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10.1. INTRODUCTION

Latent class (LC) modeling was initially introduced
by Lazarsfeld and Henry (1968) as a way of formu-
lating latent attitudinal variables from dichotomous
survey items. In contrast to factor analysis, which
posits continuous latent variables, LC models assume
that the latent variable is categorical, and areas of
application are more wide-ranging. The methodology
was formalized and extended to nominal variables by
Goodman (1974a, 1974b), who also developed the
maximum likelihood (ML) algorithm that serves as
the basis for many of today’s LC software programs. In
recent years, LC models have been extended to include
observable variables of mixed scale type (nominal,
ordinal, continuous, and counts) and covariates, as well
as deal with sparse data, boundary solutions, and other
problem areas.

In this chapter, we describe three important special
cases of LC models for applications in cluster, factor,
and regression analyses. We begin by introducing the
LC cluster model as applied to nominal variables (the
traditional LC model), discuss some limitations of this
model, and show how recent extensions can be used to
overcome them. We then turn to a formal treatment of
the LC factor model and an extensive introduction to
LC regression models before returning to show how the
LC cluster model, as applied to continuous variables,
can be used to improve on the K-means approach to

cluster analysis. We use the Latent GOLD computer
program (Vermunt & Magidson, 2003) to illustrate the
use of these models as applied to several data sets.

10.2. TRADITIONAL
LATENT CLASS MODELING

Traditional LC analysis (i.e., Goodman, 1974b)
assumes that each observation is a member of one
and only one of T latent (unobservable) classes and
that local independence exists between the manifest
variables. That is, conditional on latent class member-
ship, the manifest variables are mutually independent
of each other. This model can be expressed using
(unconditional) probabilities of belonging to each
latent class and conditional response probabilities as
parameters. For example, in the case of four nominal
manifest variables A, B, C, and D, we have
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where X denotes the probability of being in latent
class t = 1,2,...,T of latent variable X; ]T;x\x
denotes the conditional probability of obtaining the
ith response to item A, from members of class ¢, i =
1,2,...,1;and JT;‘X, n,(Ct‘X, Z?IX, j=12,...,J,
k=12 ...,K,1 =1,2,...,L, denote the cor-
responding conditional probabilities for items B, C,
and D, respectively.
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Model 1 can be described graphically in terms of a
path diagram (or a graphical model) in which manifest
variables are not connected to each other directly but
indirectly through the common source X. The latent
variable is assumed to explain all of the associations
among the manifest variables. A goal of traditional LC
analysis is to determine the smallest number of latent
classes T that is sufficient to explain away (account
for) the associations (relationships) observed among
the manifest variables.

The analysis typically begins by fitting the 7 = 1
class baseline model (Hp), which specifies mutual
independence among the variables. Model Hy:

TCijkl = JTI-AJT]BJTIS:ITID.

Assuming that this null model does not provide an
adequate fit to the data, a one-dimensional LC model
with T = 2 classes is then fitted to the data. This
process continues by fitting successive LC models to
the data, each time adding another dimension by incre-
menting the number of classes by 1, until the simplest
model is found that provides an adequate fit.

10.2.1. Assessing Model Fit

Several complementary approaches are available for
assessing the fit of LC models. The most widely used
approach uses the likelihood ratio chi-squared statistic
L? to assess the extent to which maximum likelihood
(ML) estimates for the expected cell frequencies, I:",-jkl
differ from the corresponding observed frequencies,

fijkli
L*=2 Z Fiwt In(Eyua/ fiiea)-

ikl
A model fits the data if the value of L? is suffi-
ciently low to be attributable to chance (within normal
statistical error limits—generally, the .05 level).

The I:",-jk, are obtained using the following two-step
process. First, ML estimates for the model parame-
ters are obtained and substituted into the right side of
equation (1) to obtain ML estimates of the probabili-
ties ;. These probability estimates are then summed
over the latent classes to obtain estimated probabilities
for each cell in the observed table and multiplied by
the sample size N to obtain the ML estimates for the
expected frequencies:

T
Fju =N Z TTjkis-
t=1

In the case that I:“,-jk, = fiu for each cell (i, j, k, 1),
the model fit will be perfect and L? equals zero. To the

extent that the value for L? exceeds 0, the L% measures
lack of model fit, quantifying the amount of associa-
tion (nonindependence) that remains unexplained by
that model. When N is sufficiently large, L? follows
a chi-square distribution, and as a general rule,' the
number of degrees of freedom (df) equals the number
of cells in the full multiway table minus the number
of distinct parameters M minus 1. For example, in
the case of four categorical variables, the number of
cells equals IJKL, and the number of parameters is the
following:

M=T—-1+T[I-D+J -1
+ (K =1+ (L-1)]

M is obtained by counting the T — 1 distinct LC
probabilities and, for each latent class, the 7 —1 distinct
conditional probabilities associated with the categories
of variable A, the J — 1 distinct conditional probabili-
ties associated with B, and so on. Because probabilities
sum to 1, the probability associated with one category
of each variable is redundant (and hence not counted
as a distinct parameter): It can be obtained as 1 minus
the sum of the others.

In situations involving sparse data, the chi-squared
distribution should not be used to compute the
p-value because L? would not be well approximated.
Instead, the bootstrap approach can be used to esti-
mate p (Langeheine, Pannekoek, & Van de Pol, 1996).
Sparse data often occur when the number of observed
variables or the number of categories of these variables
is large. In such cases, the total number of cells in the
resulting multiway frequency table will be large rela-
tive to the sample size, resulting in many empty cells.
This situation is illustrated below with a data example.
Sparse data also result when LC models are extended
to include continuous variables, which is illustrated in
the last section.

An alternative approach to assessing model fit in
the case of sparse data uses an information criterion
weighting both model fit and parsimony. Such mea-
sures, such as Akaike’s information criterion (AIC)
and the Bayesian information criterion (BIC), are espe-
cially useful in comparing models. The most widely
used in LC analysis is the BIC statistic, which can be

1According to the general rule, if it turns out that df < 0, the model is
not identifiable, which means that unique estimates are not available for
all parameters. For example, for / = J = K = L = 2, df = —4 for
T = 4, which means that the four-class model is not identifiable. In some
cases, however, this general counting rule may yield df > 0, yet the model
may still not be identifiable. For example, Goodman (1974b) shows that
in this situation of four dichotomous variables, the three-class model is
also unidentifiable despite the fact that the counting rule yields df = 1.
See also Note 3.



defined as follows: BIC;» = L? — In(N)df (Raftery,
1986). A model with a lower BIC value is preferred
over a model with a higher BIC value. A more general
definition of BIC is based on the log-likelihood (LL)
and the number of parameters (M) instead of L? and
df; that is,

BICLL = —2LL + ln(N)M

Again, a model with a lower BIC value is preferred
over a model with a higher BIC value.?

If the baseline model (Hp) provides an adequate fit
to the data, no LC analysis is needed because there is
no association among the variables to be explained. In
most cases, however, Hy will not fit the data, in which
case L2(Hy) can serve as a baseline measure of the total
amount of association in the data. This suggests a third
approach for assessing the fit of LC models by com-
paring the L? associated with LC models, for which
T > 1, with the baseline value L?(Hy) to determine
the percent reduction in L?. Because the total asso-
ciation in the data may be quantified by L?(Hy), the
percent reduction measure represents the total associa-
tion explained by the model. This less formal approach
can complement the more statistically precise L> and
BIC approaches.

As an example of how these measures are used,
suppose that the L? suggests that a three-class model
falls short of providing an adequate fit to some data
(say, p = .04) but explains 90% of the total asso-
ciation. Moreover, suppose a four-class model is the
simplest model that fits according to the L? statistic,
but this model only explains 91% of the association. In
this case, it may be that, on practical grounds, the three-
class model is preferable because it explains almost as
much of the total association.

10.2.1.1. Example: Survey Respondent Types

We will now consider a first example that illustrates
how these tools are used in practice. It is based on the
analysis of four variables from the 1982 General Social
Survey given by McCutcheon (1987) to illustrate how
traditional LC modeling can be used to study the differ-
ent types of survey respondents. Two of the variables
ascertain the respondent’s opinion regarding (A) the
purpose of surveys and (B) how accurate they are, and
the others are evaluations made by the interviewer of
(C) the respondent’s levels of understanding of the
survey questions and (D) cooperation shown in

2The two formulations of BIC differ only with respect to a constant. More
precisely, BICZL equals BICy | minus the BICy | corresponding to the
saturated model.
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answering the questions. McCutcheon initially
assumed the existence of two latent classes correspond-
ing to “ideal” and “less than ideal” types.

The study included separate samples of White and
Black respondents. Beginning with an analysis of the
White sample, McCutcheon (1987) later included data
from the Black sample to illustrate a two-group LC
analysis. We will use these data to introduce the basics
of traditional LC modeling and to illustrate several
recent developments that have been made over the
past decade. These include allowing for specific local
dependencies (Section 10.3.1), the usage of LC factor
models (Section 10.3.2), and the inclusion of covari-
ates as well as the methodology for making multigroup
comparisons (Sections 10.3.3 and 10.3.4).

Traditional exploratory LC analysis begins by fitting
the null model Hy to the sample of White respon-
dents. Because L>(Hy) = 257.3 with df = 29 (see
Table 10.1), the amount of association (nonindepen-
dence) that exists in these data is too large to be
explained by chance, so the null model must be rejected
(p < .001) in favor of T > 1 classes.

Next, we consider McCutcheon’s (1987) two-class
model (H; ). For this model, the L? is reduced to 79.5,3
a 69.1% reduction from the baseline model, but still
much too large to be acceptable with df = 22. Thus,
we increment 7 by 1 and estimate model Hyc, the
three-class model. This model provides a further sub-
stantial reduction in L% to 22.1 (a91.5% reduction over
the baseline) and also provides an adequate overall fit
(p > .05). Table 10.1 shows that the four-class LC
model provides some further improvement. However,
the BIC statistic, which takes parsimony into account,
suggests that the three-class model is preferred over
the four-class model (see Table 10.1).

The parameter estimates obtained from the three-
class model are given in the left-most portion of
Table 10.2. The classes are ordered from largest to
smallest. Overall, 62% are estimated to be in Class 1,
20% in Class 2, and the remaining 18% in Class 3.
Analogous to factor analysis, in which names are
assigned to the factors based on an examination of the
“factor loadings,” names may be assigned to the latent
classes based on the estimated conditional probabili-
ties. Like factor loadings, the conditional probabilities
provide the measurement structure that defines the
latent classes.

3This value differs slightly from the value 79.3 reported in McCutcheon
(1987) because our models include a Bayes constant set equal to 1
to prevent boundary solutions (estimated model probabilities equal to
zero). For further information on Bayes constants, see the technical
appendix of the Latent GOLD 3.0 manual (Vermunt & Magidson, 2003,
or www.latentclass.com).
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Table 10.1 Results From Various Latent Class Models Fit to the General Social Survey 1982 Data

% Reduction in

Model BICy;, L? df p-Value L? (Hp)

Sample of White respondents

Traditional

Hy One-class 5787.0 257.3 29 2.0 x 10738 0.0

Hic Two-class 5658.9 79.5 22 2.0x 1078 69.1

Hyc Three-class 5651.1 22.1 15 11 914

Hjc Four-class 5685.3 6.6 8 58 97.4

Nontraditional

Hict Two-class + {CD} 5606.1 12.6 20 .89 95.1
direct effect

Hop Basic two-factor 5640.1 11.1 15 75 95.7

Sample of Black respondents

Traditional

H6 One-class 2402.1 112.1 29 1.0 x 10711 0.0

H’1 Two-class 2389.6 56.9 22 .00006 49.2

H’2C Three-class 2393.8 18.3 15 25 83.7

Hj Four-class 2427.6 9.4 8 31 91.6

Nontraditional

H/1c+ Two-class + {CD} 2360.2 15.2 20 77 86.4
direct effect

H’ZF Basic two-factor 2387.0 11.5 15 72 89.7

Full sample (multiple-group analysis)

Traditional

My One-class 8185.1 400.0 64 4.3 x 1070 0

M, Two-class 8013.8 169.5 56 24 x 10713 57.6

Mo Three-class unrestricted 8077.4 40.4 30 .10 89.9
(complete heterogeneity)

Mocr Three-class restricted 7953.0 49.4 48 42 87.7
(partial homogeneity)

MocrrR Three-class restricted 7962.1 73.3 50 .02 81.7
(complete homogeneity)

Mjcr Four-class restricted 7989.8 27.0 40 .94 93.3
(partial homogeneity)

Nontraditional

Mjp Basic two-factor 8059.6 22.6 30 .83 94.4
unrestricted

Mogr Basic two-factor restricted 7934.9 31.3 48 97 92.2

NOTE: BIC = Bayesian information criterion.

McCutcheon (1987) assigned the name “ideal” to

latent Class 1, reasoning as follows:

The first class corresponds most closely to our antici-

pated ideal respondents.

Nearly 9 of 10 in this class believed that surveys
“usually serve a good purpose”; 3 of 5 expressed a
belief that surveys are either “almost always right” or
“right most of the time”; 19 of 20 were evaluated by the
interviewer as “friendly and interested” during the inter-
view; and nearly all were evaluated by the interviewer
as having a good understanding of the survey questions.

(p-34)

He named the other classes “believers”

and

“skeptics” based on the interpretations of the

corresponding conditional probabilities for those

classes.

10.2.2. Testing the Significance of Effects

The next step in a traditional LC analysis is to delete
from the model any variable that does not exhibit a sig-
nificant difference between the classes. For example, to
test whether to delete variable A from a T -class model,
one would test the null hypothesis that the distribution
over the I categories of A is identical within each

class t:

AlX
i1

=T

AlX

~~~=711./;|Xf0ri=1,2,...,1.
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Table 10.2 Parameter Estimates for the Three-Class Latent Class (LC) Model by Sample
White Sample Black Sample
Class 1 Class 2 Class 3 Class 1 Class 2 Class 3
Ideal Believers Skeptics Ideal Believers Skeptics

LC probabilities 0.62 0.20 0.18 0.49 0.33 0.18
Conditional probabilities
(A) PURPOSE

Good 0.89 0.92 0.16 0.87 091 0.19

Depends 0.05 0.07 0.22 0.08 0.04 0.17

Waste 0.06 0.01 0.62 0.05 0.05 0.65
(B) ACCURACY

Mostly true 0.61 0.65 0.04 0.54 0.65 0.01

Not true 0.39 0.35 0.96 0.46 0.35 0.99
(C) UNDERSTANDING

Good 1.00 0.32 0.75 0.95 0.37 0.68

Fair, poor 0.00 0.68 0.25 0.05 0.63 0.32
(D) COOPERATION

Interested 0.95 0.69 0.64 0.98 0.56 0.64

Cooperative 0.05 0.26 0.26 0.01 0.37 0.25

Impatient/hostile 0.00 0.05 0.10 0.00 0.07 0.11

To implement this test, we make use of the
relationship between the conditional response prob-
abilities and the log-linear parameters (see, e.g.,

Formann, 1992; Haberman, 1979; Heinen, 1996):

AlX exp()\.;4 =+ Aﬁx
T XiexpGf )

Standard log-linear modeling techniques can then be
used to test the null hypothesis, reexpressed in terms
of the log-linear parameters associated with the AX
relationship:

M= = =2 =0fori=1,2,...,1.

One way to test for significance of the four indicators
in our three-class model is by means of a L? differ-
ence test, where AL? is computed as the difference
between the L? statistics obtained under the restricted
and unrestricted three-class models, respectively. The
AL? values obtained by setting the association param-
eters corresponding to one of the indicators to zero
were 145.3,125.4,61.3,and 101.1, for A, B, C,and D,
respectively. These numbers are higher than of the cor-
responding Wald statistics, which took on the values
29.6, 8.4, 7.4, and 19.0. This is because the latter test is
uniformly less powerful than the AL? statistic. Under
the assumption that the unrestricted model is true, both
statistics are distributed asymptotically as chi-square
withdf = (I —1)-(T —1), where I denotes the number
of categories in the nominal variable. The encoun-
tered values show that each of the four indicators

included in the model is significantly related to class
membership.

10.2.3. Classification

The final step in a traditional LC analysis is to
use the results of the model to classify cases into the
appropriate latent classes. For any given response pat-
tern (i, j, k, 1), estimates for the posterior membership
probabilities can be obtained using Bayes theorem as
follows:

AABCDX

~ X|ABCD _ ijklt _

ik = ZT pyTIe t=12,....T (2
=1 Tljjiir

where the numerator and denominator in equation (2)
are obtained by substituting the model parameter esti-
mates in place of the corresponding parameters in
equation (1).

Magidson and Vermunt (2001) and Vermunt and
Magidson (2002) refer to this kind of model as a LC
cluster model because the goal of classification into
T homogeneous groups is identical to that of cluster
analysis. In contrast to an ad hoc measure of dis-
tance used in cluster analysis to define homogeneity,
LC analysis defines homogeneity in terms of prob-
abilities. As indicated by equation (1), cases in the
same latent class are similar to each other because
their responses are generated by the same probability
distribution.

Cases are then assigned to the class for which
the posterior probability is highest (i.e., the modal
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Figure 10.1

Barycentric Coordinate Display for Three-Class Model
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class). For example, according to the three-class
LC model, someone with response pattern A = 1
(PURPOSE = “good”), B = 1 (ACCURACY
“mostly true”), C 1 (UNDERSTANDING
“good”), and D 1 (COOPERATION = “inter-
ested”) has posterior membership probabilities equal
to 0.92, 0.08, and 0.00. This means that such a person
is assigned to the first class.

10.2.4. Graphical Displays

Because for any given response pattern (i, j, k, 1),
the T-class membership probabilities sum to 1, only
T — 1 such probabilities are required as the probability
of belonging to the remaining class can be obtained
from the others. Hence, the class membership proba-
bilities ﬁtg,ljBCD can be used to position each response
pattern in 7 — 1 dimensional space, and for T = 3,
various two-dimensional barycentric coordinate dis-
plays can be produced.

Rather than plotting every one of the many response
patterns, instructive plots of the kind used in corre-
spondence analysis can be produced, where points are
plotted for each category of each variable as well as
other meaningful aggregations of these probabilities
(Magidson & Vermunt, 2001).

Figure 10.1 depicts the corresponding barycentric

coordinate display under the three-class LC model.
Points are plotted for each category of each of the
four variables in our example. Because these points
contain information equivalent to the LC parameter
estimates (Van der Heijden, Gilula, & Van der Ark,
1999), this type of plot provides a graphical alter-
native to the traditional tabular display of parameter
estimates and can yield new insights into data.
Also displayed in Figure 10.1 are two additional
aggregations associated with the response catego-
ries UNDERSTANDING = “good” and “fair, poor”
(k = 1, 2) among those for whom COOPERATION
“hostile/impatient” (1 = 3).
The horizontal dimension of the plot corresponds
to differences between McCutcheon’s (1987) “ideal”
and “believer” types (latent Classes 1 and 2). We see
that the categories of the variable C tend to spread out
along this dimension. Respondents showing “good”
understanding are most likely to belong to the ideal
class (the corresponding symbol is plotted closest to
the lower left vertex that represents Class 1), whereas
those showing only “fair or poor” understanding are
plotted closest to the lower right vertex that represents
Class 2.

Differences along the vertical dimension of the plot
are best shown by the categories of A and B. For
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Table 10.3 Descriptive Information and Parameter Estimates From Three-Class and Two-Factor Latent Class
(LC) Models Obtained With the Landis and Koch (1977) Data
Two Factors (Joint Probabilities)
Descriptive Information Factor 1=1 Factor 1 =2
(True Negative) (True Positive)
% of Ratings That
% of Agree With Three Classes Factor Factor Factor Factor
Slides 2=1 2=2 2=1 2=1
Rated 5+ 6+ Class Class Class (Negative (Positive (Negative (Positive
Positive Raters Raters 1 2 3 Bias) Bias) Bias) Bias)
Class size 0.44 0.37 0.18 0.36 0.19 0.30 0.16
F 21 64 58 0.47 0.00 0.00 0.00 0.01 0.23 0.86
D 27 70 62 0.59 0.00 0.06 0.00 0.05 0.37 0.92
C 38 80 64 0.85 0.00 0.01 0.00 0.00 0.83 0.83
A 56 82 64 1.00 0.06 0.51 0.06 0.47 0.99 1.00
G 56 85 66 1.00 0.00 0.63 0.01 0.58 0.99 1.00
E 60 80 64 1.00 0.06 0.76 0.06 0.72 0.99 1.00
B 67 75 61 0.98 0.15 0.99 0.13 0.99 0.97 1.00

NOTE: False-negative and false-positive rates are highlighted in bold.

example, respondents agreeing that the purpose of
surveys is “good” are plotted close to the lower left
(Class 1) vertex. Those who say “it depends” are plot-
ted somewhat midway between the Class 1 and Class 3
(top) vertex. Those who say “it’s a waste of time and
money” are most likely to be in Class 3 and are posi-
tioned near the top vertex. The fact that the positioning
of categories for both A and B spreads out over the ver-
tical dimension suggests a high degree of association
between these variables. In contrast, the categories of
C are spread over the horizontal dimension, suggesting
that the association between C and the two variables
A and B is close to nil.

The categories of the variable D form an interest-
ing diagonal pattern. Respondents showing they are
“interested” in the questions are most likely to be in
Class 1 (“ideal”), whereas those who are only “co-
operative” or exhibit “impatience/hostility” are plotted
closer to Classes 2 and 3. This suggests the hypothesis
that impatience and hostility may arise for either of
two different reasons: (a) disagreement that surveys
are accurate and serve a good purpose (indicated by
the vertical dimension of the plot) and/or (b) lack of
understanding (indicated by the horizontal dimension).

The additional points plotted deal with the rela-
tionship between variables C and D. The positioning
of these points suggest that among impatient/hostile
respondents, those who show good understanding of
the questions tend to be more in Class 3, whereas
those whose understanding is fair/poor tend to be about
equally likely to be in Class 2 or 3.

We will revisit these data and obtain further insights
later when we examine an alternative nontraditional
two-dimensional LC model, the two-factor LC model.

10.2.4.1. Example: Sparse
Multirater Agreement Data

We next consider an example with sparse data in
which seven pathologists each classified 118 slides as
to the presence or absence of carcinoma in the uterine
cervix (Landis & Koch, 1977) that was also analyzed
by Agresti (2002). LC modeling will be used here to
estimate the false-positive and false-negative rates for
each pathologist and to use multiple ratings to distin-
guish between slides that indicate carcinoma and those
that do not (for similar medical applications, see Rind-
skopf & Rindskopf, 1986; Uebersax & Grove, 1990).
The second column of Table 10.3 shows that the raters
vary from classifying only about 1 of every 5 slides as
positive (Rater D) to classifying more than 2 of every
3 as positive (Rater B). The next two columns indicate
for which percentage of slides the ratings agree among
five or more and six or more raters. This information
shows that agreement is highest among Raters C, A,
G, and E.

As a starting point, Agresti (2002) formulated a
model containing two latent classes, in an attempt
to confirm the hypothesis that slides are either “true
positive” or “true negative.” The assumption of local
independence in the two-class model means that
rater agreement is caused solely by the differing
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Table 10.4 Results From Various Latent Class (LC) Models Fit to Landis and Koch (1977) Data
Bootstrap % Reduction

Model BICyp L? p-Value in L?(Hp)
Traditional
Ho One-class 1082.3 476.8 .00 0.0
H; Two-class 707.9 64.2 .00 86.5
Hye Three-class 699.6 17.7 49 96.3
Hjc Four-class 729.4 9.3 .79 98.0
Nontraditional
Hocy Three-class + {DF} 698.0 11.3 .83 97.6

direct effect
Horr Restricted basic 688.4 11.3 .90 97.6

two-factor

NOTE: BIC = Bayesian information criterion.

characteristics between these two types of slides. That
is, given that a slide is in the class of “true posi-
tive” (“true negative”), any similarities and differences
between raters represent pure error. However, in his
analysis of these data, he found that three classes were
necessary to obtain an acceptable fit.

Although there are 27 = 128 possible response
patterns, because of the large amount of inter-rater
agreement, 108 of these patterns were not observed
at all. As mentioned above, sparse data such as these
cause a problem in testing model fit because the
L? statistic does not follow a chi-square distribution.
For this reason, Agresti (2002) simply alluded to the
obvious discrepancy between the expected frequen-
cies estimated under the two-class model and the
observed frequencies and speculated that this model
does not provide an adequate fit to these data. He
then compared estimates obtained from the three-class
model and suggested that the fit of this model was
adequate.

We report the bootstrap p-value in Table 10.4, which
confirms Agresti’s (2002) speculation that the fit of
the two-class model is poor and that of the three-class
model is adequate. It also shows that the three-class
model is preferred over the four-class model according
to the BIC criteria.

The parameter estimates obtained with the three-
class model are given in the middle portion of
Table 10.3. The largest class (44%) refers to slides that
all pathologists (except for D and F) almost always
agree show carcinoma (“true positive”). Class 2 (37%)
refers to slides that all pathologists (except occasion-
ally B) agree show no carcinoma. The remaining
class of slides (18%) shows considerable disagreement
between pathologists—B, E, and G usually diagnose
carcinoma, whereas C, D, and F rarely do, and A
diagnoses carcinoma half the time.

If we assume that Class 1 represents cases of true
carcinoma, the results reported in Table 10.3 show
that those pathologists who rated the fewest slides
as positive (D and F) have the highest false-negative
rates (42% and 53%, respectively, highlighted in bold).
Similarly, under the assumption that Class 2 repre-
sents cases free from carcinoma, the results show that
the pathologist who rated the most slides as posi-
tive, Rater B, shows a false-positive rate (15%) that
is substantially larger than the other pathologists.

The traditional model-fitting strategy requires us to
reject our two-class hypothesis in favor of a three-class
alternative in which the third latent class consists of
slides that cannot be classified as either “true positive”
or “true negative” for cancer. Next we consider some
nontraditional LC models that provide classification of
each slide according to its likelihood of carcinoma. In
particular, we will show that a two-factor LC model
provides an attractive alternative whereby Factor 1
classifies all slides as either “true positive” or “true
negative,” and Factor 2 classifies slides according to a
tendency for ratings to be biased toward false-positive
or false-negative error.

10.3. NONTRADITIONAL
LATENT CLASS MODELING

Rejection of a traditional T'-class LC model for lack of
fit means that the local independence assumption does
not hold with T classes. In such cases, the traditional
LC model-fitting strategy is to fita 7' + 1 class model
to the data. In both of our examples, theory supported
a two-class model but because this model failed to
provide an adequate fit, we formulated a three-class
model. In this section, we consider some alternative



strategies for modifying a model. In both cases, we
will see the nontraditional alternatives lead to models
that are more parsimonious than traditional models, as
well as models that are more congruent with our initial
hypotheses. The alternatives considered are as follows:

1. adding one or more direct effects,
2. deleting one or more items,
3. increasing the number of latent variables.

Alternative 1 is to include “direct-effect” parameters
in the model (Hagenaars, 1988) that account for the
residual association between the observed variables
that is responsible for the local dependence. This
approach is particularly useful when some external
factor, unrelated to the latent variable, creates an irrel-
evant association between two variables. Examples of
such external factors include similar question wording
used in two survey items, as well as two raters using
the same incorrect criterion in evaluating slides.

Alternative 2 also deals with the situation in which
two variables are responsible for some local depen-
dency. In such cases, rather than add a direct effect
between two variables, it may make more sense to
eliminate the dependency by simply deleting one of
the two items. This variable reduction strategy is
especially useful in situations in which there are many
redundant variables.

Alternative 3 is especially useful when a group
of several variables accounts for a local dependency.
Magidson and Vermunt (2001) show that by increas-
ing the dimensionality through the addition of latent
variables rather than latent classes, the resulting LC
Sactor model often fits data substantially better than the
traditional LC cluster models having the same number
of parameters. In addition, LC factor models are iden-
tified in some situations when the traditional LC model
is not.*

In the next section, we introduce a diagnostic statis-
tic called the bivariate residual (BVR) and illustrate its
use to develop some nontraditional alternative models
for our two data examples. The BVR helps pinpoint
those bivariate relationships® that fail to be adequately

4For example, with four dichotomous variables, an LC two-factor model
(composed of four latent classes) is identified, whereas a traditional three-
class model is not (Goodman, 1974b).

STraditional factor analysis, through the assumption of multivariate nor-
mality, limits its focus to bivariate relationships (i.e., the correlations)
because higher order relationships are assumed not to exist. In contrast,
LC models do not make strict distributional assumptions and hence attempt
to explain higher order associations as well. Nevertheless, the two-way
(bivariate) associations are generally the most prominent, and the ability to
pinpoint specific two-way tables in which lack of fit may be concentrated
can be useful in suggesting alternative models.
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Table 10.5 Values for Bivariate Residuals Obtained
Under Various Models for the Sample of
White Respondents

Two-Way Model

Table Hy H; Hye  H;c  Hacs Hap

{AB} 616 01 01 00 0.0 0.0

{AC} 05 07 01 00 0.2 0.0

{AD} 106 00 01 00 0.2 0.1

{BC} 0.3 1.1 0.0 0.0 0.0 0.0

{BD} 86 04 03 02 0.2 0.4

{CD} 43.4 323 2.4 0.0 0.0 0.2

explained by the LC model and can help determine
which of the three alternative strategies to employ. We
will see that even in situations when the L? statistic
reports that the model provides an adequate overall
fit, the fit in one or more two-way tables may not be
adequate and may indicate a flaw or weakness in the
model.

10.3.1. Bivariate Residuals and Direct Effects

A formal measure of the extent to which the observed
association between two variables is reproduced by
a model is given by the BVR statistic (Vermunt &
Magidson, 2003). Each BVR corresponds to a Pearson
chi-square statistic (divided by the degrees of freedom)
in which the observed frequencies in a two-way cross-
tabulation of the variables are contrasted with those
expected counts estimated under the corresponding LC
model.® A BVR value substantially larger than 1 sug-
gests that the model falls somewhat short of explaining
the association in the corresponding two-way table.

10.3.1.1. Example: Survey
Respondent Types (Continued)

Table 10.5 reports BVRs for each variable pair under
each of several models estimated in our first exam-
ple. Because model Hy corresponds to the model
of mutual independence, each BVR for this model
provides a measure of the overall association in the
corresponding observed two-way table; that is, each
BVR equals the usual Pearson chi-square statistic used
to test for independence in the corresponding two-way
table divided by the degrees of freedom. The results
show that except for the nonsignificant relationships in

OThese residuals are similar to Lagrangian statistics. A difference is that
they are limited-information fit measures: Dependencies with parameters
corresponding to other items are not taken into account.
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the {AC} and {BC} tables, all of the remaining BVRs
are quite large, attesting to several significant asso-
ciations (local dependencies) that exist among these
variables. The BVR is especially large for {AB} and
for {CD}. For example, in Table {CD}, a Pearson chi-
square test confirms that the observed relationship is
highly significant (x> = 86.8, df = 2, p < .001;
BVR = 86.8/2 = 43.4).

Under the two-class model (H; ), note that the BVRs
are all near or less than 1, except for one very large
value of 32.3 for {CD}. This suggests that the overall
lack of fit for this model can be traced to this single
large BVR. The traditional way to account for the lack
of fit is by adding another latent class. However, Table
10.5 shows that even after the addition of a third class,
the BVR for {CD} under the three-class model Hy¢
remains unacceptably high (BVR = 2.4). Although
the inclusion of the third class does add a second
dimension that causes the overall fit to be adequate,
it is not until we add a fourth class (model H;¢) that
all BVRs are at acceptable levels.

Below, we consider the alternative approach of
adding a “direct effect” to the model to account for
the residual correlation. In addition, we consider use
of the two-factor LC model and further explore the
differences between the three- and four-class models.

10.3.1.2. Example: Sparse Multirater
Agreement Data (Continued)

Turning now to our second example, Table 10.6
shows that all of the BVRs under the one-class model
of mutual independence (model Hy) are very large,’
indicating that the amount of agreement between each
pair of raters is highly significant. Under the two-class
model, many BVRs remain large. Although the three-
class model provides an acceptable overall fit to these
data, again we see that there is a single BVR that
remains unacceptably large—BVR = 4.5 for Raters D
and F, the two pathologists who rated the fewest slides
positive (recall Table 10.3). This large BVR suggests
that Raters D and F may be using some rating criterion
not shared by the other raters.

To account for this large residual association, we will
use nontraditional Alternative 1 and modify the three-
class model by adding the D through F direct-effect
parameter APF into the model (Hagenaars, 1988; for
a slightly different formulation, see Uebersax, 1999).
Formally, this new model, Hpc is expressed as

AIX _BIX_C|X_E|X_DF|X

Tijkimpt = Tip T Ty e Ty s

7The smallest BVR under model Hy is 20.8, which occurs in table {EF}.

Table 10.6 Bivariate Residuals Obtained Under

Various Models for Landis and Koch

(1977) Data

Model

Two-Way Traditional Nontraditional
Table® Hy H; Hyc  Hcs Harr Hapre
{BE} 66.4 8.4 0.0 0.0 0.0 0.1
{DF} 38.0 7.2 4.5 0.0 0.0 0.0
{BG} 66.7 5.2 0.0 0.0 0.1 0.1
{EG} 77.2 3.3 0.1 0.1 0.2 0.2
{AB} 545 17 0.1 0.0 0.1 0.1
{CF} 280 13 00 00 0.0 0.0
{CE} 477 11 01 0.1 0.2 0.1
{DE} 245 00 07 06 0.6 12

a. These are the two-way tables for which the bivariate residuals were
larger than 1 under any of the reported models (other than Hp).

where the probabilities JTII;,F X" are constrained as
follows:
P exp(Af + AL 4 A 4+ Ap¥ 4+ ALK

1) - .
M L Y eXp(AP A AL 4 APF 4 DX 4 X

By relaxing the local independence assumption
between Raters D and F, model Hyc+ is able to account
for the excessive association between D and F that
is not explainable by the latent classes. The AL?
test shows that inclusion of the direct-effect para-
meter provides a significant improvement over the
traditional model Hoc (AL? = 17.7 — 11.3 = 6.4;
p =.01).

From a practical perspective, models Hpc and Hyc
do not differ much as both models assign the 118 slides
to the same classes under the modal assignment rule.
This occurs despite the fact that model Hpcy gives D
and F less weight than model Hyc during the computa-
tion of the posterior probabilities. The primary benefit
of model Hy is to suggest the possibility that Raters
D and F share a bias when evaluating Class 1 slides,
those slides that D and F often rate negative but that the
other pathologists almost always rate positive (recall
Table 10.3). The implication of including the direct
effect is that model H,c, provides higher predictions
of agreement between Raters D and F than model H,¢
on Class 1 slides.?

8Because model Hjc assumes local independence, the expected probabil-
ity of both raters agreeing that a given Class 1 slide is free from cancer can
be computed by multiplying the corresponding conditional probabilities.
Using the estimates from Table 10.3, the probability of both agreeing that
aClass 1 slide is negative is .42 x .53 = .22, and similarly, the probability
of both agreeing that it was positive is .59 x .47 = .28. In contrast, model
Hpc4 predicts higher probabilities (.31 and .35, respectively) for Raters
D and F agreeing in both cases. Under the assumption that Class 1 slides
are “true positive,” the results from model Hyc4 mean that Raters D and
F both tend to share a bias toward committing a false-negative error.



Returning to the first data example for a moment,
we might now expect to find similar insights by
the inclusion of the direct-effect parameters, A,SD s
in the two-class model. Table 10.1 shows that this
model (Hjcy) provides a good fit to the data.
However, under this model, the parameter measur-
ing the contribution of C to the latent classes is no
longer significant, and therefore C can be deleted
from the LC model completely. As this amounts to
deleting an association simply because it could not
be explained by a model with two latent classes,
Alternative 1 does not provide a desirable solution
here.

10.3.2. LC Factor Models

Next we consider Alternative 3, in which we use
LC factor models to include more than one latent
variable in the model. LC factor models were proposed
as a general alternative to the traditional exploratory
LC modeling by Magidson and Vermunt (2001). For
both examples, the results (given in Table 10.1 and
Table 10.4) show that a two-factor model is preferable
to the other models. We shall see that the two-factor
model is actually a restricted four-class model. In both
cases, the fit is almost as good as the (unrestricted)
four-class solution but is more parsimonious and
parameterized in a manner that allows easier interpre-
tation of the results.

LC factor models were initially proposed by
Goodman (1974a) in the context of confirmatory
latent class analysis. Certain traditional LC models
containing four or more classes can be inter-
preted in terms of two or more component latent
variables by treating those components as a joint
variable (see, e.g., Hagenaars, 1990; McCutcheon,
1987). For example, a latent variable X consist-
ing of T = 4 classes can be reexpressed in
terms of two dichotomous latent variables V =

{1,2} and W = {1,2} using the following
correspondence:
W=1 W=2

Thus, X = 1 corresponds with V.= 1and W =1,
X=2withV=1and W =2, X =3withV =2
andW=1,and X =4withV =2and W = 2.

Formally, for four nominal variables, the four-
class LC model can be reparameterized as a LC
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factor model with two dichotomous latent variables
as follows:

_ _VW_ABCD|VW
Tijklrs = TCpg nijklrs

_ _VW_A|VW__B|VW__C|VW__D|VW
= T Tipg jrs krs Irs :

Magidson and Vermunt (2001) consider various
restricted factor models. They use the term basic
LC factor models to refer to certain LC models that
contain two or more dichotomous latent variables
that are mutually independent of each other and that
exclude higher order interactions from the conditional
response probabilities. Such a model is analogous to
the approach of traditional factor analysis in which
multiple latent variables are used to model multidi-
mensional relationships among manifest variables.

It turns out that by formulating the model in terms of
R mutually independent, dichotomous latent factors,
the basic LC factor model has the same number of
distinct parameters as a traditional LC model with R+1
classes. That is, the LC factor parameterization allows
specification of a 2%-class model with the same number
of parameters as a traditional LC model with only R+ 1
classes! This offers a great advantage in parsimony
over the traditional T'-class model as the number of
parameters is greatly reduced by natural restrictions.

As mentioned previously, the basic two-factor model
provides an excellent fit to both of our example data
sets. For the first example, Table 10.1 shows that this
model (model Hyg) is preferred over any of the LC
cluster models according to the BIC. In addition, this
model explains all bivariate relationships in the data
(see Table 10.5). We will interpret the results from this
model in the next section in conjunction with a more
extensive analysis, including both the White and Black
sample.

10.3.2.1. Example: Sparse Multirater
Agreement Data (Continued)

Regarding our second example, Table 10.4 shows
that the basic two-factor model is preferred over all the
other models according to the BIC criteria. The right-
most portion of Table 10.3 provides the parameter
estimates’ that we used to name the factors. These
are joint latent class and conditional response proba-
bilities for combinations of factor levels. We assigned
the names “true negative” and “true positive” to Levels
1 and 2 of Factor 1, respectively. Each of these levels
is split again into two levels by Factor 2, which we

9The two-factor model in Table 3 was further restricted by setting the effect
of indicator C on Factor 2 to zero because this effect was not significant.
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named “tendency toward ratings bias.” We named the
two levels of Factor 2 “tend to negative bias” and “tend
to positive bias,” respectively.

Comparing the four factor cells (right-most portion
of Table 10.3) to the classes in the three-class model
(middle portion of Table 10.3), we see the following
similarities. First, note that Class 1 of the three-class
solution (representing 44% of the slides mostly rated
positive) corresponds primarily to Factor 1, Level 2
slides (those named “true positive”), which account
for 46% of all slides. These “true-positive” slides are
divided according to Factor 2 into cell (2, 1), account-
ing for 30% of all slides, and cell (2, 2), accounting for
16% of the slides. Note that the former slides show a
clear tendency toward a false-negative error, especially
among Raters D and F.

Next, notice the similarity between Class 2 of the
three-class solution, representing 37% of the slides
rated mostly negative, and factor cell (1, 1), accounting
for 36% of the slides rated mostly negative. In addition,
from Table 10.3, we can also see the strong similarity
between Class 3 of the three-class solution and factor
cell (1,2), identified in the table as “true-negative”
slides that are prone to false-positive error, especially
by Raters A, B, E, and G.

In conclusion, we have shown that the two-factor LC
model fits better than the traditional three-class model
and offers two substantive advantages. First, it pro-
vides a clear way to classify slides as “true positive” or
“true negative.” Second, it provides a further grouping
of slides that may be useful in pinpointing the rea-
sons for rater disagreement. Of course, whether Factor
1 actually distinguishes between “true negative” and
“true positive” and whether the error characterization
given by Factor 2 is accurate are important questions
that could be addressed in future research.

10.3.3. Multigroup Models

Multigroup LC models can be used to compare
models across groups. A completely unrestricted
multigroup LC model, referred to by Clogg and Good-
man (1984) as the model of complete heterogeneity, is
equivalent to the estimation of a separate T-class LC
model for each group. The fit of such a model can be
obtained by simply summing the L? values (and cor-
responding degrees of freedom) for the corresponding
models in each group.

Let G denote a categorical variable representing
membership in group g. The model of complete
heterogeneity is expressed as (model M,c)

ABCDX|G _

X|G_A|X,G__B|X,G_C|X,G_D|X,G
kg = Tulg

Tig  Tlg  Trlg g

10.3.3.1. Example: Survey
Respondent Types (Continued)

The second part of Table 10.1 provides the results
of repeating our Example 1 analyses for the sample of
Black respondents. These results turn out to be very
similar to those obtained for the White respondents
(see first part Table 10.1). As in our analysis for the
White sample, we again reject the one- and two-class
models in favor of three classes to obtain a model that
provides an overall fit to the data that is adequate. The
right-most portion of Table 10.2 presents the parameter
estimates obtained from the three-class model (model
H’.) as applied to the sample of Blacks. As in our
earlier analysis, the classes are ordered from largest to
smallest.

In comparing results across these two groups, it
is important to be able to interpret the three classes
obtained from the Black respondents as representing
the same latent constructs (“ideal,” “believers,” and
“skeptics”) as in our analysis of the White respondents.
Otherwise, any between-group comparisons would be
like comparing apples with oranges. Although it is
tempting to interpret Class 1 for both samples as repre-
senting the “ideal” respondents, this is not appropriate
without first restricting the measurement portion of
the models (the conditional probabilities) to be equal.
These restrictions are accomplished using the model
of partial homogeneity (model Mycg):

ABCDX|G _ _X|G_AIX_B|X_C|X_D|X 3
ijkitlg =T Ty T Ty Ty (3)

Jjt

Estimates from this model are given in the left-most
portion of Table 10.7. The third part of Table 10.1
compares the fit of the unrestricted model M, and
restricted model M,cg. The AL? statistic can be
used to test the restrictions made under model MjcR.
Because AL? = 9.0 with 18 df is not significant,
we are free to use this restricted model for our group
comparisons.

The model of complete homogeneity (model Mcgrgr)
imposes the further restriction that the latent class prob-
abilities across the groups are identical: nt)fllG = n';‘(z'G,
for t = 1,2,3. Because these restrictions yield a
significant increase in L2, we reject the model of
complete homogeneity in favor of the model of partial
homogeneity and conclude that there are significant
differences in latent class membership between the
White and Black samples.

Table 10.1 also includes results obtained from the LC
factor model counterparts to the models of complete
heterogeneity and partial heterogeneity. Because these
models contain two dichotomous and independent
factors, they contain the same number of parameters



Chapter 10/Latent Class Models o 13

Table 10.7 Parameter Estimates for the Three-Class Latent Class (LC) Model of Partial Homogeneity
(Model M;cr) and the Corresponding LC Two-Factor Model M,gr
Three Classes Two Factors (Marginal Probabilities)
Class 1 Class 2 Class 3 Factor V Factor W
Ideal Believers Skeptics Level 1 Level 2 Level 1 Level 2
LC probabilities
Whites 0.68 0.15 0.17 0.81 0.19 0.85 0.16
Blacks 0.51 0.30 0.19 0.79 0.21 0.70 0.31
Conditional probabilities
PURPOSE
Good 0.89 0.90 0.16 0.90 0.20 0.76 0.78
Depends 0.06 0.06 0.21 0.06 0.21 0.09 0.07
Waste 0.05 0.04 0.63 0.05 0.59 0.15 0.15
ACCURACY
Mostly true 0.60 0.64 0.01 0.63 0.02 0.50 0.55
Not true 0.40 0.36 0.99 0.37 0.98 0.50 0.45
UNDERSTANDING
Good 0.94 0.32 0.74 0.79 0.76 0.92 0.26
Fair, poor 0.06 0.68 0.26 0.21 0.24 0.08 0.74
COOPERATION
Interested 0.95 0.57 0.65 0.86 0.66 0.90 0.50
Cooperative 0.05 0.35 0.25 0.12 0.24 0.09 0.38
Impatient/hostile 0.00 0.08 0.10 0.02 0.10 0.01 0.12

as the three-class models M,c and M,cr. The lower
part of Table 10.1 shows that these models fit better
than the corresponding LC cluster models according to
the BIC criteria. Also, the smaller BVRs than the LC
cluster counterpart confirm that the LC factor model
fits the data better.

The parameter estimates from the two-factor model
Mypr are presented in the right-most portion of
Table 10.7. These are marginal latent class and con-
ditional response probabilities for factors V and W,
which are obtained by summing over the other factor.
Note that variable D is strongly related to both factors
V and W. That is, respondents at Level 1 of each
factor have a higher probability (.90 or .91) of being
“interested” than those at Level 2. Variables A and B
relate only to factor V, and variable C relates only to
factor W. That is, for factor V, those at Level 1 are
substantially more likely to agree that surveys serve a
good purpose and are more accurate than those at Level
2, but the two levels are about equal in showing a good
understanding of the questions. For factor W, Level 1
shows good understanding, but Level 2 does not.

Moreover, Table 10.7 shows that group differences
exist primarily with respect to Factor 2 (observed group
differences on factor V are not significant). Black
respondents are twice as likely as Whites to be at Level
2 of Factor 2 (30% vs. 15%). These results allow us to
formulate a more rigorous test of our earlier hypothesis

that cooperation may be due to two separate factors—
one associated with the belief that surveys serve a good
purpose and are accurate (as assessed by LC Factor 1)
and the second related to understanding the questions
(as assessed by LC Factor 2).

Before concluding this section, we note that thus far,
we have treated the trichotomous variables COOPER-
ATE (A) and PURPOSE (C) as nominal. Alternatively,
they can be treated as ordinal, which serves to simplify
the model by reducing the number of parameters. The
most straightforward approach is to restrict the log-
linear parameters by using uniform scores v* and vf
for the categories of A and C, implying the following
constraints: A% = A4VvA and A4V = AW (see,
e.g., Formann, 1992; Heinen, 1996).

The use of these restrictions in our example
increased the L2 by very little, indicating that variables
A and C may in fact be treated as ordinal. In the
next section, we present the results of a modified two-
factor model in which variables A and C are treated as
ordinal.

10.3.4. Covariates

The parameters in the traditional LC model consist
of unconditional and conditional probabilities. The
conditional probabilities comprise the measurement
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portion of the model. They characterize the distribution
among the observed variables (indicators) conditional
on the latent classes. The unconditional probabilities
describe the distribution of the latent variable(s). To
obtain improved description/prediction of the latent
variable(s), we use a multinomial logit model to
express these probabilities as a function of one or more
exogenous variables Z, called covariates (Dayton &
Macready, 1988).

The multigroup model described in the previous
section is an example of the use of a single nominal
covariate (Z = G). For example, the term n,);‘G in
equation (3) can be expressed as

X6 exp()’tx + V;ifG)
o = .
’ Y exp(rX + X9

Although the latent variable(s) explain all of
the associations among the indicators, associations
between the covariates are not explained by the latent
variables. This is what distinguishes the indicators
from the covariates.

10.3.4.1. Example: Survey
Respondent Types (Continued)

Regarding the interpretation of the three-class
solution, McCutcheon (1987) questioned whether
some of the difference in latent class membership
between Black and White respondents might be
explained by education, a question that falls outside
the scope of traditional LC modeling. We address
this question below by including E: EDUCATION
as a second covariate in the two-factor model—
Z=(G,E).

The model provides a good fit to the data. The results
indicate that the effect of education does explain most,
but not all, of the group effect on factor W. The
logit parameter estimates are given in Table 10.8, in
which nonsignificant estimates were set to zero. The
multinomial model used for the covariates was

wice e+ +rd" +va™

T = .
r. K
e Zf:l,s:l exp(er + y.vW + )/g(s;w + VeEW)

The gamma parameters in Table 10.8 indicate that
the higher the educational level, the lower the score on
factor W. The race effect is very weak: Blacks have a
slightly higher score on factor W than Whites.

The results for this two-factor restricted multi-
group model are also displayed in the biplot display
(Magidson & Vermunt, 2001) given in Figure 10.2.
Like the barycentric coordinate display in Figure 10.1,

Table 10.8 Parameter Estimates for the Two-Factor
Restricted Multigroup Latent Class (LC)
Model With Covariates
Factor
Vv w
Covariates (gammas)
G: Group
WHITE 0 —0.20
BLACK 0 0.20
E: Years of education
<8 0 2.19
8-10 0 0.97
11 0 0.08
12 0 —0.34
13-15 0 —1.01
16-20 0 —1.89
Indicator variables (lambdas)
A: PURPOSE 2.26 0
B: ACCURACY
Mostly true —1.34 0
Not true 1.34 0
C: UNDERSTANDING
Good 0 —5.14
Fair/poor 0 5.14
D: COOPERATION 0.98 1.26

we see that the horizontal axis, corresponding to factor
W. is associated with UNDERSTANDING. Overall,
respondents having a good understanding are highly
likely to be at Level 1 of factor W,whereas those
with a fair/poor understanding are highly likely to be
at Level 2. The figure makes it clear that education
is much more related to this factor than race. The
vertical dimension is highly related to PURPOSE.
Figure 10.2 shows more clearly than Figure 10.1 that
COOPERATION is related to both factors. In particu-
lar, those rated as impatient/hostile tend to include two
different types of respondents—those whose under-
standing is fair/poor, as well as those who view the
purpose of surveys as a “waste of time and money.”

10.4. OTHER TYPES
OF LATENT CLASS MODELS

Thus far, we have focused on the traditional LC
modeling approach, including some important exten-
sions such as covariates, several latent variables,
and local dependencies. Some common characteris-
tics of these models are that they serve as scaling
methods or tools for dealing with measurement error,
that indicators are nominal or ordinal, and that local
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Figure 10.2  Biplot for Two-Factor Model With Covariates
Factor V
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independence between indicators is the primary model
assumption. In this section, we discuss other types of
LC models. They are not used as scaling tools but as
clustering methods, tools for dealing with unobserved
heterogeneity, density estimation methods, or random-
coefficients models (McLachlan & Peel, 2000). More-
over, indicators or dependent variables can be of scale
types other than nominal or ordinal, and local indepen-
dence is no longer the basic model assumption. As we
will see, in some cases, there is only one indicator or
dependent variable.

The next section presents simple mixture models
for univariate distributions, with examples of mix-
tures of normals and mixtures of Poisson distributions.
Then, we extend this basic model by including predic-
tors, yielding what is called mixture regression or LC
regression models. We present an example of a mixed
linear regression model and show how the method
can deal with various types of repeated measurements.
Special attention is given to the relationship with
hierarchical or multilevel models. Then, we present

another extension of the simple mixture model, that
is, a mixture model for multivariate distributions. As
will be shown, the resulting LC model can be seen
as a model-based alternative to standard hierarchical
clustering methods such as K-means. We end with a
short overview of LC methods that were not discussed
in detail.

10.4.1. Simple Mixture Models

Consider the histogram depicted in Figure 10.3. This
generated data set of 1,000 cases is obtained from
a population consisting of a mixture of two normal
distributions. For 60% of the population, the variable
of interest follows a normal distribution with a mean
of 0 and a variance of 1, N (0, 1); for the other 40%,
the mean equals 3 and the variance 4, N(3,4). The
normal curve that is drawn through the histogram
shows that the resulting mixture is clearly not normally
distributed.
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Figure 10.3

Simulated Distribution From a Mixture of Two Normals
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A model that can be used to describe such a Table 10.9 Test Results for Generated Mixture of
phenomenon is a finite mixture model (Everitt & Hand, Normals Data
1981; McLachlan & Peel, 2000), which is a particular Number of
kind of LC model. The basic formula for a mixture of Model Log-Likelihood  BICy Parameters
univariate distributions is
Equal variances
r ¥ One-class —2177.75 4369.31 2
FO® =Y 7 F(le). ) Two-class —2066.99  4161.61 4
=1 Three-class —2050.78 4143.00 6
Four-class —2046.25 4147.75 8
The left-hand side of equation (4) indicates that we Unequal variances
are interested in describing the distribution of a random Two-class —2048.14 4130.81 5
variable y, which depends on a set of unknown param- Three-class —2047.78 4150.83 8
X Four-class —2045.41 4166.80 11

eters ¥. The right-hand side contains two terms: 7,
is the probability of belonging to latent class or mix-
ture component ¢, and f (y|¢@,) is the distribution of y
within latent class ¢, given some unknown parameters
@,. The class-specific distribution of y is assumed to
belong to a particular parametric family. Depending
on the scale type of y, this can, for instance, be a
normal, Poisson, binomial, exponential, or gamma
distribution. The summation on the right-hand side
indicates that the distribution of y is a weighted mean of
the class-specific distributions, where the latent class
proportions serve as weights.

Mixture models such as these have two important
types of applications. The first is density estimation:
Complicated distributions can be approximated by a

NOTE: BIC = Bayesian information criterion.

mixture of simple parametric distributions. Another
important application type is clustering, in which case
the class-specific parameters are used to define the
clusters, and the posterior membership probabilities
are used to classify cases into the most appropriate
cluster.

Table 10.9 presents test results for various models
fitted to the data depicted in Figure 10.3. We esti-
mated one- to four-class mixtures of normal dis-
tributions with equal and unequal within-cluster
variances. As can be seen, the BIC measure identifies
the correct model, the two-cluster model with unequal



Table 10.10  Observed and Estimated Frequency
Distribution of Packs of Hard Candy
Purchased During Past 7 Days Under
the One-Class and Three-Class Poisson
Model
Frequencies
Number of One-Class Three-Class
Packages Observed Model Model
0 102 8.43 101.67
1 54 33.63 54.63
2 49 67.11 50.03
3 62 89.28 53.89
4 44 89.09 47.25
5 25 71.11 34.14
6 26 47.30 22.00
7 15 26.97 14.37
8 15 13.46 11.02
9 10 5.97 10.18
10 10 2.38 10.17
11 10 0.86 9.97
12 10 0.29 9.20
13 3 0.09 7.90
14 3 0.03 6.32
15 5 0.01 4.72
16 5 0.00 3.30
17 4 0.00 2.18
18 1 0.00 1.36
19 2 0.00 0.80
20 1 0.00 0.45

within-cluster variances, as best. The three-class
model with equal within-cluster variances fits almost
as well, showing that a simpler parametric form can
sometimes be compensated by a larger number of
mixture components.

In the two-class model with unequal variances, the
estimated probability of belonging to Class 1 is .64.
This class has an estimated mean of —0.03 and a
variance of 1.01. The mean and variance of the other
class equal 3.24 and 3.95. Note that these estimates are
close to the population values we used to generate this
data set.

Table 10.10 provides a data set taken from
Dillon and Kumar (1994) that we will use as a second
example. It gives the observed frequency distribution
of the number of packs of hard candy consumed by
456 respondents during the 7 days prior to the survey.
Because the outcome variable is a count without a
fixed maximum, it iS most natural to assume that it
follows a Poisson distribution. The table also reports
the estimated frequency distribution obtained with a
standard, or one-class, Poisson model, as well as
with a three-class mixture Poisson model. As can
be seen, the standard Poisson model does not fit the
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empirical distribution at all, whereas the three-class
Poisson describes the data almost perfectly. This shows
that a mixture of simple parametric distributions can
be used to describe a quite complicated empirical
distribution.

Test results obtained when applying mixture Poisson
models to the hard candy data set show that models
with two and three mixture components perform much
better than the standard Poisson model. As is typi-
cal, there is a saturation point at which increasing
the number of classes no longer increases the log-
likelihood function: In this case, it occurs at four
classes. The three-cluster solution is the one that is
preferred according to the BIC criterion.

The estimated latent class proportions in the three-
class model are 0.54, 0.28, and 0.18, and the Poisson
rates are 3.48, 0.29, and 11.21. This means that we
identified a small cluster of heavy users (more than
11 packs in 7 days), a cluster containing slightly more
than a quarter of the respondents with almost no usage,
and a large group of moderate users.

10.4.2. LC Regression Models

In the simple mixture models discussed above, it
was assumed that the mean of the chosen parametric
distribution differs across latent classes. This can also
be expressed by specifying a linear regression model
for the mean of the distribution of interest, u,, after
applying some transformation or link function g(..)
that depends on the scale type of the y variable. For
the mean of a binomial or multinomial distribution, we
use a logit transformation; for a Poisson mean, a log
transformation; and for a normal mean, no transfor-
mation or an identity link. The regression model has
the form

g(ur) = Bor-

As can be seen, this regression model contains only
an intercept, and this intercept is class specific.

Let w denote a set of predictors or explanatory
variables. Suppose we are no longer interested in the
unconditional distribution of y but in the conditional
distribution of y given w, f(y|w, ¢,). A natural way
to express the dependency of y on w is by the inclusion
of the set of predictors w on the right-hand side of the
regression equation. In the case of a single predictor w,
the resulting LC regression model (Wedel & DeSarbo,
1994) has the form

8(we) = Bor + Buw,

where By, and B, are the class-specific regression
coefficients.
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Figure 10.4

Simulated Two-Class Latent Class (LC) Regression Model
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Figure 10.4 depicts a data set generated from a
population consisting of two latent classes, with class-
specific regression models equal to u; = 1 + 3w
and pup = 0+ lw. It also compares the estimated
y values for the two-class model (YLC2) with the
standard one-class regression model (YLC1). As can
be seen, the description given by the standard regres-
sion model is very poor compared to the two-class
model. The LC regression modeling procedure has no
problem identifying the two regression lines without
preknowledge of class membership.

In an LC regression model, the latent variable is a
predictor that interacts with the observed predictors,
which means that it serves as a moderator variable.
Compared to a standard regression model in which all
predictors are observed, this basic LC regression model
provides several useful functions. First, it can be used
to weaken standard regression assumptions about the
nature of the effects (linear, no interactions) and the
error term (independent of predictors, particular distri-
bution, homoskedastic). Second, it makes it possible to
identify and correct for sources of unobserved hetero-
geneity. As explained below, this is especially useful
in situations when there are repeated measurements

or other types of dependent observations. Longitudi-
nal data applications are sometimes referred to as LC
or mixture growth models (each latent class has its
own growth curve). Third, it can be used to detect
outliers because these are cases for which the primary
regression model does not hold.

An important application area for LC regression
modeling is clustering or segmentation (Wedel &
Kamakura, 1998). In particular, ratings- and choice-
based conjoint studies are designed to identify sub-
groups (segments) that react differently to product
characteristics, which is the same as saying that these
groups have different regression coefficients. This type
of application is illustrated in more detail below with
an empirical example.

10.4.2.1. Example: Repeated
Measurements or Clustered Observations

As explained below, the LC regression model can
be viewed as a random-coefficients model that, sim-
ilar to multilevel or hierarchical models, can take
dependencies between observations into account. This
extends the application of LC regression models to



Table 10.11

Chapter 10/Latent Class Models o 19

Parameter Estimates for the Abortion Example

Standard
Parameter Class 1 Class 2 Class 3 Class 4 Mean Deviation
Class size 0.30 0.28 0.24 0.19
Intercept —0.34 0.60 3.33 1.59 1.16 1.38
Year
1983 0.14 0.26 0.47 —0.58 0.12 0.35
1984 —0.12 —0.46 —-0.35 —1.11 —0.45 0.34
1985 0.04 —0.44 —0.26 1.43 0.10 0.66
1986 —0.06 0.64 0.14 0.26 0.24 0.27
Religion
Roman Catholic —0.53 —0.53 —0.53 —0.53 —0.53 0.00
Protestant 0.20 0.20 0.20 0.20 0.20 0.00
Other —0.10 —0.10 —0.10 —0.10 —0.10 0.00
No religion 0.42 0.42 0.42 0.42 0.42 0.00

situations with repeated measurements or other types
of dependent observations.

We will illustrate LC regression with repeated mea-
surements using an application to longitudinal survey
data. This is, therefore, an example of an LC growth
model. The data set consists of 264 participants in
the 1983 to 1986 yearly waves of the British Social
Attitudes Survey (McGrath & Waterton, 1986). The
dependent variable is the number of yes responses on
seven yes/no questions as to whether it is a woman’s
right to have an abortion under specific circumstances.
Because this is a count variable with a fixed total, it
is most natural to work with a logit link and bino-
mial error function. The predictors that we used are
the year of measurement (1 = 1983, 2 = 1984,
3=1985,4 =1986) andreligion (1 = Roman Catholic,
2 = Protestant, 3 = other, 4 = no religion). The effect
of year of measurement is assumed to be class depen-
dent, and the effect of religion is assumed to be the
same for all classes.

We estimated models with one to five classes, and
the four-class model turned out to perform best in terms
of the BIC criterion. We also estimated more restricted
models in which the time effect is assumed to be linear
and/or the time effect is assumed to be class indepen-
dent. These models did not describe the data as well
as our four-class model, which indicates that the time
trend is nonlinear and heterogeneous.

The parameters obtained with the four-class model
appear in Table 10.11. The parameter means across
classes indicate that the attitudes are most positive at
the last time point and most negative at the second
time point. Furthermore, the effects of religion show
that people without religion are most in favor and
Roman Catholics and others are most against abortion.

Protestants have a position that is close to the
no-religion group.

The class-specific parameters indicate that the four
latent classes have very different intercepts and time
patterns. The largest Class 1 is most against abortion,
and Class 3 is most in favor of abortion. Both latent
classes are very stable over time. The overall level of
latent Class 2 is somewhat higher than of Class 1,
and it shows somewhat more change of the attitude
over time. People belonging to latent Class 4 are very
instable: At the first two time points they are similar
to Class 2, at the third time point to Class 4, and at the
last time point again to Class 2 (this can be seen by
combining the intercepts with the time effects). Class
4 could therefore be labeled as random responders.
It is interesting to note that in a three-class solution,
the random-responder class and Class 2 are combined.
Thus, by going from a three- to a four-class solution,
one identifies the interesting group with less stable
attitudes.

Vermunt and Van Dijk (2001) used the same empir-
ical example to illustrate the similarity between LC
regression models and random-coefficients, multi-
level, or hierarchical models. Using terminology from
multilevel modeling, the time variable is a Level 1
predictor and religion a Level 2 predictor. The effect
of the Level 1 predictor time is allowed to vary
across Level 2 units—in this case, individuals. The
LC regression output can be transformed into the
usual output produced by a standard multilevel or
hierarchical model—means, variances, covariances of
the intercept, and the three time effects—by elemen-
tary statistical operations. The most important part of
this multilevel output is what appears in the last two
columns of Table 10.11.
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A difference between LC regression analysis and
standard hierarchical models is that the former does not
make strong assumptions about the distribution of the
random coefficients. LC regression models can, there-
fore, be seen as nonparametric hierarchical models
in which the distribution of the random coefficients
is approximated by a limited number of mass points
(= latent classes). As shown by Vermunt and Van Dijk
(2001), the LC approach has the practical advantage of
being much less computationally intensive than para-
metric models, and substantively easier to interpret
results are often obtained.

10.4.2.2. Example: Application
to Choice-Based Conjoint Studies

The LC regression model is a popular tool for the
analysis of data from conjoint experiments in which
individuals rate or choose between sets of products
having different attributes (Wedel & Kamakura, 1998).
The objective is to determine the effect of product
characteristics on the rating or the choice probabilities.
LC analysis is used to identify subgroups or market
segments for which these effects differ.

For illustration of LC analysis of data obtained from
choice-based conjoint experiments, we use a gener-
ated data set. The products are 10 pairs of shoes that
differ on three attributes: fashion (0 = traditional,
1 = modern), quality (0 = low, 1 = high), and price
(ranging from 1 to 5). Eight choice sets offer 3 of
the 10 possible alternative products to 400 individuals.
Each choice task consists of indicating which of the
3 alternatives they would purchase, with the response
“none of the above” allowed as a fourth choice option.

The model that is used is a multinomial logit model
with choice-specific predictors, also referred to as the
conditional logit model. Let M be the number of choice
sets, K the number of choices per set, and J the number
of predictors. A particular set, choice, and predictor are
denoted by m, k, and j, respectively. The regression
model of interest is

eXP(Z;Zl Bit W)
Yot exp(X -y Bitwmi)

Here, m, denotes the probability that someone
belonging to class ¢ selects choice alternative k in
choice set m. The predictors we use are the three
product attributes (fashion, quality, and price), as well
as a dummy variable for the “none” category.

The BIC values indicated that the three-class model
is the model that should be preferred. The para-
meter estimates obtained with the three-class model

Tkt =

Table 10.12 Parameter Estimates for Conditional
Logit Model in Conjoint Study Example
Wald for
Wald for Equal
Class 1 Class2 Class3 No Effect  Effects
Fashion 3.03 —0.17 1.20 494.74 216.37
Quality —0.09 2.72 1.12 277.96 171.16
Price —0.39 —0.36 —0.56 144.48 3.58
None 1.29 0.19 —-043 82.39 59.26
Table 10.13 Parameter Estimates for the Latent
Variable Regression for Conjoint Study
Example
Class 1 Class 2 Class 3 Wald
Intercept 0.37 0.00 —-0.37 8.22
SEX
Male —0.66 —0.34 1.01 24.15
Female 0.66 0.34 —1.01
AGE
16-24 1.02 —0.15 —0.87 62.76
25-39 —0.59 —0.37 0.96
40+ —043 0.52 —0.09

are reported in Table 10.12. As can be seen, fashion
has a major influence on choice for Class 1, quality for
Class 2, and both fashion and quality for Class 3. The
price effect is similar for all three classes. The Wald
test for the equality of effects between classes indicates
that the difference in price effects across classes is
not significant. The price effects could, therefore, be
assumed to be class independent.

In addition to the conditional logit model, which
shows how the predictors affect the likelihood of
choosing one alternative over another, differentially
for each class, we specified a second logit model to
describe the latent class variable as a function of the
covariates sex and age. Table 10.13 shows that females
turn out to belong more often to Class 1 and males to
Class 3. Younger persons have a higher probability of
belonging to Class 1 (emphasize fashion in choices),
and older persons are most likely to belong to Class 2
(emphasize quality in choices).

In conclusion, the LC regression model offers com-
putational and interpretive advantages over the more
traditional hierarchical modeling approach that tends
to overfit data (Andrews, Ansari, & Currim, 2002).
In our example, we used the BIC criteria to select a
parsimonious number of classes. However, researchers
who prefer the results to show higher levels of individ-
ual variation in regression coefficients can obtain such



with LC regression models by simply increasing the
number of latent classes to produce the desired amount
of variation.

10.4.3. LC Analysis as an Alternative
to K-Means Clustering

An important application of LC analysis is cluster-
ing (Banfield & Raftery, 1993; McLachlan & Peel,
2000; Vermunt & Magidson, 2002). Actually, we
already saw several cluster-like applications. The tra-
ditional LC model was used to construct a typology
of survey respondents using a set of categorical indi-
cators. We also showed that simple mixture models
such as mixtures of normals or mixtures of Poisson
distributions could be used for clustering purposes.

In this section, we will concentrate on LC analysis as
a tool for cluster analysis with continuous indicators.
These LC models can be seen as multivariate exten-
sions of the mixtures of univariate normals discussed
above. Instead of assuming a univariate normal dis-
tribution, we assume multivariate normal distributions
within latent classes. The most general form of the mix-
ture model concerned assumes that each latent class
has its own set of means, variances, and covariances.
More formally,

T
fO =) "X fyln, To).
t=1

Here, p, denotes the vector with class-specific
means and X, the class-specific variance-covariance
matrix. Note that, contrary to traditional LC model-
ing, it is not necessary to assume local independence
between the indicators.

The above LC cluster model is similar to the model
used in discriminant analysis. An important difference
is, of course, that in cluster analysis, group member-
ship is unobserved or latent, which is the reason that
LC cluster analysis is sometimes referred to as latent
discriminant analysis.

The first part of Figure 10.5 depicts a data set that
we will use to illustrate the LC cluster model for
continuous variables. Three measures are available to
diagnose diabetes: glucose, insulin, and steady-state
plasma glucose (SSPG) (see Fraley & Raftery, 1998).
In addition to these measures, we have information on
the clinical diagnosis consisting of the three categories
“normal,” “chemical diabetes,” and “overt diabetes.”
However, in practice, a gold standard is not available
in cluster applications. Our objective here is to con-
struct a mixture model that yields a classification that
is close to the clinical diagnosis, without use of the
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Figure 10.5 Matrix Scatter Plot of Diabetes Data
Set for the Clinical Classification, the
K-Means-Like Five-Cluster Solution,
and the Final Three-Cluster Solution
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information on the clinical diagnosis. We use this
data set to demonstrate the flexibility of LC clustering
compared to other clustering methods. The gold
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Table 10.14 Test Results for Diabetes Data
Number of
Model Log-Likelihood BICyp Parameters
Equal and diagonal
One-cluster —2750.13 5530.13 6
Two-cluster —2559.88 5169.52 10
Three-cluster —2464.78 4999.24 14
Four-cluster —2424.46 4938.49 18
Five-cluster —2392.56 4894.60 22
Unequal and diagonal
One-cluster —2750.13 5530.13 6
Two-cluster —2446.12 4956.94 13
Three-cluster —2366.92 4833.38 20
Four-cluster —2335.38 4805.13 27
Five-cluster —2323.13 481547 34
Unequal and full
One-cluster —2546.83 5138.46 9
Two-cluster —2359.12 4812.80 19
Three-cluster —2308.64 4761.61 29
Four-cluster —2298.13 4790.34 39
Five-cluster —2284.97 4813.79 49
Unequal and y; — y» free
One-cluster —2560.40 5155.64 7
Two-cluster —2380.27 4835.19 15
Three-cluster —2320.57 4755.61 23
Four-cluster —2303.14 4760.56 31
Five-cluster —2295.05 4784.19 39

NOTE: Bold numbers (minimum Bayesian information criterion [BIC]) indicate the model that would

be selected according to the BIC criterion.

standard makes it possible to judge whether the
methods do what we want them to do.

LC cluster analysis is a model-based clustering pro-
cedure. As such, it is a probabilistic and more flexible
alternative to K-means clustering. K-means cluster-
ing performs well under very strict conditions—that
is, if indicators are locally independent and if error
variances are cluster invariant and equal across indi-
cators (X, = o2I). These implicit assumptions of
K-means imply that in a three-dimensional scatter plot,
each cluster has the form of a sphere with the same
radius, and in each two-dimensional plot, each cluster
will have the form of a sphere with the same radius. The
assumption of equal error variances across indicators
is the reason that in K-means clustering, it is advised to
standardize the variables prior the analysis. Although
standardization often improves the situation, it does
not solve the problem because equating the variance
in the total sample is not the same as equating the
within-group variances (Magidson & Vermunt, 2002).

Having a closer look at Figure 10.5, it can easily
be seen that it is impossible to describe the shape of
the three diabetes clusters by a K-means model, that
is, by three spheres with the same radius. The within-
cluster variances are very different across clusters and

across indicators. Moreover, the glucose and insulin
indicators are strongly correlated within the group with
overt diabetes. Nevertheless, because the clusters are
well separated, areliable cluster method should be able
to yield a three-cluster solution that is similar to the
clinical classification.

The problems associated with K-means are con-
firmed by the test results reported in Table 10.14.
We estimated one- to five-cluster models, each with
four different specifications of the variance-covariance
matrix: diagonal (= local independence) and equal
across classes, diagonal and unequal, glucose-insulin
covariance and unequal, and all covariances and
unequal. It can be seen that when the specifications
are too restrictive, one needs five and four clusters,
respectively. Actually, with the first K-means-like
specification, even more than five clusters are needed.

Although the BIC values indicate that the two
additional local dependencies (y; — y3 and y, — y3)
in the full model are not needed (compare the
three-cluster solutions for the last two specifications),
the fit measures also show that both the model with the
fully unrestricted covariance matrix and the model with
only the glucose-insulin covariance detect the correct
three-cluster solution. This means that working with a



model with insufficient restrictions does not harm in
this example, but this is not always the case.

The middle part of Figure 10.5 shows the five nearly
spherical clusters identified with the most restricted
specification we used. Similar results would have been
obtained with K-means. The lower part of Figure 10.5
depicts the three-cluster solution that turned out to be
the best according to the BIC criterion. It can be seen
that the three clusters identified by this model are very
similar to the clinical classification. Our three-cluster
solution is smoother in the sense that some of the
overlap between the clinical classes disappears, which
is, of course, what can be expected from a statistical
model. The correspondence between the three-cluster
and the clinical classification is 87%, which is only
slightly lower than the 93% correct classifications of
a quadratic discriminant analysis (in which cluster
membership is treated as known).

The LC cluster model can be applied not only
with continuous indicators but also with indicators of
other scale types and different combinations of scale
types. Depending on the scale type, one will spec-
ify the most appropriate within-cluster distribution for
the indicator concerned. This yields a general cluster
model for mixed-model data (Hunt & Jorgensen, 1999;
Vermunt & Magidson, 2002). Note that the traditional
LC model is the special case in which all indicators are
categorical variables.

10.4.4. Other Developments in LC Modeling

In this chapter, we presented what we believe to be
the most important types of LC models. We did not
discuss LC models for transition, survival, or event
history data (Vermunt, 1997). Most of these models
are mixture regression models and can, therefore, be
handled within the LC regression framework. Another
important class of models for transition data are latent
or hidden Markov models that can be used to separate
true change from measurement error in the outcome
variable of interest (see, e.g., Langeheine & Van de
Pol, 1994). The structure of latent Markov models is
similar to the LC models with several latent variables
discussed in the previous section.

In the previous section, we presented LC models
that can be used for scaling. There also exist more
sophisticated LC scaling models, which can be
obtained by imposing certain constraints on the param-
eters of the traditional LC model. Examples are LC
models for probabilistic Guttman scaling, LC models
with order constraints, LC Rasch models, LC models
for preference data, and LC models for distance data
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(see Bockenholt, 2002; Croon, 2002; Dayton, 1998;
Heinen, 1996).

Another more advanced type of LC model we would
like to mention is the LISREL-type framework for cat-
egorical variables developed by Hagenaars (1990) and
extended by Vermunt (1997). Any type of LC models
with categorical indicators, including LC models for
transition data and sophisticated LC scaling models,
are special cases of this general model. A limitation
of this approach is that it is restricted to categorical
indicators.

A final recent development that we would like to
mention is the development of more sophisticated
restricted mixtures of multivariate normals than that
discussed above. LC models have been proposed
in which the class-specific covariance matrices are
constrained by means of principal component
(Fraley & Raftery, 1998) or factor-analytic (Yung,
1997) structures or by structural equation models
(Jedidi, Jagpal, & DeSarbo, 1997).
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