying the amount of association (non-independence) that 

remains unexplained by that model. When N is sufficiently large, L2 follows a chi-square 

distribution, and as a general rule1, the number of degrees of freedom (df) equals the number of 

cells in the full multi-way table minus 1 minus the number of distinct parameters Npar. For 

example, in the case of 4 categorical variables, the number of cells equals 4321 MMMM  and 

the number of free parameters is: 

 

   1 2 3 4( 1) [( 1) ( 1) ( 1) ( 1)]Npar C C M M M M= − + − + − + − + − . 

 

Note that Npar is obtained by counting the C-1 distinct LC probabilities, and for each latent class, 

the 1M -1 distinct conditional response probabilities associated with the categories of variable 1y , 

the 2M -1 distinct conditional probabilities associated with 2y , etc.  Since probabilities sum to 1, 

                                                           
1 According to the general rule, if it turns out that df < 0, the model is not identifiable, which means that unique 

estimates are not available for all parameters.  For example, for variables with 2 categories, df  = -4 for T = 4, which 

means that the 4-class model is not identifiable.  In some cases however, this general counting rule may yield df >0, 

yet the model may still not be identifiable.  For example, Goodman (1974a) shows that in this situation of 4 

dichotomous variables, the 3-class model is also unidentifiable despite the fact that the counting rule yields df = 1.  

See also note 3. 
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the probability associated with one category of each variable is redundant (and hence not counted 

as a distinct parameter): it can be obtained as one minus the sum of the others.  

 In situations involving a sparse frequency table (when expected cell frequencies are 

small), the theoretical chi-squared distribution should not be used to compute the p-value because 

the sampling distribution of L2 would not be well approximated.  Instead, the bootstrap approach 

can be used to estimate p (Langeheine, Pannekoek, and Van de Pol, 1996). Sparseness occurs 

when a LC model is specified for more than a few observed variables or when the sample size is 

very small. In both cases, the total number of cells in the resulting multi-way frequency table will 

be large relative to the sample size, resulting in many cells with low expected frequencies.  This 

situation is illustrated below with a data example where the sample size is rather small.  

 An alternative approach to assessing model fit in the case of a sparse table, but also in 

other situations, utilizes an information criterion weighting both model fit and parsimony.  Such 

measures, like AIC and BIC, are especially useful in comparing models. The most widely used in 

LC analysis is the BIC statistic which can be defined as: BICL
2 = L2 –ln (N) df (Raftery, 1986). A 

model with a lower BIC value is preferred over a model with a higher BIC value. A more general 

definition of BIC is based on the log-likelihood (LL) and the number of parameters (Npar) instead 

of L2 and df; that is,  

 

   BICLL = -2 LL + ln(N) Npar 

 

Again, a model with a lower BIC value is preferred over a model with a higher BIC value.2  

 If the baseline model (H0) provides an adequate fit to the data, no LC analysis is needed, 

since there is no association among the variables to be explained.  In most cases, however, H0 will 

not fit the data in which case L2(H0) can serve as a baseline measure of the total amount of 

association in the data.  This suggests a 3rd approach for assessing the fit of LC models by 

comparing the L2 associated with LC models for which C>1 with the baseline value L2(H0) to 

determine the percent reduction in L2.  Since the total association in the data may be quantified by 

L2(H0), the percent reduction measure represents the total association explained by the model.  

This less formal approach can complement the more statistically precise L2 and BIC approaches.   

 As an example of how these measures are used, suppose that the L2 suggests that a 3-

class model falls short of providing an adequate fit to some data (say p = .04) but explains 90% of 

                                                           
2 The two formulations of BIC differ only with respect to a constant. More precisely, BICL

2 equals BICLL minus the 
BICLL corresponding to the saturated model. Note that LL equals the sum of 

1 ,..., jy yn ln(P(y1,…, yJ)) across the 

observed data patterns. 
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the total association.  Moreover, suppose a 4-class is the simplest model that fits according to the 

L2 statistic but that this model only explains 91% of the association.  In this case, it may be that on 

practical grounds the 3-class model is preferable since it explains almost as much of the total 

association.   

 Below, we discuss two additional types of statistics. The first concerns bivariate 

residuals, which are Pearson chi-squared goodness-of-fit statistics for two-way marginal tables 

indicating how well a LC model picks up the association between pairs of variables (rather than 

the associations between all variables). The second type concerns classification statistics, which 

are not fit measures but which instead quantify how certain we are about the individuals’ class 

memberships if we wish to use the LC model as a tool for clustering. 

 

Example: survey respondent types 

We will now consider a first example that illustrates how these tools are used in practice.  It is 

based on the analysis of 4 variables from the 1982 General Social Survey given by McCutcheon 

(1987) to illustrate how traditional LC modeling can be used to study the different types of survey 

respondents.  Two of the variables ascertain the respondent’s opinion regarding ( 1y ) the purpose 

of surveys and ( 2y ) how accurate they are, and the others are evaluations made by the interviewer 

of ( 3y ) the respondent’s levels of understanding of the survey questions and ( 4y ) cooperation 

shown in answering the questions. McCutcheon initially assumed the existence of 2 latent classes 

corresponding to ‘ideal’ and ‘less than ideal’ types. 

 The study included separate samples of white and black respondents.  Beginning with an 

analysis of the white sample, McCutcheon later included data from the black sample to illustrate a 

2-group LC analysis.  We will use these data to introduce the basics of traditional LC modeling 

and to illustrate several recent developments that have been made over the past decade.  These 

include allowing for specific local dependencies (section 3.1), the usage of LC factor models 

(section 3.2), and the inclusion of covariates as well as the methodology for making multi-group 

comparisons (sections 3.3 and 3.4).  

 

[INSERT TABLE 1 ABOUT HERE] 

 

Traditional exploratory LC analysis begins by fitting the null model H0 to the sample of white 

respondents.  Since L2(H0) = 257.3 with df = 29 (see Table 1), the amount of association (non-
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independence) that exists in these data is too large to be explained by chance, so the null model 

must be rejected (p < .001) in favor of C>1 classes.  

 Next, we consider McCutcheon’s 2-class model (H1).  For this model, the L2 is reduced 

to 79.53, a 69.1% reduction from the baseline model, but still much too large to be acceptable with 

df = 22. Thus, we increment C by 1 and estimate model H2C, the 3-class model.  This model 

provides a further substantial reduction in L2 to 22.1 (a 91.5% reduction over the baseline) and 

also provides an adequate overall fit (p>.05).   Table 1 shows that the 4-class LC model provides 

some further improvement.  However, the BIC statistic, which takes parsimony into account, 

suggests that the 3-class model is preferred over the 4-class model (see Table 1). 

 

[INSERT TABLE 2 ABOUT HERE] 

 

The parameter estimates obtained from the 3-class model are given in the left-most portion of 

Table 2.  The classes are ordered from largest to smallest.  Overall, 62% are estimated to be in 

class 1, 20% in class 2 and the remaining 18% in class 3.  Analogous to factor analysis where 

names are assigned to the factors based upon an examination of the ‘factor loadings’, names may 

be assigned to the latent classes based upon the estimated conditional probabilities.  Like factor 

loadings, the conditional probabilities provide the measurement structure that defines the latent 

classes.   

 McCutcheon assigned the name ‘Ideal’ to latent class 1, reasoning as follows: 

“The first class corresponds most closely to our anticipated ideal respondents. Nearly 9 of 10 in 

this class believed that surveys ‘usually serve a good purpose’; 3 of 5 expressed a belief that 

surveys are either ‘almost always right’ or ‘right most of the time’; 19 of 20 were evaluated by the 

interviewer as ‘friendly and interested’ during the interview; and nearly all were evaluated by the 

interviewer as having a good understanding of the survey questions.” He named the other classes 

‘Believers’ and ‘Skeptics’ based on the interpretations of the corresponding conditional 

probabilities for those classes.  

 

2.2 Testing the Significance of Effects 

The next step in a traditional LC analysis is to delete from the model any variable that does not 

exhibit a significant difference between the classes. For example, to test whether to delete variable 

                                                           
3 This value differs slightly from the value 79.3 reported in McCutcheon (1987) because our models include a Bayes 

constant set equal to 1 in order to prevent boundary solutions (estimated model probabilities equal to zero).  For 

further information on Bayes constants see the technical appendix of the Latent GOLD manual (Vermunt and 

Magidson 2000 or www.latentclass.com). 
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1y  from a C-class model, one would test the null hypothesis that the distribution over the 1M  

categories of 1y  is identical within each class c: 

 

   1 1 1( | 1) ( | 2) ... ( | )P y X P y X P y X C= = = = = =  for 1y =1, 2,…, 1M . 

 

In order to implement this test we parameterize the conditional response probabilities in terms of 

logit parameters (see, e.g., Haberman 1979; Formann, 1992; or Heinen, 1996): 

 

   
1 1

1

1 1

1 1 1

1

exp( )
( | )

exp( )

y y c

M

m mcm

P y X c
 

 
=

+
= =

+
. 

 

This logistic specification for class-specific response probabilities for variable 1y -- with intercept 

parameters 
1

1

y and slope parameters 
1

1

y c  -- can then be used to test the null hypothesis. Re-

expressed in terms of the linear logistic associated with the 1y -X relationship, this yields: 

 

  
1 1 1

1 1 1

1 2 ... 0y y y C  = = = =  for 1y =1, 2,…, 1M , 

 

that is, the test of the assumption that the slope parameters are equal to 0.  

 One way to test for significance of the 4 indicator-class associations in our 3-class model 

is by means of a L2 difference test, where L² is computed as the difference between the L2
 

statistics obtained under the restricted and unrestricted 3-class models respectively. The  L² 

values obtained by setting the association parameters corresponding to one of the indicators to 

zero were 145.3, 125.4, 61.3, and 101.1 for ,1y ,2y ,3y and 4y , respectively.  These numbers are 

higher than of the corresponding Wald statistics, which took on the values 29.6, 8.4, 7.4, and 19.0. 

This is because the latter test is uniformly less powerful than the  L² statistic. Under the 

assumption that the unrestricted model is true, both statistics are distributed asymptotically as chi-

square with df = (Mj-1)*(C-1), where Mj denotes the number of categories in the nominal response 

variable concerned.  The encountered values show that each of the 4 indicators included in the 

model is significantly related to class membership. 
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2.3 Classification  

Typically, an additional step in a traditional LC analysis is to use the results of the selected model 

to classify cases into the appropriate latent classes.  For any given observed response pattern 

( 1,..., Jy y ), the posterior probability of belonging to class c, 
1( | ,..., )JP X c y y= , can be obtained 

using Bayes theorem as follows:  

 

  
11

1

1

' 1 ' 1 1

( ) ( | )
( ) ( ,..., | )

( | ,..., )

( ') ( ,..., | ') ( ') ( | ')

J

j

jJ
J C JC

J j

c c j

P X c P y X c
P X c P y y X c

P X c y y

P X c P y y X c P X c P y X c

=

= = =

= =
= =

= = =

= = = =



  
     

 

for c=1,2,…,C.  Note that the denominator in this formula is simply
1( ,..., )JP y y .  

 Magidson and Vermunt (2001) and Vermunt and Magidson (2002) refer to this kind of 

approach as a LC clustering because the goal of classification into C homogeneous groups is 

identical to that of cluster analysis.  In contrast to an ad hoc measure of distance used in cluster 

analysis to define homogeneity, LC analysis defines homogeneity in terms of probabilities.  As 

indicated by Equation (1), cases in the same latent class are similar to each other because their 

responses are generated by the same probability distribution. 

 Typically, cases are assigned to the class for which the posterior probability is highest 

(i.e., the modal class). For example, according to the 3-class LC model, someone with response 

pattern 1y =1 (PURPOSE = ‘good’), 2y =1 (ACCURACY = ‘mostly true’), 3y =1 

(UNDERSTANDING = ‘good’), and 4y =1 (COOPERATION = ‘interested’) has posterior 

membership probabilities equal to 0.92, 0.08, and 0.00. This means that such a person is assigned 

to the first class. 

 The performance of a LC model as a tool for clustering – or more technically, the amount 

of class separation – can be quantified using classification statistics. The simplest statistics is the 

proportion of classification errors. Under modal class assignment, the proportion of classification 

errors corresponding to a response pattern ( 1,..., Jy y ) equals 1 max ( | ,..., )j JP X c y y− = , a number 

equal to 0 when the posterior probability equals 1 for one class and 0 for the other classes, and 

equal to its maximum values of (C-1)/C when all classes are equally likely. The overall proportion 

of classification errors is computed by taking the average across response patterns; that is, 

 

   
1 ,..., 1Classification Errors [1 max ( | ,..., )] /

Jy y Jn P X c y y N= − = . 
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 Another type of classification statistics are R2 like measures which indicate how well we 

can predict class membership using the responses individuals provide compared to the situation in 

which we simply ignore these responses. The most popular measure is the entropy-based R2, 

which obtained as follows: 

 

   2 Entropy(null) Entropy(model)
Entropy .

Entropy(null)
R

−
=  

 

The null and model entropy for a specific response pattern equal 
1

( ) ln ( )
C

c
P X c P X c

=
− = =  and 

1 11
( | ,..., ) ln ( | ,..., )

C

J Jc
P X c y y P X c y y

=
− = = , respectively. In the above formula, we fill in the 

averages of these across response patterns.  

 

2.4 Graphical Displays 

Since for any given response pattern ( 4321 ,,, yyyy ) the C class membership probabilities sum to 1, 

only C-1 such probabilities are required as the probability of belonging to the remaining class can 

be obtained from the others.  Hence, the class membership probabilities 1 2 3 4( | , , , )P X c y y y y= can 

be used to position each response pattern in C-1 dimensional space, and for C=3, various 2-

dimensional barycentric coordinate displays can be produced.   

 Rather than plotting every one of the many response patterns, instructive plots of the kind 

used in correspondence analysis can be produced, where points are plotted for each category of 

each variable as well as other meaningful aggregations of these posterior probabilities (Magidson 

and Vermunt, 2001). 

 

[INSERT FIGURE 1 ABOUT HERE] 

 

Figure 1 depicts the corresponding barycentric coordinate display under the 3-class LC model.  

Points are plotted for each category of each of the 4 variables in our example.  Since these points 

contain information equivalent to the LC parameter estimates (Van der Heijden, Gilula and Van 

der Ark, 1999), this type of plot provides a graphical alternative to the traditional tabular display 

of parameter estimates and can yield new insights into data. Also displayed in Figure 1 are 2 
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additional aggregations associated with the response categories UNDERTANDING = ‘good’ and 

‘fair, poor’ ( 3y =1,2) among those for whom COOPERATION = ‘hostile/impatient’ ( 4y =3). 

 The horizontal dimension of the plot corresponds to differences between McCutcheon’s 

‘ideal’ and ‘believer’ types (latent classes 1 and 2). We see that the categories of the variable 3y  

tend to spread out along this dimension.  Respondents showing ‘good’ understanding are most likely 

to belong to the ideal class (the corresponding symbol is plotted closest to the lower left vertex that 

represents class 1) while those showing only ‘fair or poor’ understanding are plotted closest to the 

lower right vertex which represents class 2. 

 Differences along the vertical dimension of the plot are best shown by the categories of 1y  

and 2y .  For example, respondents agreeing that the purpose of surveys is ‘good’ are plotted close to 

the lower left (class 1) vertex. Those who say ‘it depends’ are plotted somewhat midway between 

the class 1 and class 3 (top) vertex.  Those who say ‘it’s a waste of time and $’ are most likely to be 

in class 3 and are positioned near the top vertex.  The fact that the positioning of categories for both 

1y  and 2y  spread out over the vertical dimension suggests a high degree of association between 

these variables.  In contrast, the categories of 3y  are spread over the horizontal dimension, 

suggesting that the association between 3y  and the 2 variables 1y  and 2y  is close to nil. 

  The categories of the variable 4y  form an interesting diagonal pattern.  Respondents 

showing they are ‘interested’ in the questions are most likely to be in class 1 (‘ideal’) while those 

who are only ‘cooperative’ or exhibit ‘impatience/hostility’ are plotted closer to classes 2 and 3. 

This suggests the hypothesis that impatience and hostility may arise for either of 2 different 

reasons – 1) disagreement that surveys are accurate and serve a good purpose (indicated by the 

vertical dimension of the plot) and/or 2) lack of understanding (indicated by the horizontal 

dimension). 

  The additional points plotted deal with the relationship between variables 3y  and 4y .  The 

positioning of these points suggest that among impatient/hostile respondents, those who show good 

understanding of the questions tends to be more in class 3 while those whose understanding is 

Fair/Poor tend to be about equally likely to be in classes 2 or 3.   

 We will revisit these data and obtain further insights later when we examine an alternative 

nontraditional 2-dimensional LC model, the 2-factor LC model. 
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Example: sparse multi-rater agreement data 

We next consider an example with sparse frequency table where 7 pathologists each classified 118 

slides as to the presence or absence of carcinoma in the uterine cervix (Landis and Koch, 1977), 

This data set was also analyzed by Agresti (2002). LC modeling will be used here to estimate the 

false positive and false negative rates for each pathologist and to use multiple ratings to 

distinguish between slides that indicate carcinoma and those that don’t (for similar medical 

applications see Rindskopf and Rindskopf, 1986; Uebersax and Grove, 1990).  The second 

column of Table 3 shows that the raters vary from classifying only about 1 of every 5 slides as 

positive (Rater 4) to classifying more than 2 of every 3 as positive (Rater 2). The next two 

columns indicate for which percentage of slides the ratings agree among 5 or more and 6 or more 

raters. This information shows that agreement is highest among raters 3, 1, 7 and 5.   

 

[INSERT TABLE 3 ABOUT HERE] 

 

  As a starting point Agresti (2002) formulated a model containing 2 latent classes, in an 

attempt to confirm the hypothesis that slides are either ‘true positive’ or ‘true negative’. The 

assumption of local independence in the 2-class model means that rater agreement is caused solely 

by the differing characteristics between these 2 types of slides. That is, given that a slide is in the 

class of ‘true positive’ (‘true negative’) any similarities and differences between raters represent 

pure error.  However, in his analysis of these data he found that 3-classes were necessary to obtain 

an acceptable fit. 

 While there are 27 = 128 possible response patterns, because of the large amount of inter-

rater agreement, 108 of these patterns were not observed at all.  As mentioned above, sparse data 

such as this causes a problem in testing model fit because the L2 statistic does not follow a chi-

square distribution.  For this reason, Agresti simply alluded to the obvious discrepancy between 

the expected frequencies estimated under the 2-class model and the observed frequencies and 

speculated that this model does not provide an adequate fit to these data.  He then compared 

estimates obtained from the 3-class model, and suggested that the fit of this model was adequate.  

 

[INSERT TABLE 4 ABOUT HERE] 
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We report the bootstrap p-value in Table 4, which confirms Agresti’s speculation that the fit of the 

2-class model is poor and that of the 3-class model is adequate.  It also shows that the 3-class 

model is preferred over the 4-class model according to the BIC criteria.   

 The parameter estimates obtained with the 3-class model are given in the middle portion 

of Table 3. The largest class (44%) refers to slides that all pathologists (except for 4 and 6) almost 

always agree show carcinoma (‘true positive’).  Class 2 (37%) refers to slides that all pathologists 

(except occasionally 2) agree shows no carcinoma.  The remaining class of slides (18%) shows 

considerable disagreement between pathologists – 2, 5 and 7 usually diagnose carcinoma while 3, 

4 and 6 rarely do and 1 diagnoses carcinoma half the time.   

 If we assume that class 1 represents cases of true carcinoma, the results reported in Table 

3 show that those pathologists who rated the fewest slides as positive (4 and 5), have the highest 

false negative rates (42% and 53% respectively, highlighted in bold).  Similarly, under the 

assumption that class 2 represents cases free from carcinoma, the results show that the pathologist 

who rated the most slides as positive, pathologist 2, shows a false positive rate (15%) that is 

substantially larger than the other pathologists. 

 The traditional model fitting strategy requires us to reject our 2-class hypothesis in favor 

of a 3-class alternative where the 3rd latent class consists of slides that can not be classified as 

either ‘true positive’ or ‘true negative’ for cancer.  Next we consider some nontraditional LC 

models which provide classification of each slide according to its likelihood of carcinoma.  In 

particular, we will show that a 2-factor LC model provides an attractive alternative where factor 1 

classifies all slides as either ‘true positive’ or ‘true negative‘, and factor 2 classifies slides 

according to a tendency for ratings to be biased towards false positive or false negative error.  

 

3. NONTRADITIONAL LATENT CLASS MODELING 

 

Rejection of a traditional C-class LC model for lack of fit means that the local independence 

assumption does not hold with C classes.  In such cases the traditional LC model fitting strategy is 

to fit a C+1 class model to the data.  In both of our examples, theory supported a 2-class model but 

since this model failed to provide an adequate fit we formulated a 3-class model.  In this section 

we consider some alternative strategies for modifying a model.  In both cases we will see the 

nontraditional alternatives lead to models that are more parsimonious than traditional models as 

well as models that are more congruent with our initial hypotheses. The alternatives considered 

are: 

1. adding 1 or more direct effects 
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2. deleting 1 or more items 

3. increasing the number of latent variables 

 

Alternative #1 is to include ‘direct effect’ parameters in the model (Hagenaars, 1988) that account 

for the residual association between the observed variables that is responsible for the local 

dependence.  This approach is particularly useful when some external factor, unrelated to the 

latent variable, creates irrelevant association between two variables.  Examples of such external 

factors include similar question wording used in two survey items, as well as two raters using the 

same incorrect criterion in evaluating slides.  

 Alternative #2 also deals with the situation where 2 variables are responsible for some 

local dependency. In such cases, rather than add a direct effect between two variables, it may 

make more sense to eliminate the dependency by simply deleting one of the two items.  This 

variable reduction strategy is especially useful in situations where there are many redundant 

variables.     

 Alternative #3 is especially useful when a group of several variables account for a local 

dependency. Magidson and Vermunt (2001) show that by increasing the dimensionality through 

the addition of latent variables rather than latent classes, the resulting LC factor model often fits 

data substantially better than the traditional LC cluster models having the same number of 

parameters.  In addition, LC factor models are identified in some situations where the traditional 

LC model is not4. 

 In the next section, we introduce a diagnostic statistic called the bivariate residual (BVR) 

and illustrate its use to develop some nontraditional alternative models for our two data examples.  

The BVR helps pinpoint those bivariate relationships5 that fail to be adequately explained by the 

LC model and can help determine which of the 3 alternative strategies to employ. We will see that 

even in situations where the L2 statistic reports that the model provides an adequate overall fit, the 

fit in one or more 2-way tables may not be adequate and may indicate a flaw or weakness in the 

model. 

 

3.1 Bivariate Residuals and Direct Effects 

                                                           
4 For example, with 4 dichotomous variables, a LC 2-factor model (comprised of 4 latent classes) is identified 

whereas a traditional 3-class model is not (Goodman, 1974a).  
5 Traditional factor analysis, through the assumption of multivariate normality, limits its focus to bivariate 

relationships (i.e., the correlations), since higher-order relationships are assumed not to exist.  In contrast, LC models 

do not make strict distributional assumptions, and hence attempt to explain higher-order associations as well.  

Nevertheless, the 2-way (bivariate) associations are generally the most prominent, and the ability to pinpoint specific 

2-way tables where lack of fit may be concentrated can be useful in suggesting alternative models.  
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A formal measure of the extent to which the observed association between 2 variables is 

reproduced by a model is given by the BVR statistic (Vermunt and Magidson, 2001).  Each BVR 

corresponds to a Pearson X2 statistic (divided by the degrees of freedom) where the observed 

frequencies in a 2-way cross-tabulation of the variables are contrasted with those expected counts 

estimated under the corresponding LC model6. A BVR value substantially larger than 1 suggests 

that the model falls somewhat short of explaining the association in the corresponding 2-way 

table. 

 

[INSERT TABLE 5 ABOUT HERE] 

 

Example: survey respondent types (continued)  

Table 5 reports BVRs for each variable pair under each of several models estimated in our first 

example.  Since model H0 corresponds to the model of mutual independence, each BVR for this 

model provides a measure of the overall association in the corresponding observed 2-way table; 

that is, each BVR equals the usual Pearson X2 statistic used to test for independence in the 

corresponding 2-way table divided by the degrees of freedom.  The results show that except for 

the non-significant relationships in the {y1,y3} and {y2,y3} tables, all of the remaining BVRs are 

quite large, attesting to several significant associations (local dependencies) that exist among these 

variables.  The BVR is especially large for {y1,y3} and for {y3,y4}.  For example, in Table {y3,y4}, 

a Pearson chi-square test confirms that the observed relationship is highly significant (X2 = 86.8, 

df=2, p<.001; BVR = 86.8/2 = 43.4).  

 Under the 2-class model (H1), note that the BVRs are all near or less than 4 except for 

one very large value of 32.3 for {y3,y4}.  This suggests that the overall lack of fit for this model 

can be traced to this single large BVR. The traditional way to account for the lack of fit is by 

adding another latent class.  Table 5 shows that after the addition of a 3rd class, the BVR for 

{y3,y4} under the 3-class model H2C is at an acceptable level (BVR = 2.4).   

 Below, we consider the alternative approach of adding a ‘direct effect’ to the model to 

account for the residual correlation. In addition, we consider use of the 2-factor LC model and 

further explore the differences between the 3 and 4-class models. 

 

 [INSERT TABLE 6 ABOUT HERE] 

 

                                                           
6 These residuals are similar to Lagrange-multiplier or Score test statistics. A difference is that they are limited 

information fit measures: dependencies with parameters corresponding to other items are not taken into account. 
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Example: sparse multi-rater agreement data (continued) 

Turning now to our second example, Table 6 shows that all of the BVRs under the 1-class model 

of mutual independence (model H0) are very large7, indicating that the amount of agreement 

between each pair of raters is highly significant. Under the 2-class model many BVRs remain 

large.  While the 3-class model provides an acceptable overall fit to these data, again we see that 

there is a single BVR that remains somewhat large – BVR = 4.5 for raters 4 and 5, the 2 

pathologists who rated the fewest slides positive (recall Table 3). This larger BVR suggests that 

raters 4 and 5 may be using some rating criterion not shared by the other raters. 

 To account for this larger residual association, we will use nontraditional alternative #1 

and modify the 3-class model by adding the {y4,y5}direct effect parameter(s)
4 5

45

y y into the model 

(Hagenaars, 1988; for a slightly different formulation, see Uebersax, 1999).  Formally, this new 

model H2C+ is expressed as: 

 

1 7 1 2 3 4 5 6 7

1

( ,..., ) ( ) ( | ) ( | ) ( | ) ( , | ) ( | ) ( | )
C

c

P y y P X c P y X c P y X c P y X c P y y X c P y X c P y X c
=

= = = = = = = =

 

where the probabilities 4 5( , | )P y y X c= are constrained as follows: 
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By relaxing the local independence assumption between raters 4 and 5, model H2C+ is able to 

account for excessive association between 4 and 5 that is not explainable by the latent classes. The 

∆L2 test shows that inclusion of the direct effect parameter provides a significant improvement 

over the traditional model H2C (∆L2 = 17.7 – 11.3 = 6.4; p = .01). 

 From a practical perspective, models H2C and H2C+ do not differ much as both models 

assign the 126 slides to the same classes under the modal assignment rule. This occurs despite the 

fact that model H2C+ gives 4 and 5 less weight than model H2C during the computation of the 

posterior probabilities.  The primary benefit of model H2C+ is to suggest the possibility that raters 4 

and 5 share a bias when evaluating class 1 slides, those slides that 4 and 5 often rate negative but 

that the other pathologists almost always rate positive (recall Table 3). The implication of 

                                                           
7 The smallest BVR under model H0 is 20.8 which occurs in table {y5,y6}. 
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including the direct effect is that model H2C+ provides higher predictions of agreement between 4 

and 5 than model H2C on class 1 slides8.  

 Returning to the first data example for a moment, we might now expect to find similar 

insights by the inclusion of the direct effect parameters, 
3 4

34

y y , in the 2-class model.  Table 1 

shows that this model (H1C+) provides a good fit to the data.  However, under this model, the 

parameter measuring the contribution of y3 to the latent classes is no longer significant and 

therefore y3 can be deleted from the LC model completely.  As this amounts to deleting an 

association simply because it could not be explained by a model with 2 latent classes, alternative 

#1 does not provide a desirable solution here. 

 

3.2 LC Factor Models 

Next we consider alternative approach #3 where we utilize LC factor models to include more than 

one latent variable in the model. LC factor models were proposed as a general alternative to the 

traditional exploratory LC modeling by Magidson and Vermunt (2001).  For both examples, the 

results (given in Table 1 and Table 4) show that a 2-factor model is preferable to the other models. 

We shall see that the 2-factor model is actually a restricted 4-class model.  In both cases the fit is 

almost as good as the (unrestricted) 4-class solution, but is more parsimonious and parameterized 

in a manner that allows easier interpretation of the results. 

 LC factor models were initially proposed by Goodman (Goodman, 1974b) in the context 

of confirmatory latent class analysis. Certain traditional LC models containing 4 or more classes 

can be interpreted in terms of 2 or more component latent variables by treating those components 

as a joint variable (see e.g., McCutcheon 1987; Hagenaars 1990).  For example, a latent variable X 

consisting of C=4 classes can be re-expressed in terms of 2 dichotomous latent variables F1 = 

{1,2} and F2 = {1, 2} using the following correspondence:   

 

 F2=1 F2=2 

F1=1 X =1 X = 2 

F1=2 X =3 X = 4 

 

                                                           
8 Since model H2C assumes local independence, the expected probability of both raters agreeing that a given class 1 

slide is free from cancer can be computed by multiplying the corresponding conditional probabilities.  Using the 

estimates from Table 3, the probability of both agreeing that a class 1 slide is negative is .42 x .53 = .22, and similarly, 

the probability of both agreeing that it was positive is .59 x .47 = .28.  In contrast, model H2C+ predicts higher 

probabilities (.31 and .35 respectively) for rater 4 and 5 agreeing in both cases. Under the assumption that class 1 

slides are ‘true positive’, the results from model H2C+ mean that raters 4 and 5 both tend to share a bias towards 

committing a false negative error. 
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Thus, X=1 corresponds with F1=1 and F2=1, X=2 with F1=1 and F2=2, X=3 with F1=2 and F2=1, 

and F2=4 with F1=2 and F2=2.  

 Formally, for 4 nominal variables, the 4-class LC model can be re-parameterized as a LC 

factor model with two dichotomous latent variables as follows: 

 

   
1 2

42 2

1 2 3 4 1 1 2 2 1 1 2 2

1 1 1

( , , , ) ( , ) ( | , ).j

c c j

P y y y y P F c F c P y F c F c
= = =

= = = = =   

 

Magidson and Vermunt (2001) consider various restricted factor models.  They use the term basic 

LC factor models to refer to certain LC models that contain 2 or more dichotomous latent 

variables that are mutually independent of each other and that exclude higher-order interactions 

from the conditional response probabilities.  Such a model is analogous to the approach of 

traditional factor analysis where multiple latent variables are used to model multidimensional 

relationships among manifest variables.   

 It turns out that by formulating the model in terms of R mutually independent, 

dichotomous latent factors, the basic LC factor model has the same number of distinct parameters 

as a traditional LC model with R+1 classes.  That is, the LC factor parameterization allows 

specification of a 2R-class model with the same number of parameters as a traditional LC model 

with only R+1 classes!  This offers a great advantage in parsimony over the traditional T- class 

model as the number of parameters is greatly reduced by natural restrictions.  

 As mentioned previously, the basic 2-factor model provides an excellent fit to both of our 

example data sets.  For the first example, Table 1 shows that this model (model H2F) is preferred 

over any of the LC cluster models according to the BIC.  In addition, this model explains all 

bivariate relationships in the data (see Table 5).  We will interpret the results from this model in 

the next section in conjunction with a more extensive analysis including both the white and black 

sample. 

   

Example: sparse multi-rater agreement data (continued) 

Regarding our second example, Table 4 shows that the basic 2-factor model is preferred over all 

the other models according to the BIC criteria.  The right-most portion of Table 3 provides the 

parameter estimates9 that we used to name the factors.  These are joint latent class and conditional 

                                                           
9 The 2-factor model in Tables 3 was further restricted by setting the effect of indicator C on factor 2 to zero since this 

effect was not significant. 
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response probabilities for combinations of factor levels. We assigned the name ‘True -‘ and ‘True 

+’ to levels 1 and 2 of factor 1 respectively.  Each of these levels is split again into 2 levels by 

factor 2, which we named ‘tendency towards ratings bias’.  We named the 2 levels of factor 2 

‘tend to – bias’ and ‘tend to + bias’ respectively. 

 Comparing the four factor cells (right-most portion of Table 3) to the classes in the 3-

class model (middle portion of Table 3) we see the following similarities.  First, note that class 1 

of the 3-class solution (representing 44% of the slides mostly rated +) corresponds primarily to 

factor 1 level 2 slides (those named ‘True +’), which account for 46% of all slides.  These ‘True 

+’ slides are divided according to factor 2 into cell (2,1) accounting for 30% of all slides and cell 

(2,2) accounting for 16% of the slides.  Note that the former slides show a clear tendency towards 

a false negative error, especially among raters 4 and 5. 

 Next, notice the similarity between class 2 of the 3-class solution, representing 37% of 

the slides rated mostly negative, and factor cell (1,1) accounting for 36% of the slides rated mostly 

negative.  In addition, from Table 3 we can also see the strong similarity between class 3 of the 3-

class solution and factor cell (1,2), identified in the table as ‘True –‘ slides that are prone to ‘false 

+’ error, especially by raters 1, 2, 5 and 7. 

 In conclusion, we have shown that the 2-factor LC model fits better than the traditional 3-

class model and offers two substantive advantages. First, it provides a clear way to classify slides 

as ‘True +’ of ‘True –‘. Second, it provides a further grouping of slides that may be useful in 

pinpointing the reasons for rater disagreement.  Of course, whether factor 1 actually distinguishes 

between ‘True –‘ and ‘True +’ and whether the error characterization given by factor 2 is accurate 

are important questions that could be addressed in future research. 

 

3.3 Multi-group Models 

Multi-group LC models can be used to compare models across groups.  A completely unrestricted 

multi-group LC model, referred to by Clogg and Goodman (1984) as the model of complete 

heterogeneity, is equivalent to the estimation of a separate C-class LC model for each group. The fit 

of such a model can be obtained by simply summing the L2 values (and corresponding degrees of 

freedom) for the corresponding models in each group. 

 Let G denote a categorical variable representing membership in group g.  The model of 

complete heterogeneity is expressed as (model M2C):  
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Example: survey respondent types (continued) 

The second part of Table 1 provides the results of repeating our example 1 analyses for the sample 

of black respondents.  These results turn out to be very similar to those obtained for the white 

respondents (see first part Table 1). As in our analysis for the white sample we again reject the 1 

and 2-class models in favor of 3 classes in order to obtain a model that provides an overall fit to 

the data that is adequate.  The right-most portion of Table 2 presents the parameter estimates 

obtained from the 3-class model (model H’2C) as applied to the sample of blacks.  As in our earlier 

analysis the classes are ordered from largest to smallest.    

 In comparing results across these two groups, it is important to be able to interpret the 3 

classes obtained from the black respondents as representing the same latent constructs (‘ideal’, 

‘believers’ and ‘skeptics’) as in our analysis of the white respondents. Otherwise, any between-

group comparisons would be like comparing ‘apples’ with ‘oranges’.  While it is tempting to 

interpret class 1 for both samples as representing the ‘ideal’ respondents, this is not appropriate 

without first restricting the measurement portion of the models (the conditional probabilities) to be 

equal.  These restrictions are accomplished using the model of partial homogeneity (model M2CR):  

 

   

4

1 2 3 4

1 1

( , , , | ) ( | ) ( | )
C

j

c j

P y y y y G g P X x G g P y X t
= =
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[INSERT TABLE 7 ABOUT HERE] 

 

Estimates from this model are given in the left-most portion of Table 7.  The third part of Table 1 

compares the fit of the unrestricted model M2C and restricted model M2CR.  The ∆L2 statistic can be 

used to test the restrictions made under model M2CR.  Since ∆L2 = 9.0 with df=18 is not 

significant, we are free to use this restricted model for our group comparisons.   

 The model of complete homogeneity (model M2CRR) imposes the further restriction that 

the latent class probabilities across the groups are identical: ( | 1) ( | 2)P X c G P X c G= = = = = , 

for c = 1,2,3. Since these restrictions yield a significant increase in L2, we reject the model of 

complete homogeneity in favor of the model of partial homogeneity and conclude that there are 

significant differences in latent class membership between the white and black samples. 

 Table 1 also includes results obtained from the LC factor model counterparts to the 

models of complete heterogeneity and partial heterogeneity.  Since these models contain 2 
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dichotomous and independent factors, they contain exactly the same number of parameters as the 

3-class models M2C and M2CR.  The lower-part of Table 1 shows that these models fit better than 

the corresponding LC cluster models according to the BIC criteria.  Also the smaller BVRs than 

the LC cluster counterpart confirm that the LC factor model fits the data better.  

 The parameter estimates from the 2-factor model M2FR are presented in the right-most 

portion of Table 7. These are marginal latent class and conditional response probabilities for 

factors F1 and F2, which are obtained by summing over the other factor. Note that variable y4 is 

strongly related to both factors F1 and F2.  That is, respondents at level 1 of each factor have a 

higher probability (.90 or .91) of being ‘interested’ than those at level 2.  Variables y1 and y2 relate 

only to factor F1 and variable y3 relates only to factor F2.  That is, for factor F1, those at level 1 are 

substantially more likely to agree that surveys serve a good purpose and are accurate than those at 

level 2, but the 2 levels are about equal in showing a good understanding of the questions.  For 

factor F2, level 1 shows good understanding while level 2 does not. 

 Moreover, Table 7 shows that group differences exist primarily with respect to factor 2 

(observed group differences on factor F1 are not significant).  Black respondents are twice as 

likely as whites to be at level 2 of factor 2 (30% vs. 15%). These results allow us to formulate a 

more rigorous test of our earlier hypothesis that cooperation may be due to two separate factors – 

one associated with the belief that surveys serve a good purpose and are accurate (as assessed by 

LC factor 1), the second related to understanding the questions (as assessed by LC factor 2). 

 Before concluding this section, we note that thus far we have treated the trichotomous 

variables COOPERATE (y1) and PURPOSE (y3) as nominal.  Alternatively, they can be treated as 

ordinal, which serves to simplify the model by reducing the number of parameters.  The most 

straightforward approach is to restrict the logit parameters by using uniform scores for the 

categories of y1 and y3, implying the following constraints: 
1 1 1

11 11

1y c c y =  and 
1 2 2

12 12

1y c c y =  (see, e.g., 

Formann, 1992; or Heinen, 1996). 

 The use of these restrictions in our example increased the L2 by very little, indicating that 

variables y1 and y3 may in fact be treated as ordinal.  In the next section, we present the results of a 

modified 2-factor model where variables y1 and y3 are treated as ordinal. 

 

3.4 Covariates 

The parameters in the traditional LC model consist of unconditional and conditional probabilities.  

The conditional probabilities comprise the measurement portion of the model.  They characterize 

the distribution among the observed variables (indicators) conditional on the latent classes.  The 



 23 

unconditional probabilities describe the distribution of the latent variable(s). In order to obtain 

improved description/ prediction of the latent variable(s), a multinomial logit model is used to 

express these probabilities as a function of one or more exogenous variables Z called covariates 

(Dayton and McReady, 1988).  

 The multi-group model described in the previous section is an example of the use of a 

single nominal covariate (Z = G). For example, the term ( | )P X c G g= = appearing Equation (3) 

can be expressed as: 
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While the latent variable(s) explain all of the associations among the indicators, associations 

between the covariates are not explained by the latent variables.  This is what distinguishes the 

indicators from the covariates. 

 

Example: survey respondent types (continued) 

Regarding the interpretation of the 3-class solution, McCutcheon questioned whether some of the 

difference in latent class membership between black and white respondents might be explained by 

education, a question that falls outside the scope of traditional LC modeling. We address this 

question below by including E:EDUCATION as a second covariate in the 2-factor model -- Z = 

(G,E).   

 

[INSERT TABLE 8 ABOUT HERE] 

 

The model provides a good fit to the data.  The results indicate that the effect of education does 

explain most, but not all, of the group (race) effect on factor F2.  The logit parameter estimates are 

given in Table 8, where nonsignificant estimates were set to zero.  The multinomial model used 

for the covariate effects on F2 was: 
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The gamma parameters in Table 8 indicate that the higher the educational level the lower the score 

on factor F2. The race effect is very weak: blacks have a slightly higher score on factor F2 than 

whites. 

 

[INSERT FIGURE 2 ABOUT HERE] 

 

 The results for this 2-factor restricted multi-group model are also displayed in the bi-plot 

display (Magidson and Vermunt, 2001) given in Figure 2.  Like the barycentric coordinate display 

in Figure 1 we see that the horizontal axis, corresponding to factor F2, is associated with 

UNDERSTANDING. Overall, respondents having a good understanding are highly likely to be at 

level 1 of factor F2 while those with a Fair/Poor understanding are highly likely to be in level 2.  

The figure makes it clear that education is much more related to this factor than race.  The vertical 

dimension is highly related to PURPOSE.  Figure 2 shows more clearly than Figure 1 that 

COOPERATION is related to both factors.  In particular, those rated as ‘Impatient/hostile’ tend to 

include 2 different types of respondents – those whose understanding is fair/poor as well as those 

who view the purpose of surveys as a ‘waste of time and $’.   

 

3.5 Three-step LC Analysis 

Rather than including covariates directly within the estimated LC model, one may also use the 

following type of three-step approach: 

1. Perform model selection and estimation in the usual way, thus without the inclusion of 

covariates; 

2. Obtain class assignments W using the selected model from step 1, as explained in section 

2.3; 

3. Perform subsequent analyses with covariates or other types of external variables using 

the class assignments W of step 2. 

Although this stepwise approach separating the LC analysis from the analyses one would like to 

do after the latent classes are constructed is very practical and intuitive, it is also problematic. 

More specifically, as a result of the classification errors introduced in step 2, it yields 

underestimated associations between external variables and latent classes. The larger the 

classification errors, the larger the bias in the estimates of these associations. 

 However, building upon the work by Bolck, Croon, and Hagenaars (2004), Vermunt 

(2010) proposed a solution to this problem. He showed how to perform a valid step-3 analysis by 

adjusting for the classification errors introduced in step 2. Basically, what happens is that a new 
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LC model is estimated in which the class assignments W are use as the single indicator with 

known conditional response probabilities ( | )P W d X c= = . This adjusted step-3 analysis cannot 

only be used with covariates predicting class membership (via a logistic model), but also for 

investigating how classes differ with respect to a distal outcome variable (Bakk, Tekle, and 

Vermunt, 2013). Bakk and Vermunt (2016) recommended using the more robust BCH adjustment 

method for continuous distal outcomes (dependent variables), while for covariates and categorical 

distal outcomes the ML approach is preferred. 

 

4.  OTHER TYPES OF LATENT CLASS MODELS 

 

Thus far, we have focused on the traditional LC modeling approach, including some important 

extensions such as covariates, several latent variables, and local dependencies. Some common 

characteristics of these models are that they serve as scaling methods or tools for dealing with 

measurement error, that indicators are nominal or ordinal, and that local independence between 

indicators is the primary model assumption. In this section, we discuss other types of LC models.  

They are not used as scaling tools, but as clustering methods, tools for dealing with unobserved 

heterogeneity, density estimation methods, or random-coefficients models (McLachlan and Peel, 

2000). Moreover, indicators or dependent variables can be of scale types other than nominal or 

ordinal and local independence is no longer the basic model assumption. As we will see, in some 

cases there is only one indicator or dependent variable. 

 The next section presents simple mixture models for univariate distributions, with 

examples of mixtures of normals and mixtures of Poisson distributions. Then, we extend this basic 

model by including predictors, yielding what is called mixture regression or LC regression 

models. We present an example of a mixed linear regression model, and show how the method 

can deal with various types of repeated measurements. Special attention is given to the 

relationship with hierarchical or multilevel models. Then, we present another extension of the 

simple mixture model; that is, a mixture model for multivariate distributions. As will be shown, 

the resulting LC model can be seen as a model-based alternative to standard hierarchical 

clustering methods like K-means. We end with a short overview of LC methods that were not 

discussed in detail. 

 

4.1 Simple Mixture Models 

 

[INSERT FIGURE 3 ABOUT HERE] 
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Consider the histogram depicted in Figure 3. This generated data set of 1,000 cases is obtained 

from a population consisting of a mixture of two normal distributions. For 60 percent of the 

population, the variable of interest follows a normal distribution with a mean of 0 and a variance 

of 1, N(0,1); for the other 40 percent, the mean equals 3 and the variance 4, N(3,4). The normal 

curve that is drawn through the histogram shows that the resulting mixture is clearly not normally 

distributed. 

 A model that can be used to describe such a phenomenon is a finite mixture model 

(Everitt and Hand, 1981; McLachlan and Peel, 2000), which is a particular kind of LC model.  

The basic formula for a mixture of univariate distributions is  

 

   
1
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C

c

c
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= =  .      (4)   

 

The left-hand side of Equation (4) indicates that we are interested in describing the distribution of 

a random variable y, which depends on a set of unknown parameters  . The right-hand side 

contains two terms: ( )P X c=  is the probability of belonging to latent class or mixture component 

c and ( | )cf y   is the distribution of y within latent class c given some unknown parameters c . 

The class-specific distribution of y is assumed to belong to a particular parametric family. 

Depending on the scale-type of y, this can, for instance, be a normal, Poisson, binomial, 

exponential, or gamma distribution. The summation on the right-hand side indicates that the 

distribution of y is a weighted mean of the class-specific distributions, where the latent class 

proportions serve as weights. 

 Mixture models like these have two important types of applications. The first is density 

estimation: complicated distributions can be approximated by a mixture of simple parametric 

distributions. Another important application type is clustering, in which case the class-specific 

parameters are used to define the clusters and the posterior membership probabilities are used to 

classify cases into the most appropriate cluster.  

 

[INSERT TABLE 9 ABOUT HERE] 

 

Table 9 presents test results for various models fitted to the data depicted in Figure 3. We 

estimated 1- to 4-class mixtures of normal distributions with equal and unequal within cluster-
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variances. As can be seen, the BIC measure identifies the correct model, the two-cluster model 

with unequal within-cluster variances, as best. The three-class model with equal within-cluster 

variances fits almost as well as, showing that a simpler parametric form can sometimes be 

compensated by a larger number of mixture components.  

 In the two-class model with unequal variances, the estimated probability of belonging to 

class one is .64. This class has an estimated mean of -0.03 and a variance of 1.01. The mean and 

variance of the other class equals 3.24 and 3.95. Note that these estimates are close to the 

population values we used to generate this data set. 

 

[INSERT TABLE 10 ABOUT HERE] 

 

Table 10 provides a data set taken from Dillon and Kumar (1994) that we will use as a second 

example. It gives the observed frequency distribution of the number of packs of hard-candy 

consumed by 456 respondents during the 7 days prior to the survey. Because the outcome variable 

is a count without a fixed maximum, it is most natural to assume that it follows a Poisson 

distribution. The table also reports the estimated frequency distribution obtained with a standard, 

or 1-class, Poisson model, as well as with a 3-class mixture Poisson model. As can be seen, the 

standard Poisson model does not fit the empirical distribution at all, while the 3-class Poisson 

describes the data almost perfectly. This shows that a mixture of simple parametric distributions 

can be used to describe a quite complicated empirical distribution.  

 Test results obtained when applying mixture Poisson models to the hard-candy data set 

show that models with 2 and 3 mixture components perform much better than the standard 

Poisson model. As is typical, there is a saturation point at which increasing the number of classes 

no longer increases the log-likelihood function: in this case, it occurs at 4 classes. The 3-cluster 

solution is the one that is preferred according to the BIC criterion. 

 The estimated latent class proportions in the 3-class model are 0.54, 0.28, and 0.18, and 

the Poisson rates are 3.48, 0.29, and 11.21.  This means that we identified a small cluster of heavy 

users (more than 11 packs in 7 days), a cluster containing slightly more than a quarter of the 

respondents with almost no usage, and a large group of moderate users. 

 

4.2 LC Regression Models 

In the simple mixture models discussed above, it was assumed that the mean of the chosen 

parametric distribution differs across latent classes. This can also be expressed by specifying a 
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linear regression model for the mean of the distribution of interest, c , after applying some 

transformation or link function g(..) that depends on the scale type of the y variable. For the mean 

of a binomial or multinomial distribution, we use a logit transformation; for a Poisson mean, a log 

transformation; and for a normal mean, no transformation or an identity link. The regression 

model has the form 

 

   0( )c cg  = . 

 

As can be seen, this regression model contains only an intercept and this intercept is class-specific. 

 Let w denote a set of predictors or explanatory variables. Suppose we are no longer 

interested is the unconditional distribution of y, but in the conditional distribution of y given w, 

( | ,  )cf y w  . A natural way to express the dependency of y on w is by the inclusion of the set of 

predictors w in the right-hand side of the regression equation. In the case of a single predictor w, 

the resulting LC regression model (Wedel and DeSarbo, 1994) has the form 

 

   ( )c c cg w  = + , 

 

where c  and c  are the class-specific regression coefficients (intercept and slope). 

 

[INSERT FIGURE 4 ABOUT HERE] 

 

Figure 4 depicts a data set generated from a population consisting of two latent classes, with class-

specific regression models equal to w311 +=  and w102 += . It also compares the estimated y 

values for the two-class model (YLC2), with the standard, 1-class, regression model (YLC1). As 

can be seen, the description given by the standard regression model is very poor compared to the 

2-class model. The LC regression modeling procedure has no problem identifying the two 

regression lines without pre-knowledge of class membership. 

 In a LC regression model, the latent variable is a predictor that interacts with the 

observed predictors, which means that it serves as a moderator variable. Compared to a standard 

regression model where all predictors are observed this basic LC regression model provides 

several useful functions. First, it can be used to weaken standard regression assumptions about the 

nature of the effects (linear, no interactions) and the error term (independent of predictors, 

particular distribution, homoskedastic). Second, it makes it possible to identify and correct for 
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sources of unobserved heterogeneity. As explained below, this is especially useful in situations 

where there are repeated measurements or other types of dependent observations. Longitudinal 

data applications are sometimes referred to as LC or mixture growth models (each latent class has 

its own growth curve). Third, it can be used to detect outliers since these are cases for which the 

primary regression model does not hold.  

 An important application area for LC regression modeling is clustering or segmentation 

(Wedel and Kamakura, 1998). In particular, ratings- and choice-based conjoint studies are 

designed to identify subgroups (segments) that react differently to product characteristics, which is 

the same as saying that these groups have different regression coefficients. This type of 

application is illustrated in more detail below with an empirical example. 

 

Example: repeated measurements or clustered observations 

As explained below, the LC regression model can be viewed as a random-coefficients model that, 

similar to multilevel or hierarchical models, can take dependencies between observations into 

account. This extends the application of LC regression models to situations with repeated 

measurements or other types of dependent observations. 

 We will illustrate LC regression with repeated measurements using an application to 

longitudinal survey data. This is, therefore, an example of a LC growth model. The data set 

consist of 264 participants in the 1983 to 1986 yearly waves of the British Social Attitudes Survey 

(McGrath and Waterton, 1986). The dependent variable is the number of yes responses on seven 

yes/no questions as to whether it is woman's right to have an abortion under specific 

circumstances. Because this is a count variable with a fixed total, it is most natural to work with a 

logit link and binomial error function. The predictors that we used are the year of measurement 

(1=1983; 2=1984; 3=1985; 4=1986) and religion (1=Roman Catholic, 2=Protestant; 3=Other; 

4=No religion). The effect of year of measurement is assumed to be class-dependent and the effect 

of religion is assumed to be the same for all classes.  

 We estimated models with 1 to 5 classes, and the 4-class model turned out to performs 

best in terms of the BIC criterion. We also estimated more restricted models in which the time 

effect is assumed to be linear and/or the time effect is assumed to be class independent. These 

models did not describe the data as well as our four-class model, which indicates that the time 

trend is non linear and heterogeneous.  

 

[INSERT TABLE 11 ABOUT HERE] 
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The parameters obtained with the 4-class model appear in Table 11. The parameter means across 

classes indicate that the attitudes are most positive at the last time point and most negative at the 

second time point. Furthermore, the effects of religion show that people without religion are most 

in favor and Roman Catholics and Others are most against abortion. Protestants have a position 

that is close to the no-religion group.  

 The class-specific parameters indicate that the 4 latent classes have very different 

intercepts and time patterns. The largest class 1 is most against abortion and class 3 is most in 

favor of abortion. Both latent classes are very stable over time. The overall level of latent class 2 

is somewhat higher than of class 1, and it shows somewhat more change of the attitude over time. 

People belonging to latent class 4 are very instable: at the first two time points they are similar to 

class 2, at the third time point to class 4, and at the last time point again to class 2 (this can be seen 

by combining the intercepts with the time effects). Class 4 could therefore be labeled as random 

responders. It is interesting to note that in a three-class solution the random-responder class and 

class two are combined. Thus, by going from a three- to a four-class solution one identifies the 

interesting group with less stable attitudes. 

 Vermunt and Van Dijk (2001) used the same empirical example to illustrate the similarity 

between LC regression models and random-coefficients, multilevel, or hierarchical models. Using 

terminology from multilevel modeling, the time variable is a level-1 predictor and religion a level-

2 predictor. The effect of the level-1 predictor time is allowed to vary across level 2 units, in this 

case individuals. The LC regression output can be transformed into the usual output produced by a 

standard multilevel or hierarchical model -- means, variances, covariances of the intercept and the 

three time effects -- by elementary statistical operations. The most important part of this multilevel 

output is what appears in the last two columns of Table 11.  

 A difference between LC regression analysis and standard hierarchical models is that the 

former does not make strong assumptions about the distribution of the random coefficients. LC 

regression models can, therefore, be seen as non-parametric hierarchical models in which the 

distribution of the random coefficients is approximated by a limited number of mass points (= 

latent classes). As shown by Vermunt and Van Dijk (2001), the LC approach has the practical 

advantage of being much less computationally intensive than parametric models, and 

substantively, easier-to-interpret results are often obtained. 

 

Example: application to choice-based conjoint studies 

The LC regression model is a popular tool for the analysis of data from conjoint experiments in 

which individuals rate or choose between sets of products having different attributes (Wedel and 
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Kamakura, 1998). The objective is to determine the effect of product characteristics on the rating 

or the choice probabilities. LC analysis is used to identify subgroups, or market segments, for 

which these effects differ.  

 For illustration of LC analysis of data obtained from choice-based conjoint experiments, 

we use a generated data set. The products are 10 pairs of shoes that differ on 3 attributes: Fashion 

(0=traditional, 1= modern), Quality (0=low, 1=high), and Price (ranging from 1 to 5). Eight choice 

sets offer 3 of the 10 possible alternative products to 400 individuals. Each choice task consists of 

indicating which of the three alternatives they would purchase, with the response “none of the 

above” allowed as a fourth choice option. 

 The model that is used is a multinomial logit model with choice-specific predictors, also 

referred to as the conditional logit model. Let J be the number of choice sets, M the number of 

choices per set, and Q the number of predictors. A particular set, choice, and predictor is denoted 

by j, m, and q, respectively. The regression model of interest is  
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Here, ( | )jP y m X c= =  denotes the probability that someone belonging to class c selects choice-

alternative m in choice set j. The predictors we use are the three product attributes (fashion, 

quality, and price), as well as a dummy variable for the “none” category.  

   

[INSERT TABLE 12 ABOUT HERE] 

 

The BIC values indicated that the three-class model is the model that should be preferred. The 

parameter estimates obtained with the 3-class model are reported in Table 12. As can be seen, 

FASHION has a major influence on choice for class 1, QUALITY for class 2, and both FASHION 

and QUALITY affect the choice for class 3. The price effect is similar for all three classes. The 

Wald test for the equality of effects between classes indicates that the difference in price effects 

across classes is not significant. The price effects could, therefore, be assumed to be class 

independent. 
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[INSERT TABLE 13 ABOUT HERE] 

 

In addition to the conditional logit model, which shows how the predictors affect the likelihood of 

choosing one alternative over another, differentially for each class, we specified a second logit 

model to describe the latent class variable as a function of the covariates sex and age. Table 13 

shows that females turn out to belong more often to class 1 and males to class 3. Younger persons 

have a higher probability of belonging to class 1 (emphasize Fashion in choices) and older persons 

are most likely to belong to class 2 (emphasize Quality in choices). 

 In conclusion, the LC regression model offers computational and interpretive advantages 

over the more traditional hierarchical modeling approach that tends to overfit data (Andrews, 

Ansari, and Currim, 2002).  In our example, we used the BIC criteria to select a parsimonious 

number of classes.  However, researchers who prefer the results to show higher levels of 

individual variation in regression coefficients can obtain such with LC regression models by 

simply increasing the number of latent classes to produce the desired amount of variation. 

 

4.3 LC Analysis as an Alternative to K-means Clustering 

An important application of LC analysis is clustering (Banfield and Raftery, 1993; McLachlan and 

Peel, 2000; Vermunt and Magidson, 2002). Actually, we already saw several cluster-like 

applications. The traditional LC model was used to construct a typology of survey respondents 

using a set of categorical indicators. We also showed that simple mixture models like mixtures of 

normals or mixtures of Poisson distributions can be used for clustering purposes.  

 In this section, we will concentrate on LC analysis as a tool for cluster analysis with 

continuous indicators. These LC models can be seen as multivariate extensions of the mixtures of 

univariate normals discussed above. Instead of assuming a univariate normal distribution, we 

assume multivariate normal distributions within latent classes. The most general form of the 

mixture model concerned assumes that each latent class has its own set of means, variances, and 

covariances. More formally,  
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Here, c  denotes the vector with class-specific means and c  the class-specific variance-

covariance matrix. Note that, contrary to traditional LC modeling, it is not necessary to assume 

local independence between the indicators. 
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 The above LC cluster model is similar to the model used in discriminant analysis. An 

important difference is, of course, that in cluster analysis group membership is unobserved or 

latent, which is reason that LC cluster analysis is sometimes referred to as latent discriminant 

analysis.  

 

[INSERT FIGURE 5 ABOUT HERE] 

 

The first part of Figure 5 depicts a data set that we will use to illustrate the LC cluster model for 

continuous variables. Three measures are available to diagnose diabetes: Glucose, Insulin, and 

SSPG (steady-state plasma glucose) (see Fraley and Raftery, 1998). In addition to these measures, 

we have information on the clinical diagnosis consisting of the three categories "normal", 

"chemical diabetes", and "overt diabetes".  However, in practice, a gold standard is not available 

in cluster applications. Our objective here is to construct a mixture model that yields a 

classification that is close to the clinical diagnosis, without use of the information on the clinical 

diagnosis. We use this data set to demonstrate the flexibility of LC clustering compared to other 

clustering methods. The gold standard makes it possible to judge whether the methods do what we 

want them to do. 

 LC cluster analysis is a model-based clustering procedure. As such it is a probabilistic 

and more flexible alternative to K-means clustering. K-means clustering performs well under very 

strict conditions; that is, if indicators are locally independent and if error variances are cluster 

invariant and equal across indicators ( 2

c = I ). These implicit assumptions of K-means imply 

that in a 3-dimensional scatter plot each cluster has the form of a sphere with the same radius and 

in each 2-dimensional plot, each cluster will have the form of a sphere with the same radius. The 

assumption of equal error variances across indicators is the reason that in K-means clustering it is 

advised to standardize the variables prior the analysis. While standardization often improves the 

situation, it does not solve the problem because equating the variance in the total sample is not the 

same as equating the within-group variances (Magidson and Vermunt, 2002). 

 Having a closer look at Figure 5, it can easily be seen that it is impossible to describe the 

shape of the three diabetes clusters by a K-means model; that is, by 3 spheres with the same 

radius. The within-cluster variances are very different across clusters and across indicators. 

Moreover, the glucose and insulin indicators are strongly correlated within the group with overt 

diabetes. Nevertheless, since the clusters are well separated, a reliable cluster method should be 

able to yield a three-cluster solution that is similar to the clinical classification.  



 34 

 

[INSERT TABLE 14 ABOUT HERE] 

 

The problems associated with K-means are confirmed by the test results reported in Table 14. We 

estimated 1- to 5-cluster models, each with four different specifications of the variance-covariance 

matrix: diagonal (=local independence) and equal across classes, diagonal and unequal, glucose-

insulin covariance and unequal, and all covariances and unequal. It can be seen that when the 

specifications are too restrictive, one needs 5 and 4 clusters, respectively. Actually, with the first 

K-means-like specification, even more than 5 clusters are needed.  

 Although the BIC values indicate that the two additional local dependencies (y1-y3 and y2-

y3) in the full model are not needed (compare the three-cluster solutions for the last two 

specifications), the fit measures also show that both the model with the fully unrestricted 

covariance matrix and the model with only the glucose-insulin covariance detect the correct three-

cluster solution. This means that working with a model with insufficient restrictions does not harm 

in this example, but this is not always the case. 

 The middle part of Figure 5 shows the five nearly spherical clusters identified with the 

most restricted specification we used. Similar results would have been obtained with K-means. 

The lower part of Figure 5 depicts the 3-cluster solution that turned out to be the best according to 

the BIC criterion. It can be seen, that the 3 clusters identified by this model are very similar to the 

clinical classification. Our 3-cluster solution is smoother in the sense that some of the overlap 

between the clinical classes disappears, which is, of course, what can be expected from a 

statistical model. The correspondence between the 3-cluster and the clinical classification is 87%, 

which is only slightly lower than the 93% correct classifications of a quadratic discriminant 

analysis (in which cluster membership is treated as known).  

 The LC cluster model cannot only be applied with continuous indicators, but also with 

indicators of other scale types and different combinations of scale types. Depending on the scale 

type, one will specify the most appropriate within-cluster distribution for the indicator concerned. 

This yields a general cluster model for mixed-mode data (Hunt and Jorgensen, 1999; Vermunt and 

Magidson, 2002). Note that the traditional LC model is the special case in which all indicators are 

categorical variables. 

 

4.4 Other Developments in LC Modeling 

In this chapter, we presented what we believe to be the most important types of LC models. We 

did not discuss LC models for specific types of data, such as longitudinal, event history, or 
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multilevel data. Some of these models are mixture regression models and can, therefore, be 

handled within the LC regression framework (Vermunt, 1997, 2007). Another important class of 

models for longitudinal data are latent or hidden Markov models which can be used to study how 

individuals move across latent classes over time (see, e.g., Collins and Lanza, 2010; Langeheine 

and Van de Pol, 1994; Vermunt, Tran, and Magidson, 2008). Moreover, for data with a multilevel 

structure, Vermunt (2003) proposed a variant of the LC cluster model yielding a clustering of both 

higher- and lower-level units. 

 We presented LC models that can be used for scaling. There also exist more sophisticated 

LC scaling models, which can be obtained by imposing certain constraints on the parameters of 

the traditional LC model. Examples are LC models for probabilistic Guttman scaling, LC models 

with order constraints, LC Rasch models, LC models for preference data, and LC models for 

distance data (see, Heinen, 1996; Dayton 1998; Böckenholt, 2002; Croon, 2002).  

 Another more advanced type of LC model we would like to mention is the Lisrel-type 

framework for categorical variables developed by Hagenaars (1990) and extended by Vermunt 

(1997). Any type of LC models with categorical indicators, including LC models for transition 

data and sophisticated LC scaling models, are special cases of this general model. A limitation if 

this approach is that it is restricted to categorical indicators.  

 A final class of models we would like to mention are more sophisticated restricted 

mixtures of multivariate normals than those discussed above. LC models have been proposed in 

which the class-specific covariance matrices are constrained by means of principal component 

(Fraley and Raftery, 1998) or factor-analytic (Yung, 1997) structures, or by structural equation 

models (Jedidi, Jagpal, and DeSarbo, 1997). 
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Table 1: Results from Various LC Models Fit to the GSS’82 Data 

 

 

Model 

 

 

 

BICLL 

 

L² 

 

df 

 

p value 

% Reduction  

in L²( H0) 

Sample of white respondents      

 Traditional      

   H0 1-class 5787.0 257.3    29  2.0x10-38         0.0% 

   H1C 2-class 5658.9   79.5    22     2.0x10-8 69.1% 

   H2C 3-class 5651.1   22.1 15     0.11 91.4% 

   H3C 4-class 5685.3 6.6 8 0.58 97.4% 

 Nontraditional      

   H1C+ 2-class + {y3-y4} direct effect 5606.1 12.6 20 0.89 95.1% 

   H2F Basic 2-factor 5640.1   11.1 15     0.75 95.7% 

       

Sample of black respondents      

 Traditional      

   H’0  1-class 2402.1 112.1 29 1.0x10-11 0.0% 

   H’1 2-class 2389.6 56.9 22 .00006 49.2% 

   H’2C 3-class  2393.8 18.3 15 .25 83.7% 

   H’3C 4-class 2427.6 9.4 8 .31 91.6% 

 Nontraditional      

   H’1C+ 2-class + { y3-y4} direct effect 2360.2 15.2 20 .77 86.4% 

   H’2F Basic 2-factor 2387.0 11.5 15 .72 89.7% 

       

Full sample (multiple-group analysis)      

 Traditional      

   M0 1-class 8185.1 400.0 64 4.3x10-50 0% 

   M1 2-class 8013.8 169.5 56 2.4x10-13 57.6% 

   M2C 3-class unrestricted (comp. heterogeneity) 8077.4 40.4 30 .10 89.9% 

   M2CR 3-class restricted (partial homogeneity) 7953.0 49.4 48 .42 87.7% 

   M2CRR 3-class restricted (comp. homogeneity) 7962.1 73.3 50 .02 81.7% 

   M3CR 4-class restricted (partial homogeneity) 7989.8 27.0 40 .94 93.3% 

 Nontraditional      

   M2F basic 2-factor unrestricted 8059.6 22.6 30 .83 94.4% 

   M2FR basic 2-factor restricted 7934.9 31.3 48 .97 92.2% 
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Table 2: Parameter Estimates for the 3-Class LC Model by Sample 
 

 

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

Ideal Believers Skeptics Ideal Believers Skeptics

LC Probabilities 0.62 0.2 0.18 0.49 0.33 0.18

Conditional Probabilities

(A) PURPOSE

Good 0.89 0.92 0.16 0.87 0.91 0.19

Depends 0.05 0.07 0.22 0.08 0.04 0.17

Waste 0.06 0.01 0.62 0.05 0.05 0.65

(B) ACCURACY

Mostly True 0.61 0.65 0.04 0.54 0.65 0.01

Not True 0.39 0.35 0.96 0.46 0.35 0.99

(C) UNDERSTANDING

Good 1 0.32 0.75 0.95 0.37 0.68

Fair, poor 0 0.68 0.25 0.05 0.63 0.32

(D) COOPERATION

Interested 0.95 0.69 0.64 0.98 0.56 0.64

Cooperative 0.05 0.26 0.26 0.01 0.37 0.25

Impatient/ Hostile 0 0.05 0.1 0 0.07 0.11

White Sample Black Sample
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Table 3: Descriptive Information and Parameter Estimates from 3-Class and 2-Factor LC Models 

Obtained with the Landis and Koch Data 
 

 Descriptive Information  

 

3 Classes 

2 Factors (joint probabilities) 

 % of 

slides 

rated 

positive 

% of ratings 

that agree with 

Factor1=1  

(true -) 

Factor1=2 

(true +) 

 5+ 

raters 

6+ 

raters 

 

Class 1 

 

Class 2 

 

Class 3 

Factor2=1  

(– bias) 

Factor2=

2 (+ bias) 

Factor2=

1 (– bias) 

Factor2=

1 (+ bias) 

Class size    0.44 0.37 0.18 0.36 0.19 0.30 0.16 

Rater 6 21% 64% 58% 0.47 0.00 0.00 0.00 0.01 0.23 0.86 

Rater 4 27% 70% 62% 0.59 0.00 0.06 0.00 0.05 0.37 0.92 

Rater 3 38% 80% 64% 0.85 0.00 0.01 0.00 0.00 0.83 0.83 

Rater 1 56% 82% 64% 1.00 0.06 0.51 0.06 0.47 0.99 1.00 

Rater 7 56% 85% 66% 1.00 0.00 0.63 0.01 0.58 0.99 1.00 

Rater 5 60% 80% 64% 1.00 0.06 0.76 0.06 0.72 0.99 1.00 

Rater 2 67% 75% 61% 0.98 0.15 0.99 0.13 0.99 0.97 1.00 
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Table 4: Results from Various LC Models Fit to Landis and Koch Data 

 

 

Model 

 

 

 

BICLL 

 

L² 

Bootstrap 

p value 

% Reduction  

in L²( H0) 

Traditional     

  H0 1-class 1082.3 476.8 .00 0.0% 

  H1 2-class 707.9 64.2 .00 86.5% 

  H2C 3-class 699.6 17.7 .49 96.3% 

  H3C 4-class 729.4 9.3 .79 98.0% 

Nontraditional     

   H2C+ 3-class + {y4y5} direct effect 698.0 11.3 .83 97.6% 

   H2FR Restricted7 basic 2-factor  688.4 11.3 .90 97.6% 
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Table 5: Values for Bivariate Residuals obtained Under Various Models for the Sample of White 

Respondents 

 

2-way 

table 

Model 

H0 H1 H2C H3C H2C+ H2F 

{y1y2} 61.6 0.1 0.1 0.0 0.0 0.0 

{y1y3} 0.5 0.7 0.1 0.0 0.2 0.0 

{y1y4} 10.6 0.0 0.1 0.0 0.2 0.1 

{y2y3} 0.3 1.1 0.0 0.0 0.0 0.0 

{y2y4} 8.6 0.4 0.3 0.2 0.2 0.4 

{y3y4} 43.4 32.3 2.4 0.0 0.0 0.2 
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Table 6: Bivariate Residuals Obtained Under Various Models for Landis and Koch data 

 

 

2-way 

table* 

Model 

Traditional Non-traditional 

H0 H1 H2C H2C+ H2FR H2FRC 

{y2y5} 66.4 8.4 0.0 0.0 0.0 0.1 

{y4y6} 38.0 7.2 4.5 0.0 0.0 0.0 

{y2y7} 66.7 5.2 0.0 0.0 0.1 0.1 

{y5y7} 77.2 3.3 0.1 0.1 0.2 0.2 

{y1y2} 54.5 1.7 0.1 0.0 0.1 0.1 

{y3y6} 28.0 1.3 0.0 0.0 0.0 0.0 

{y3y5} 47.7 1.1 0.1 0.1 0.2 0.1 

{y4y5} 24.5 0.0 0.7 0.6 0.6 1.2 

* These are the 2-way tables for which the bivariate residuals were larger than 1 under any of the 

reported models (other than H0) 
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Table 7: Parameter Estimates for the 3-Class LC model of Partial Homogeneity (Model M2CR) and 

the Corresponding LC 2-Factor Model M2FR 

 

 3 Classes 2 Factors (marginal probabilities)  

 Class 1 Class 2 Class 3 Factor 1 Factor 1 

 Ideal Believers Skeptics Level 1  Level 2  Level 1  Level 2  

LC Probabilities 

   Whites 0.68 0.15 0.17 0.81 0.19 0.85 0.16 

   Blacks 0.51 0.30 0.19 0.79 0.21 0.70 0.31 

Conditional Probabilities 

    PURPOSE        

 Good 0.89 0.90 0.16 0.90 0.20 0.76 0.78 

 Depends 0.06 0.06 0.21 0.06 0.21 0.09 0.07 

 Waste 0.05 0.04 0.63 0.05 0.59 0.15 0.15 

    ACCURACY        

 Mostly True 0.60 0.64 0.01 0.63 0.02 0.50 0.55 

 Not True 0.40 0.36 0.99 0.37 0.98 0.50 0.45 

    UNDERSTANDING        

 Good 0.94 0.32 0.74 0.79 0.76 0.92 0.26 

 Fair, poor 0.06 0.68 0.26 0.21 0.24 0.08 0.74 

    COOPERATION        

 Interested 0.95 0.57 0.65 0.86 0.66 0.90 0.50 

 Cooperative 0.05 0.35 0.25 0.12 0.24 0.09 0.38 

 Impatient/ Hostile 0.00 0.08 0.10 0.02 0.10 0.01 0.12 
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Table 8: Parameter Estimates for the 2-Factor Restricted Multi-Group LC Model with Covariates 

 

 Factor  

 F1 F2 

Covariates (gammas)   

G: Group   

  WHITE 0 -0.20 

  BLACK 0 0.20 

E:Years of Education   

  <8 0 2.19 

  8-10 0 0.97 

  11 0 0.08 

  12 0 -0.34 

  13-15 0 -1.01 

  16-20 0 -1.89 

Indicator Variables (lambdas)   

A: PURPOSE 2.26 0 

B: ACCURACY   

  mostly true -1.34 0 

  not true 1.34 0 

C:UNDERSTANDING   

  Good 0 -5.14 

  Fair/Poor 0 5.14 

D: COOPERATION 0.98 1.26 
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Table 9: Test Results for Generated Mixture of Normals Data 

 

 

Model 

Log-

Likelihood 

 

BICLL 

Number of 

Parameters 

Equal variances    

  1-Class -2177.75 4369.31 2 

  2-Class -2066.99 4161.61 4 

  3-Class -2050.78 4143.00 6 

  4-Class -2046.25 4147.75 8 

Unequal Variances    

  2-Class -2048.14 4130.81 5 

  3-Class -2047.78 4150.83 8 

  4-Class -2045.41 4166.80 11 
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Table 10. Observed and Estimated Frequency Distribution of Packs of Hard-Candy Purchased 

During Last 7 Days under the 1-Class and 3-Class Poisson Model 

 

Number of 

Packages 

Frequencies 

Observed 1-Class Model 3-Class Model 

0 102 8.43 101.67 

1 54 33.63 54.63 

2 49 67.11 50.03 

3 62 89.28 53.89 

4 44 89.09 47.25 

5 25 71.11 34.14 

6 26 47.30 22.00 

7 15 26.97 14.37 

8 15 13.46 11.02 

9 10 5.97 10.18 

10 10 2.38 10.17 

11 10 0.86 9.97 

12 10 0.29 9.20 

13 3 0.09 7.90 

14 3 0.03 6.32 

15 5 0.01 4.72 

16 5 0.00 3.30 

17 4 0.00 2.18 

18 1 0.00 1.36 

19 2 0.00 0.80 

20 1 0.00 0.45 
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Table 11: Parameter Estimates for the Abortion Example 

 

Parameter Class 1 Class 2 Class 3 Class 4 Mean Std.Dev. 

Class size 0.30 0.28 0.24 0.19   

Intercept -0.34 0.60 3.33 1.59 1.16 1.38 

Year       

  1983 0.14 0.26 0.47 -0.58 0.12 0.35 

  1984 -0.12 -0.46 -0.35 -1.11 -0.45 0.34 

  1985 0.04 -0.44 -0.26 1.43 0.10 0.66 

  1986 -0.06 0.64 0.14 0.26 0.24 0.27 

Religion       

   Roman Catholic -0.53 -0.53 -0.53 -0.53 -0.53 0.00 

   Protestant 0.20 0.20 0.20 0.20 0.20 0.00 

   Other -0.10 -0.10 -0.10 -0.10 -0.10 0.00 

   No religion 0.42 0.42 0.42 0.42 0.42 0.00 
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Table 12: Parameter Estimates for Conditional Logit Model in Conjoint Study Example  

 

 Class1 Class2 Class3 

Wald for 

no effect 

Wald 

for equal  

effects 

FASHION 3.03 -0.17 1.20 494.74 216.37 

QUALITY -0.09 2.72 1.12 277.96 171.16 

PRICE -0.39 -0.36 -0.56 144.48 3.58 

NONE  1.29 0.19 -0.43 82.39 59.26 
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Table 13: Parameter Estimates for the Latent Variable Regression for Conjoint Study Example 

 

 Class1 Class2 Class3 Wald 

Intercept 0.37 0.00 -0.37 8.22 

SEX     

  Male -0.66 -0.34 1.01 24.15 

  Female 0.66 0.34 -1.01  

AGE     

  16-24 1.02 -0.15 -0.87 62.76 

  25-39 -0.59 -0.37 0.96  

  40+ -0.43 0.52 -0.09  
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Table 14: Test Results for Diabetes Data 

 

 

Model 

Log-

Likelihood 

 

BICLL 

Number of 

Parameters 

Equal and diagonal    

  1-Cluster -2750.13 5530.13 6 

  2-Cluster -2559.88 5169.52 10 

  3-Cluster -2464.78 4999.24 14 

  4-Cluster -2424.46 4938.49 18 

  5-Cluster -2392.56 4894.60 22 

Unequal and diagonal    

  1-Cluster -2750.13 5530.13 6 

  2-Cluster -2446.12 4956.94 13 

  3-Cluster -2366.92 4833.38 20 

  4-Cluster -2335.38 4805.13 27 

  5-Cluster -2323.13 4815.47 34 

Unequal and full     

  1-Cluster -2546.83 5138.46 9 

  2-Cluster -2359.12 4812.80 19 

  3-Cluster -2308.64 4761.61 29 

  4-Cluster -2298.13 4790.34 39 

  5-Cluster -2284.97 4813.79 49 

Unequal and y1-y2 free    

  1-Cluster -2560.40 5155.64 7 

  2-Cluster -2380.27 4835.19 15 

  3-Cluster -2320.57 4755.61 23 

  4-Cluster -2303.14 4760.56 31 

  5-Cluster -2295.05 4784.19 39 

 



 53 

Figure 1: Barycentric Coordinate Display for 3-Class Model 
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Figure 2: Bi-plot for 2-Factor Model with Covariates 
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Figure 3: Simulated Distribution from a Mixture of Two Normals 
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Figure 4: Simulated 2-Class LC Regression Model 
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Figure 5: Matrix Scatter Plot of Diabetes Data set for the Clinical Classification, the K-

Means-Like 5-Cluster Solution, and the Final 3-Cluster Solution 
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