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Abstract 

 

Testing for measurement invariance can be done within the context of multigroup 

latent class analysis. Latent class analysis can model any type of discrete level data, 

which makes it an obvious choice when nominal indicators are used or when a 

researcher's aim is at classifying respondents in latent classes. The multigroup latent 

class (LC) model can be specified in three different ways, i.e. by adopting a 

probabilistic, a log-linear or a logistic parameterization. We define and compare these 

different forms of parameterization. The starting point is the standard LC model in 

which indicators and latent variables are defined at the nominal level. Additionally, 

we focus on LC models with ordinal indicators as well as LC factor models with 

ordinal indicators. Testing for measurement invariance involves estimating LC models 

with different degrees of homogeneity. We explain the procedure for investigating 

measurement invariance at both the scale as well as the item level. We illustrate the 

approach with two examples. The first example is a multigroup LC analysis with nominal 

indicators; the second a multigroup LC factor analysis with ordinal indicators. 
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INTRODUCTION 

There are three important reasons why latent class analysis offers a valuable 

approach for testing measurement invariance in cross-cultural survey research. First, 

latent class (LC) analysis can be used to identify latent structures from the 

relationships among sets of discrete observed variables, and the questions used in 

survey research have almost always discrete (ordinal or nominal) response categories. 

Second, different from – for instance – the more popular multigroup confirmatory 

factor analysis (MCFA), which has been elaborated in the previous chapters, LC 

models can treat latent variables as nominal – e.g. to identify a typological 

classification from a given set of categorical indicators – as well as ordinal – e.g. to 

investigate the scalability of a set of categorical indicators. These two specifications 

are sometimes referred as LC cluster and LC factor models, respectively. Third, 

multigroup LC analysis offers a flexible alternative to the more commonly used 

MCFA and multigroup item response theory (IRT) approaches, which both rely on 

stronger distributional assumptions than LC analysis. 

 This chapter is organized as follows. We first introduce the basic multigroup 

LC model, where attention is paid to three possible parameterizations of the model, 

and subsequently discuss two important extensions of the basic model; i.e. extension 

for dealing with ordinal indicators and for modeling the latent variables as ordinal 

variables. We then turn to the analysis of measurement invariance using multigroup 

LC models, discussing the general procedure, as well as methods for parameter 

estimation and evaluation of model fit. Finally, two examples are presented in which  

multigroup LC cluster and LC factor models are applied to a set of nominal and 

ordinal observed variables, respectively, with the aim to assess measurement 

invariance in a cross-cultural comparative setting. 
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1. MULTIGROUP LATENT CLASS MODELS 

The multigroup extension of the standard LC model has been developed for the 

analysis of latent structures of observed categorical variables across two or more 

groups (Clogg & Goodman, 1984; 1985). When comparing latent structures across 

groups, a number of possible outcomes can occur: they may turn out to be completely 

different (heterogeneous model), partially different (partially homogeneous model), or 

completely the same (homogeneous model). In this section we focus on the 

heterogeneous model in which all of model parameters are group-specific. We will 

discuss the classical probabilistic parameterization of the multigroup LC model, as 

well as its log-linear and logistic parameterization. We also pay attention to 

multigroup LC models for ordinal responses and with ordinal latent variables. The 

next section, which deals with the application of the multigroup LC model in cross-

cultural research, discusses models in which some or all parameters are restricted to 

be equal (invariant) across groups. 

 

1.1 The heterogeneous LC model 

Multigroup LC models assume the presence of three types of categorical 

variables: observed (indicator) variables; an unobserved (latent) variable that accounts 

for the relationships between the observed variables; and a grouping variable G, 

which is a categorically-scored, manifest variable that can be associated with both the 

indicators and the latent variable.  

Let us assume a LC model with four observed polytomous variables A, B, C, 

and D having I (i=1, 2, ..., I), J (j=1, 2, ..., J), K (k=1, 2, ..., K), and L (l=1, 2, ..., L) 

categories respectively; one latent polytomous variable X with T classes (t=1, 2, ..., 
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T), and one grouping variable G with S groups indexed by s=1, ..., S. The variables A, 

B, C and D are observed in each of these S groups. Thus, we have a set of S four-way 

(I × J × K × L) observable contingency tables, or one five-way table (I × J × K × L× 

S). Then the multigroup LC model takes the following form: 

XGD

lts

XGC

kts

XGB

jts

XGA

its

GX

ts

GABCDX

ijklts

|||||| ππππππ =                                     (1) 

Here, GABCDX

ijklts

|π denotes the conditional probability that an individual who 

belongs to the sth group will be at level (i, j, k, l, t) with respect to variables A, B, C, 

D, and X. The conditional probability of X taking on level t for a member of the sth 

group is denoted with GX

ts

|π , which determines the LC proportion for the sth group. 

XGA

its

|π  is the conditional probability of an individual taking level i of variable A, for a 

given level t of the latent variable X and for a given group membership s of the 

grouping variable G. Parameters XGB

jts

|π , XGC

kts

|π , and XGD

lts

|π  are similarly defined 

conditional probabilities.  

It should be noted that Equation 1 implies that indicator variables A, B, C, and 

D are independent from each other, given the value of the latent variable X. This is 

usually referred to as the assumption of local independence (Lazarsfeld & Henry, 

1968). The latent class and conditional response probabilities are constrained to sum 

to 1: 1| =∑
t

GX

tsπ  and 1| =∑
i

XGA

itsπ , etc. 

The model presented in Equation 1 can be called a heterogeneous model since 

all model parameters differ across groups. In fact, it is equivalent to applying a 

standard LC model (see Equation 2) for each group separately (Clogg & Goodman, 

1985). Or alterably, the standard LC model can be viewed a special case of the more 

general multigroup LC model (Equation 1) with the number of groups S=1. 

XD

lt

XC

kt

XB

jt

XA

it

X

t

ABCDX

ijklt

|||| ππππππ =                                             (2) 
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The probabilistic LC model presented in Equation 1 can also be parameterized 

using log-linear terms (Haberman, 1979; Goodman, 1974; McCutcheon, 2002). The 

conditional response probabilities from the probabilistic parameterization can be 

obtained from log-linear terms as follows (Haberman, 1979; Heinen, 1996): 

∑ +++

+++
=

i

AXG

its

AG

is

AX

it

A

i

AXG

its

AG

is

AX

it

A

iXGA

its
)exp(

)exp(|

λλλλ

λλλλ
π , etc.                                  (3) 

While A

iλ  and AX

itλ  represent the parameters of the standard, single-group LC 

model, AG

isλ  and AXG

itsλ  are the log-linear parameters that depict the inter-group 

variability of the two former parameters. Parameters AXG

itsλ  are sometimes referred to as 

‘interaction effects’ as it indicates that the latent and grouping variable interact with 

each other in their effect on the indicator variable. In other words, the relationship 

between item responses and latent variables is modified by the group membership. In 

a similar manner, AG

isλ  refers to a ‘direct effect’ of the grouping variable G on the 

indicator A. Such direct effects are present when group differences in item responses 

can not fully be explained by group differences in the latent factors – that is when the 

group variable influences indicators independently of the latent variable.  

Not only the response probabilities, but also the class membership probabilities 

GX

ts

|π  can be defined in terms of log-linear parameters; that is,  

∑
=

+

+
=

T

t

XG

ts

X

t

XG

ts

X

tGX

ts

1

|

)exp(

)exp(

γγ

γγ
π                                                 (4) 

where the symbol γ  denotes a log-linear parameter of the marginal distribution of the 

latent variable X (Magidson and Vermunt, 2001).  

Above we presented two possible parameterizations of the multigroup LC 

model, which we called the probabilistic and the log-linear parameterization. A third 
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way of specifying a multigroup LC models is by using a logistic regression-type of 

equation for the item response probabilities. In this logistic parameterization, the 

model for indicator item A takes on the following form: 

∑ +

+
=

i

GAX

its

GA

is

GAX

its

GA

isXGA

its
)exp(

)exp(
||

||
|

βα

βα
π , etc.                                           (5) 

where GA

is

|α  represent the group-specific intercepts and GAX

its

|β  the group-specific slope 

parameters. The slope parameter GAX

its

|β  indicates the strength of the relationships 

between the latent variable and the indicator variable and can thus be interpreted as a 

factor loading expressed in log-linear terms (Vermunt and Magidson, 2005). Note that 

there is a straightforward connection between the log-linear and the logistic 

formulations of the multigroup LC model presented in Equations 3 and 5: 

AG

is

A

i

GA

is λλα +=|                                                   (6) 

and 

AXG

its

AX

it

GAX

its λλβ +=|                                                  (7) 

In their unrestricted form, the three parameterizations of the multigroup LC 

model are essentially equivalent, estimating the same number of parameters and 

producing identical expected values. However, they allow for slightly different types 

of model restrictions which have important implications for the procedures to test 

measurement equivalence. First, in the probabilistic parameterization, equivalence is 

studied by restricting probabilities to be group invariant, in the loglinear 

parameterization by eliminating interaction and direct effects, and in logistic 

formulation by restricting intercepts and slopes to be invariant. Second, the latter two 

parameterizations are needed to formulate models in which indicator or latent 
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variables are treated as discrete-ordinal. The next two sections focus on ordinal 

indicators and ordinal latent variables. 

 

1.2 Multigroup LC models with ordinal indicators 

As noted previously, the log-linear and logistic parameterizations of the LC 

model allow for the formulation of restricted LC models for ordinal observed and 

ordinal latent variables. This is achieved by introducing linear restrictions among the 

parameters for the different categories of the same variable. When applied to the 

observed variables, these linear restrictions define them as discrete-ordinal variables. 

This is an important extension of the LC model since in many areas of social sciences, 

including cross-cultural comparative research, indicator items are often of a discrete-

ordinal form (e.g., rating scales).  

One straightforward way to define ordinal indicator variables is to assume 

equidistance between their categories and to modify the log-linear and logistic models 

for nominal items defined in Equations 3 and 5 by using equidistant category scores. 

The resulting response model takes on the form of an adjacent-category ordinal logit 

model. For example, in the case indicator item A is a 5-point rating scale (i=1, 2, ..., 

5) these scores could be: 

A

iυ  = i ={1 if i=1, 2 if i=2, ..., 5 if i=5}                                       (8) 

In the log-linear specification of Equation 3, the A

iυ  are used to restrict AX

itλ , as 

well as the direct and interaction effects as (see, e.g., Heinen, 1996) 

AX

t

A

i

AX

it *λυλ = , AG

s

A

i

AG

is *λυλ = , and AXG

ts

A

i

AXG

its *λυλ = ,                          (9) 

and the intercepts and slopes of the logistic model defined in Equation 5 as 

GAX

ts

A

i

GAX

its

|

*

| βυβ = .                                            (10) 
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Depending on the parameterization, the conditional response probability for 

ordinal indicator A becomes 

∑ +++

+++
=

i

AXG

ts

A

i

AG

s

A

i

AX

t

A

i

A

i

AXG

ts

A

i

AG

s

A

i

AX

t

A

i

A

iXA

it
)exp(

)exp(

***

***|

λυλυλυλ

λυλυλυλ
π ,                          (11) 

or 

∑ +

+
=

i

GAX

ts

A

i

GA

is

GAX

ts

A

i

GA

isXGA

its
)exp(

)exp(
|

*

|

|

*

|
|

βυα

βυα
π .                                   (12) 

In Equation 11, the loading for variable A on the latent variable X is given by AX

t*λ , 

and AXG

ts*λ  indicates how it differs across groups. In Equation 12, GAX

ts

|

*β  is the group-

specific loading parameter, where AXG

ts

AX

t

GAX

ts **

|

* λλβ += . It can easily be observed that 

for ordinal indicators the two parameterizations are no longer equivalent with respect 

to the part concerning the intercepts and the direct effects. This can be seen by 

writing AG

s

A

i

A

i

GA

is *

| λυλα += . The log-linear model is more parsimonious than the 

logistic model because it restricts the way in which the intercepts differ across groups 

by taking the ordinal nature of the response variable into account. As a result, there is 

only one direct effect parameter in Equation 11 ( AG

s*λ ) per additional group whereas 

there are I-1 intercept parameters in Equation 12 ( GA

is

|α ) per additional group.  

 Above we showed how to define multigroup LC models for ordinal items by 

restricting the log-linear and logistic parameters of the model for nominal items using 

the category scores for the indicators. This amounts to using an adjacent category 

ordinal logit specification. Alternative ordinal specification are, among others, 

cumulative logit and cumulative probit models. Multigroup LC models using such 

response models could also be specified either with direct effects and interactions or 

group-specific intercepts and slopes. 
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1.3 Multigroup LC models with ordinal latent variables 

LC models with discrete-ordinal latent variables are called LC factor models 

since they in many ways resemble linear factor analysis (Magidson and Vermunt, 

2001; Vermunt and Magidson, 2005). In most aspects multigroup LC factor analysis 

is equivalent to standard multigroup LC analysis with the main difference being that 

instead of comparing typologies it compares latent dimensions of observed discrete 

variables across groups (Moors, 2003; Kankaraš and Moors, 2009).  

Let us restrict ourselves to the situation in which there is a single latent variable. 

The latent variable is modelled as ordinal by using equidistant category scores X

tυ  

between 0 and 1 for the levels of the latent variable X in its relationship with the 

indicators. For example, in the case of a three-level latent variable X (t=1, 2, and 3) 

these scores are: 

X

tυ  = {0 if t=1, 0.5 if t=2, 1 if t=3}                                 (13) 

with the following constrains in the log-linear specification: 

AX

i

X

t

AX

it *λυλ =  and AXG

si

X

t

AXG

its *λυλ =                                   (14) 

and in the logistic specification: 

GAX

si

X

t

GAX

its

|

*

| βυβ =                                                  (15) 

Note that the two parameterizations are equivalent because AXG

si

AX

i

GAX

si **

|

* λλβ += . 

It is also possible to define both the latent and the indicators to be ordinal, which 

yields  

AG

s

A

i

AG

is *λυλ = , AXX

t

A

i

AX

it **λυυλ =  and AXG

s

X

t

A

i

AXG

its **λυυλ =                           (16) 

and: 

GAX

s

X

t

A

i

GAX

its

|

**

| βυυβ =                                                  (17) 
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Similar to the multigroup LC models with ordinal indicators and a nominal 

latent variable described in the previous subsection, the loglinear and logistic 

formulations are not completely equivalent anymore, as direct effects and intercepts 

contain different numbers of parameters. Although LC factor models are typically 

used with ordinal indicators, multigroup LC factor models with nominally defined 

indicators can be very useful in cross-cultural research as it allows for simultaneous 

analysis of measurement invariance and various response styles that can occur in 

survey responses (Moors, 2004). 

 

2. ANALYZING MEASUREMENT INVARIANCE  

In the multigroup LC models presented in the previous section, all model 

parameters were assumed to differ across groups, which makes it difficult to compare 

the results across groups. However, these are not the types of models a cross-cultural 

researcher is aiming at since he or she wants to be able compare results across groups. 

To determine whether this is possible, the researcher has to check whether latent 

classes have the same meaning in all groups, i.e. whether measurement invariance can 

be established. In the context of LC analysis measurement invariance is established 

when the class-specific conditional response probabilities are equal across groups. 

This implies that it is necessary to impose across-group equality restrictions on these 

conditional probabilities in order to test for measurement equivalence. As is shown 

below, using a multigroup LC analysis approach, various levels of homogeneity (i.e. 

measurement invariance) can be tested, each of which involves restricting specific 

sets of model parameters to be equal across groups.  

 

2.1 The general procedure of analysing measurement invariance 
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 The ideal situation for an applied researcher who wishes to compare groups 

occurs when all measurement model parameters can be set equal across groups. From 

this perspective, the objective of researching measurement invariance is to find the 

model with the lowest level of inequivalence possible that fits the data well. The 

model selection procedure usually starts by determining the required number of latent 

classes or discrete latent factors for each group. How this is determined will be 

explained later on. If the number of classes is the same across groups, then the 

heterogeneous model is fitted to the data; followed by a series of nested, restricted 

models which are evaluated in terms of model fit (McCutcheon, 2002, Hagenaars, 

1990; Eid, Langeheine, and Diener 2003).  

Graphical representations of the four prototypical models that differ in the 

assumed level of measurement invariance are provided in Figure 1 and explained in 

the remainder of this section of the paper. The heterogeneous, unrestricted multigroup 

LC model, as we have described in the first section of this paper (cf.  Equations 1, 3, 

and 5) is graphically presented in Figure 1a in which X represent the latent variable, 

M the set of manifest variables, and G is the group variable. 

Model 1a represent the situation of complete lack of comparability of results 

across groups as all measurement model parameters are group specific. Comparability 

is only established if we can impose across-groups restrictions on the model 

parameters without deteriorating the fit with the data. Imposing restrictions create 

various nested homogeneous models. If some, but not all, of the model parameters are 

restricted to be equal across groups; the model is called partially homogeneous (Clogg 

and Goodman, 1984; 1985).  

 

Insert Figure 1 here 
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Among the various possible partially homogeneous models, the one presented in 

Figure 1b with no ‘group - latent variable’ interaction terms is especially important.  

This model implies the following restrictions:  

0==== DXG

lts

CXG

kts

BXG

jts

AXG

its λλλλ                                       (18) 

or  

AX

it

GAX

its ββ =| , etc.                                                   (19) 

which results in the following equations for the group-specific conditional response 

probabilities: 

∑ ++

++
=

i

AG

is

AX

it

A

i

AG

is

AX

it

A

iXGA

its
)exp(

)exp(|

λλλ

λλλ
π , etc.                                  (20) 

or 

∑ +

+
=

i

AX

it

GA

is

AX

it

GA

isXGA

its
)exp(

)exp(
|

|
|

βα

βα
π , etc.                                   (21) 

Thus, this model still allows for ‘direct effects’ of the grouping variable on the 

indicator items ( AG

isλ ) or in second formulation it allows for group-specific intercept 

parameters ( GA

is

|α ). This means that the values of the conditional response 

probabilities (i.e., their “difficulties”) are different across populations. However, as 

there are no group – latent variable interaction effects in the model (as slope 

parameters are assumed to be equal across groups), relationships between the latent 

variable and the responses are the same across groups, which makes it possible to 

compare group differences in latent class membership (McCutcheon and Hagenaars, 

1997). It should be noted the partially homogeneous model presented in Equations 20 

and 21 can only be specified with loglinear and logistic parameterizations - 
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distinguishing direct and interaction effects and intercepts and slope parameters, 

respectively - and thus not  with the probabilistic parameterization. This is 

conceptually similar with the ‘metric equivalence’ model in MCFA in which factor 

loadings are equal across groups, but  item intercepts may be unequal. Likewise, it 

resembles the situation of ‘uniform’ differential item functioning (DIF) in IRT 

modelling. The partially homogeneous model can be tested against the unrestricted 

heterogeneous model. If the difference between the two models is not significant, a 

researcher can conclude that interaction effects are not needed in the model and can 

proceed with the next step in the analysis. 

In comparative social research, researchers are typically interested in 

establishing full comparability of the measurement across groups - that is they want to 

attain complete measurement invariance. In order to do so in the context of LC 

models it is necessary to establish structural equivalence (McCutcheon, 2002). In a 

structurally equivalent (homogeneous) model (Figure 1c) both direct and interaction 

effects are excluded from the loglinear model (set to zero), or in the alternative 

logistic formulation both intercept and slope parameters are set to be equal across 

groups. This means that the conditional probabilities of items are restricted to be equal 

across groups (e.g., GAX

itS

GAX

it

GAX

it

||

2

|

1 .. πππ === ) making the indicator variables 

independent of the group variable, when controlled for the latent variable. The 

structurally equivalent LC model then takes the following form: 

 XD

lt

XC

kt

XB

jt

XA

it

GX

ts

GABCDX

ijklts

|||||| ππππππ =                                              (22) 

or in loglinear form: 

∑ +

+
==

i

AX

it

A

i

AX

it

A

iXA

it

XGA

its
)exp(

)exp(||

λλ

λλ
ππ , etc.                                            (23) 

and in logistic terms: 
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∑ +

+
===

i

AX

it

A

i

AX

it

A

iXA

it

XGA

its
)exp(

)exp(||

βα

βα
ππ , etc.                                            (24) 

 Thus, in the structurally equivalent model the relationships between indicator 

items and the latent variable are identical across groups so that the class memberships 

have the same meaning in all groups. In other words, measurement invariance is 

established if this model does not fit the data significantly worse than the partially 

homogenous and heterogeneous models. The homogeneous model is comparable with 

the ‘scalar equivalent’ model in MCFA that defines both factor loadings and item 

intercepts to be the same across groups. In the IRT approach, it is similar to the model 

with both ‘difficulty’ and ‘discrimination’ parameters invariant across groups.  

Finally, if all parameters are restricted to be equal across group – that is if aside 

from conditional response probabilities, LC probabilities are also independent of 

group membership ( GX

tS

GX

t

GX

t

||

2

|

1 ... πππ === ), then we have the case of a completely 

equivalent (homogeneous) model (Figure 1d): 

 XB

jt

XA

it

X

t

ABX

ijt

GABCDX

ijklts

||| πππππ ==                                            (25) 

or in the loglinear parameterization: 

∑
=

t

X

t

X

tGX

ts
)exp(

)exp(|

γ

γ
π                                                       (26) 

For researchers in comparative social research the latter model is of less 

practical relevance, since the very aim of cross-cultural research is typically to 

describe country differences in LC membership probabilities or factor means and, 

hence, to illustrate cross-cultural diversity.  

Research is not by definition restricted to comparing the four models drawn in 

figure 1. Various combinations of within- and across-groups restrictions and different 

parameterizations are possible. One of these possibilities is, for instance, to test for 
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equal error rates of the indicator variables by restricting the corresponding conditional 

probabilities within a group to be equal (McCutcheon and Hagenaars, 1997). 

The procedure we just explained includes an analysis at the scale level – that is 

all indicator variables in the model are simultaneously modelled with the same set of 

restrictions. However, multigroup LC analysis of measurement invariance can be 

conducted at the item level as well. This is particularly relevant when the scale level 

analysis indicates inequivalence either in the interaction or in the direct effects. In that 

case the analysis continues with item level comparisons in order to check whether all 

items cause inequivalence. More specifically, equivalence in the slope parameter 

(presence of interaction effect) for a particular item A is assessed by comparing the 

unrestricted, heterogeneous model with a model in which this parameter is equated 

across groups for this item. In order to test for equivalence in intercept parameters 

(presence of direct effects) at the item level we need to assume equivalence in the 

slope parameters. Therefore, testing equivalence of the intercept parameters of item A 

is based on the comparison of the partially homogeneous model with equal slope 

parameters for all items (Equations 20 and 21) with the model which in addition 

assumes equal intercept parameters for item A. This procedure is very similar to the 

one used in MCFA where it is referred to as ‘partial equivalence’ (Steenkamp and 

Baumgartner, 1998; for a discussion on the MCFA approach to partial invariance see 

also Lee et al., in this book). It should be noted that multiple LC analysis differs from 

MCFA in that it does not require the use of an invariant marker item for identification 

purposes. 

As we have noted before, the first step in a multigroup LC analysis is to 

determine whether the number of latent classes or the number of discrete factors is the 

same across groups (McCutcheon, 1987; McCutcheon and Hagenaars, 1997). 
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However, it might very well be that a model with an acceptable fit in one group has 

more latent classes than the best fitting model in another group; and in a LC factor 

model the best fitting model in one country may have more factors that in other 

countries. In MCFA, the latter situation is referred to a violation the ‘configural 

invariance’ assumption (Steenkamp and Baumgartner, 1998), which limits the 

possibility of group comparisons. However, multigroup LC analysis with a nominal 

latent variable is rather flexible in the sense that it can be used to accommodate 

different numbers of latent classes across groups while still assuming measurement 

invariance. This involved specifying a model with same number of classes in each 

group, but in which some of the classes being empty (having proportions of 0) in 

certain groups. As example could be a three-class model with class proportions of 0.2, 

0.3, and 0.5 for one group and of 0.4, 0.6, and 0.0 for the other group. The analysis of 

measurement invariance can proceed as described above.  

The flexibility of the multigroup LC approach is also reflected in the fact that 

not all latent classes need to be equivalent in order to validly compare results across 

groups. In other words, there may be a situation in which only some of the latent 

classes have the same conditional response probabilities across groups, while other 

latent classes in a model do not. If this is the case, it is still possible to compare class 

sizes of equivalent classes while treating other classes in the model as group-specific 

and non-comparable. Models of this type can be defined using the probabilistic 

parameterization of the multigroup LC model. 

 

2.2 Parameter estimation and assessment of model fit 

LC models are usually estimated by means of maximum-likelihood (ML) under 

the assumption of a multinomial distribution for the indicator variables in model. 
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Maximization of the likelihood function is performed by the use of an expectation-

maximization (EM) or a Newton-Raphson algorithm, or a combination of these two.  

There are several model fit criteria that are commonly used for model fit 

evaluation in multigroup LC analysis. The likelihood-ratio chi-square (L
2
) statistic is 

used as a standard measure of discrepancy between observed and expected 

frequencies in the model. This statistic has one important advantage over the Pearson 

chi square (X
2
) test that lays in its partitioning ability. In particular, when two models 

are nested and when the less restricted model fits the data well, then the difference in 

the likelihood ratios between the two models represents a conditional likelihood ratio 

(L
2
) test on its own, following a chi-square distribution with a number of degree of 

freedom equal to the difference between the degrees of freedom of the two nested 

models. Thus, this conditional likelihood test can be used to compare the fit of 

successive, nested models and so to investigate the plausibility of (measurement 

invariance) restrictions included in nested models.  

However, the likelihood ratio chi square test, although extensively used in 

statistical literature, has a number of important limitations. The major one is its 

limited use when dealing with sparse tables, i.e. when the number of possible 

response patterns is large and the sample size is small creating contingency tables 

with many small and zero observed frequencies. In these cases p-values of the chi-

square tests can not be trusted as they might not follow the theoretical chi square 

distribution. On the other hand, when sample sizes are large, likelihood-ratio tests 

tend to be too conservative, indicating misfit even for minimal differences between 

two models. In addition, the likelihood-ratio statistic does not provide enough control 

for the number of parameters in a model that can sometimes be very large even for 

models of modest size (McCutcheon, 2002).  
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These limitations prompted the recent development and use of several 

information criteria, such as the Akaike information criterion (AIC), Bayesian 

information criterion (BIC), modified AIC (AIC3), and consistent AIC (CAIC), each 

of which is designed to penalize models with larger numbers of parameters. Since 

more parameters in a model increase its likelihood, the information criteria reduce 

that likelihood by a certain amount that is a function of the increased number of 

estimated parameters. They differ in the specific function with which they calculate 

the penalizing value for each additional parameter in a model. Specifically, AIC and 

AIC3 rely solely on the number of parameters in the model: 

AIC = L
2
 – 2df    and    AIC3 = L

2
 – 3df                                        (27) 

while BIC and CAIC also takes into account the sample size: 

    BIC = L
2
 – df*[ln(N)]   and   CAIC = L

2
 – df*[ln(N)+1]                      (28) 

where N is sample size. Thus, models with lower values of information criteria have a 

better fit to a data, for a given number of parameters. Since they also control for 

sample size, BIC and CAIC are preferred fit statistics in situations when sample size 

is large. For small to medium sample sizes, the AIC statistic is most commonly used. 

Software packages that can be used to obtain ML estimates and model fit 

statistics of the LC models are LEM (Vermunt, 1997), Latent GOLD (Vermunt and 

Magidson, 2005, 2008), MPlus (Muthén and Muthén, 2006), and GLLAMM (Rabe-

Hesketh, Skrondal and Pickles, 2004).  

 

3. EMPIRICAL EXAMPLES 

In this section we will present two examples of the use of LC models for the 

analysis of measurement invariance. The first example involves a standard multigroup 

LC analysis as both latent and indicator variables are treated as nominal. Multigroup 
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LC factor analysis is illustrated in the second example with latent and indicator 

variables defined to be discrete ordinal. In both examples we used equal size 

weighting of the samples to a sample size of 1000 per country, which was the size of 

the smallest country sample. This procedure is often used in cross-cultural research to 

prevent countries with larger sample sizes to dominate the results.  

The analyses of measurement invariance follow the procedures outlined in the 

section 2.1, by first selecting the best fitting model at the scale level and then testing 

invariance of individual items at the item level. We use the BIC statistic as our main 

model selection fit criterion since both the conditional L
2
 test and AIC do not provide 

control mechanism for sample size and are thus too conservative in their model fit 

evaluation with sample sizes as large as the ones used in presented examples. Models 

were estimated with the syntax version of the Latent Gold 4.5 program (Vermunt and 

Magidson, 2008). The syntax used in the two examples is reported in the Appendix.  

 

3.1 Example 1: Standard multigroup LC analysis 

The first example involves the analysis of four categorical items on preferences 

with respect to social developments in different spheres of life taken from the 

1999/2000 European Value Survey. Respondents were asked whether it would be a 

good thing, a bad thing, or whether they didn’t mind if in the near future emphasis 

would be placed on the development of 1) technology, 2) the individual, 3) family 

life, and 4) natural lifestyle. Though it is hard to imagine that these four issues refer to 

a single dimension, it can be that groups of respondents can be identified with 

different preferences, which is why a traditional LC analysis approach is used. Models 

are defined using the logistic parameterisation presented in Equation 5. We compare 

results between four countries: Belarus, Romania, Luxembourg, and Austria. These 
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countries were chosen because this particular selection allowed us to demonstrate a 

number of important features of the method.  

Separate analyses for each country indicated that a 2-class model provides the 

best fit in terms of BIC statistics. Whether a common 2-class structure emerges from 

the data, i.e. whether the data are measurement invariant, can be tested by fitting a 2-

class model with the pooled dataset. The level of measurement invariance present in 

data is indicated by the degree of homogeneity in the model that fits the data best. The 

more homogeneous the best-fitting model is, the more equivalent the data are. 

In Table 1a, we report the fit statistics for the various multigroup 2-class models 

that were estimated. As can be seen, the partially homogeneous model with equal 

loadings but different intercept parameters across countries (depicted in Figure 1b), 

fits the data best (BIC=-1758,4). This indicates that the estimated class-specific 

response probabilities for the two classes are not exactly the same across countries.  

There is a second route to be explored. It is possible that some latent classes can 

be observed in all countries, whereas other latent classes are country specific. In that 

case, a 2-class model for the pooled dataset would not be the best choice, but instead a 

model with more classes would be better. Hence, an alternative way to investigate the 

source of invariance is by checking whether the inclusion of (an) additional class(es) 

improves the model fit. In Table 1b, we report the fit statistics of the same three 

multigroup LC models but now with 3 instead of 2 classes. As we can see, the best 

fitting 3-class model is the structurally homogeneous (measurement invariant) model. 

Obviously, the addition of the third class has accounted for a substantial part of the 

inequivalence encountered in the 2-class model. This indicates that the partial 

inequivalence found in the 2-class model can, at least partially, be explained by 
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selecting a model with too few classes. Once the third class is included in the model, 

the latent classes turn out to be equivalent and comparable. 

Whereas the analyses presented so far were at the scale level, it is also useful to 

perform an item-level analysis to check the invariance of individual items. It should 

be some items may turn out to be non-invariant even if the scale-level analysis selects 

the homogeneous 3-class model. In sections c and d of Table 1, we present the fit 

measures obtained with the item-level analysis for the four items, both in terms of 

absence of interaction effects or invariance in slope parameters (Table 1c) and in 

terms of absence of direct effects or invariance in intercept parameters (Table 1d). As 

could be expected, all items have invariant slopes as BIC values of models without 

interaction effects for one item at a time (H4a - H4d) are smaller than that of the 

heterogeneous model H4. However, one of the items, i.e. 'assessing the preferred 

development of the individual', turns out to be inequivalent in terms of its intercept as 

is indicated by a higher BIC for model H5b compared to the partially homogeneous 

model H5. In other words, respondents' differences in answering this question were 

not only determined by membership to given latent classes but also by additional 

group-specific factor(s) that are unrelated to class membership. Therefore, in order to 

validly compare the class proportions across countries we will need to include the 

direct effect of countries on this indicator in the measurement model – that is, to allow 

the intercept of this indicator to vary across countries. Thus, the final measurement 

model is the model H7 (Table 1e) which is equal to the structural homogeneous model 

H6 modified by adding the direct effect of the grouping variable 'country' on the item 

‘individual’. All other parameters in the model are invariant across countries.  

 

Insert Table 1 here 
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 Having selected a measurement model that allows for comparison of countries, 

the next two questions refer to: (a) a substantive interpretation of the latent classes, 

and (b) the comparison of class sizes across countries. In Table 2 we report the item 

response probabilities and class proportions obtained for the selected H7 model.  

 

Insert Table 2 here 

 

Class 1 comprise 58,8% of respondents with overwhelmingly positive 

preference towards all four social developments; 32,9% of people belonging to class 2 

have somewhat more negative and less involved preferences towards development of 

technology; 8,3% of respondents belonging to class 3 are rather indifferent in respect 

to the given subject (have high percentage ‘don’t mind’ answers). 

Class sizes differ substantially across countries. Most of the respondents in 

Belarus and Romania belong to class 1 and have positive preferences for all social 

developments, whereas in Luxembourg and Austria there is also a considerable 

number of people belonging to class 2 with more reserved views on development of 

technology. The third class containing the less concerned respondents is smallest in 

all four countries. To test whether class sizes differ significantly across countries we 

compare the selected model H7 with a model in which equal class sizes are assumed 

(model H7a). Fit statistics of this model (H7a) presented in Table 1e show that it fits 

much worse than model H7, which indicates that the obtained differences in class 

sizes across countries are statistically significant. 

 

3.2 Example 2: Multigroup LC factor analysis 
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In this second example we illustrate multigroup LC factor analysis with an 

application to a set of discrete ordinal indicators from the 2006/2007 European Social 

Survey (ESS), which contains information on 23 European countries. The records 

were weighted in order to yield an equal number of 1000 cases per country. We 

investigated the measurement invariance of a 4-item scale measuring inter-personal 

feelings which assesses to what extent respondents a) feel that people in their local 

area help one another, b) feel that people treat them with respect, c) feel that people 

treat them unfairly, and d) feel that they get the recognition they deserve. Answers are 

given on a 7-point rating scale ranging from ‘Not at all’ to ‘A great deal’. We 

modelled the indicators and the latent variable (3-levels) as discrete-ordinal, using the 

logistic parameterization of the LC factor model presented in Equation 17.  

In Table 3, we report the likelihood ratio (L
2
), BIC and AIC statistics for various 

LC factor models. On the scale level (Table 3a), we compared three basic LC models: 

the heterogeneous model H1, the partially homogeneous model H2 without interaction 

effects between the latent and grouping variable (with equal slope parameters), and 

the measurement invariant, homogeneous model H3 with neither direct nor interaction 

effects (with equal intercept and slope parameters). As we see, the BIC statistic 

indicates that the homogeneous H3 model fits the data best taken into account the 

number of parameters and the sample size. However, before drawing a final 

conclusion about measurement invariance, we need to check whether all individual 

items are measurement invariant.  

 

Insert Table 3 here 
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In the item-level analysis, we first compared the heterogeneous model H1 with 

four models (H1a – H1d) in which the interaction effect between the latent and 

grouping variable are excluded for one item at a time (Table 3b). Since the four 

models excluding a single interaction term do not fit worse than the unrestricted 

model H1, we can conclude that there are no significant interaction effects and the 

relationship between the latent variable and indicators can be assumed to be the same 

across countries, which confirms what we found in the scale-level analysis.  

The next step involves testing of the need for direct effects at the item level 

comparison the four models H2a – H2d that excludes the direct effects of the grouping 

variable on a single item with the partially homogeneous H2 (Table 3c). The fit 

measures show that none of these restricted models fits worse than the partially 

homogeneous model H2, which indicates that the conditional response probabilities 

can be assumed to be equal across countries for each of the four items. Thus, our 

analysis shows that the scale designed to measure inter-personal feelings is 

measurement invariant. This means that the four indicator items are measuring one 

latent variable in all of the 23 countries and that the meaning of this latent variable is 

the same across countries. Having established measurement invariance, a researcher 

can now proceed with the analysis of substantive differences in latent variable across 

countries.  

Class proportions and discrete factor means for each country are reported in 

Table 4. The latter are calculated by multiplying class proportions with predefined 

fixed scores 0, 0.5, and 1 of each factor level. The level of positive feelings increases 

with class number.   

 

Insert Table 4 here 
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The estimates reported in Table 4 indicate that respondents from Denmark, 

Norway and Switzerland have the most positive, and from Slovakia, Ukraine, and 

United Kingdom the most negative feelings about their relationship with other people. 

 

CONCLUSIONS 

The paper discussed the use of multigroup LC analysis as a tool for investigating 

measurement invariance. Three parameterizations of the multigroup LC models, were 

presented, i.e. a probabilistic, log-linear and logistic parameterization. The latter two 

are used to define the LC model with ordinal indicator variables and the LC factor 

model. An additional benefit of the log-linear and logistic parameterization is that 

they are better suited for testing measurement invariance, as they allow a researcher to 

test a whole range of partially homogeneous models that are not possible to formulate 

using probabilistic parameterization. It was shown how to test for strict and less strict 

forms of measurement invariance by gradually imposing restrictions on the fully 

heterogeneous unrestricted multigroup LC model and comparing the resulting model 

fit statistics.    

The LC approach is an obvious choice when a researcher wishes to compare 

typological structures across countries – that is when analyzing whether there are 

cross-cultural differences in the frequencies of the different types, taking into account 

issues of measurement equivalence. With the possibility to define the latent variable 

as discrete-ordinal, it is shown that the LC approach can also be used for cross-

cultural comparisons of dimensional structures, thus, presenting an alternative to the 

more frequently used MCFA and IRT approaches. This is especially true in those 

situations when some of the modeling assumptions of MCFA and IRT do not hold. 
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With its flexible set of tools, combined with recent developments in software for 

multigroup LC modelling, the presented approach is a very attractive option for 

studying measurement invariance in any situation in which the indicators are discrete 

variables. 
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FIGURES AND TABLES 

 

Figure 1    Relationships between latent variable (X), manifest variables (M) and 

group variable (G) in four different multigroup LC models 

 

                                        
 

a) Heterogeneity (complete inequivalence)                b) Partial homogeneity 

 

 

 

                                        
 

c) Structural homogeneity                                      d) Complete homogeneity 
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Table 1:   Fit statistics of the estimated 2- and 3-class multigroup LC models 

 Npar
∗∗∗∗ L² BIC(L²) df 

a) H1: Heterogeneous 2-class 68 402,5 -1642,4 252 

H2: Partial Homogeneity (Figure 1b) 44 481,2 -1758,4 276 

H3: Structural Homogeneity 20 822,7 -1611,7 300 

b) H4: Heterogeneous 3-class 104 241,5 -1511,2 216 

H5: Partial Homogeneity (Figure 1b) 56 352,6 -1789,6 264 

H6: Structural Homogeneity 32 512,4 -1824,6 288 
     

c) H4: Heterogeneous 3-class 104 241,5 -1511,2 216 

H4a: Technology 92 276,8 -1573,4 228 

H4b: Individual 92 265,4 -1584,7 228 

H4c: Family 92 274,2 -1575,9 228 

H4d: Natural lifestyle 92 283,3 -1566,8 228 

d) H5: Partial homogeneity 3-class 56 352,6 -1789,6 264 

H5a: Technology 50 395,7 -1795,3 270 

H5b: Individual 50 409,1 -1781,9 270 

H5c: Family 50 373,6 -1817,3 270 

H5d: Natural lifestyle 50 365,1 -1825,9 270 
     

e) H7: Selected 3-class 

H7: H6 with 1 direct effect 38 439,3 -1849,1 282 

H7a: H7 with equal class sizes 32 729,3 -1607,8 288 

 

 

 

 

 

 

 

 

 

 

                                                   
∗
 Number of parameters for heterogeneous models with nominal indicators is calculated in following 

way: Npar = (A-1) + [(A-1) x (B-1)] + B x [C + D], with C = (E-1) x F and D = (A-1) x (E-1) x F, 

where A is number of clusters; B is number of items; C is number of intercept parameters; D is number 

of loadings parameters; E is number of response categories; and F is number of countries. For partially 

homogeneous models D changes to: D = (A-1) x (E-1); for structurally homogeneous models C 

additionally changes to: C = E-1.  



 

 

31 

31

Table 2: Item response and class probabilities for preferences of social development 

a. Response probabilities  Class 1 Class 2 Class 3 

Technology    

Good 0,947 0,369 0,541 

Bad 0,023 0,312 0,027 

Don’t mind 0,030 0,319 0,432 

Individual (average across 

countries) 
   

Good 0,985 0,734 0,488 

Bad 0,008 0,089 0,032 

Don’t mind 0,006 0,176 0,480 

Family    

Good 0,972 0,917 0,506 

Bad 0,003 0,041 0,025 

Don’t mind 0,025 0,042 0,469 

Natural lifestyle    

Good 0,884 0,868 0,235 

Bad 0,048 0,073 0,096 

Don’t mind 0,068 0,059 0,669 

b. Latent class proportions    

Belarus 0,753 0,134 0,114 

Romania 0,843 0,103 0,054 

Luxembourg 0,467 0,458 0,075 

Austria 0,336 0,578 0,086 

Total 0,588 0,329 0,083 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

32 

32

Table 3   Fit statistics for the estimated multigroup LC factor models 

Model Npar L² BIC(L²) df 

a) H1: Heterogeneous model 668 27511,0 -179865,0 20792 

H2: Partial homogeneity (Figure 1b) 580 28146,1 -180107,6 20880 

H3: Structural homogeneity 52 32336,1 -181183,8 21408 
 

b) H1: Heterogeneous model 668 27511,0 -179865,0 20792 

H1a: Item 1  646 27698,6 -179896,7 20814 

H1b: Item 2  646 27559,8 -180035,6 20814 

H1c: Item 3  646 27691,9 -179903,5 20814 

H1d: Item 4  646 27674,6 -179920,7 20814 
 

c) H2: Partial homogeneity 580 28146,1 -180107,6 20880 

 H2a: Item 1  448 28961,3 -180608,9 21012 

 H2b: Item 2  448 29362,1 -180208,2 21012 

 H2c: Item 3  448 29114,0 -180456,3 21012 

 H2d: Item 4  448 29228,4 -180341,8 21012 
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Table 4   Latent class proportions and latent means for the 23 countries  

Proportions 
Country 

Class 1 Class 2 Class 3 

Means 

 

Austria 0,314 0,538 0,147 0,417 

Belgium 0,314 0,578 0,108 0,397 

Bulgaria 0,388 0,441 0,169 0,391 

Switzerland 0,134 0,625 0,240 0,553 

Cyprus 0,296 0,534 0,169 0,436 

Germany 0,321 0,566 0,112 0,395 

Denmark 0,088 0,641 0,270 0,591 

Estonia 0,345 0,518 0,136 0,395 

Spain 0,192 0,586 0,221 0,515 

Finland 0,272 0,603 0,123 0,426 

France 0,313 0,552 0,134 0,410 

United Kingdom 0,419 0,487 0,093 0,337 

Hungary 0,219 0,462 0,318 0,550 

Ireland 0,215 0,520 0,263 0,524 

Netherlands 0,245 0,608 0,145 0,450 

Norway 0,106 0,639 0,253 0,574 

Poland 0,406 0,495 0,097 0,345 

Portugal 0,221 0,571 0,207 0,493 

Russian Federation 0,387 0,499 0,113 0,363 

Sweden 0,140 0,655 0,203 0,532 

Slovenia 0,350 0,512 0,137 0,393 

Slovakia 0,550 0,392 0,057 0,253 

Ukraine 0,466 0,433 0,100 0,317 

Total 0,290 0,543 0,166 0,437 
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APPENDIX – Latent Gold syntax files used in the two examples 

This appendix we present the “variables” and “equations” sections of the Latent 

GOLD 4.5 syntax files used for the two examples in this chapter. The logistic 

parameterization of the heterogeneous multigroup LC model with a 3-class nominal 

latent variable and 4 nominal indicator variables as used in example 1 is as follows:  

  variables 

 caseweight weight; 

 dependent item1 nominal, item2 nominal, item3 nominal,  

    item4 nominal; 

 independent country nominal; 

 latent Cluster nominal 3; 

    equations 

 Cluster <- 1 | country;  

 item1 <- 1 | country + Cluster | country; 

 item2 <- 1 | country + Cluster | country; 

 item3 <- 1 | country + Cluster | country; 

 item4 <- 1 | country + Cluster | country; 

In the “variables” section, one provides the relevant information on the dependent 

(items), independent (here the grouping variable), and latent (here the latent classes) 

variables to be used in the analysis. In this analysis, these are all nominal variables, 

where for the latent variable called “Cluster” one also has to indicate how many 

categories it has.  

 The first “equation” defines the logistic model for the class proportions (“1” 

indicates the intercept), which are assumed to be different across countries (indicated 

with “| country”). The next four equations define the logistic regression models for the 

four items. These contain the term “1” referring to the intercept and the term 

“Cluster” referring to the slope. Both are indicated to differ across countries.  
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Other, more restricted models are obtained with slight modifications of the 

equations. A model assuming invariant item intercepts and/or slopes across countries 

is obtained by removing “| country” from the term(s) concerned. Thus, a partially 

homogeneous model is defined by equations of the form:   

   item# <- 1 | country + Cluster;   

and the homogeneous model by: 

   item# <- 1 + Cluster;   

A log-linear parameterization of these models can be defined by writing “+ 

country” instead of “| country” for intercepts and “+ Cluster country” instead of  “| 

country” for slope parameters. The item equations of the heterogeneous model would 

then be as follows: 

   item# <- 1 + country + Cluster + Cluster country; 

Finally, the only modification needed to obtain a multigroup LC factor model 

for ordinal items (our second example) is that the dependent and latent variables 

should be defined to be ordinal instead of nominal:  

dependent item1 ordinal, item2 ordinal, item3 ordinal,  

   item4 ordinal; 

latent factor ordinal 3; 

The “equations” remains the exactly the same as with nominal dependent and latent 

variables, though it should be noted that the log-linear and logistic parameterizations 

are no longer equivalent with ordinal indicators.  


