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Abstract 

Three distinctive methods of assessing measurement equivalence of ordinal 

items, i.e. confirmatory factor analysis, differential item functioning using item 

response theory and latent class factor analysis, make different modeling assumptions 

and adopt different procedures. Simulation data are used to compare the performance 

of these three approaches in detecting the sources of measurement inequivalence. For 

this purpose, we simulated Likert-type data using two non-linear models, one with 

categorical and one with continuous latent variables. Inequivalence was set up in the 

slope parameters (loadings) as well as in the item intercept parameters in a form 

resembling agreement and extreme response styles. Results indicate that the item 

response theory and latent class factor models can relatively accurately detect and 

locate inequivalence in the intercept and slope parameters both at the scale and the 

item level. Confirmatory factor analysis performs well when inequivalence is located 

in the slope parameters, but wrongfully indicates inequivalence in the slope 

parameters when inequivalence is located in the intercept parameters. Influences of 

sample size, number of inequivalent items in a scale, and model fit criteria on the 

performance of the three methods are also analysed.  
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Introduction 

 There is a growing awareness among social scientists who are involved in 

empirical comparative research that the issue of measurement equivalence needs to be 

addressed. Measurement equivalence refers to ‘whether or not, under different 

conditions of observing and studying phenomena, measurement operations yield 

measures of the same attribute’ (Horn & McArdle, 1992). Hence, it questions the 

comparability of data obtained from different groups, which is, of course, in the centre 

of any comparative research.  

Several approaches for testing measurement equivalence with Likert-type 

items have been suggested, the more popular of which are multigroup confirmatory 

factor analysis (CFA) and methods for detecting differential item functioning (DIF) 

developed in the context of item response theory (IRT) (Steenkamp and Baumgartner 

1998; Vandenberg and Lance, 2000; Raju, Laffitte, and Byrne, 2002). A third, less 

well known but very promising approach which combines multiple group latent class 

analysis (Clogg and Goodman, 1984; McCutcheon, 2002) with latent class factor 

analysis (LCFA; Magidson and Vermunt, 2001) was recently proposed by Moors 

(2004) (see also Kankaraš and Moors, forthcoming). 

While the issue of the measurement equivalence (ME) has recently come to 

the fore in methodological studies, few of these studies focus on the comparison of 

methods for analysing ME (Meade and Lautenschlager, 2004a; Raju et al., 2002). As 

a result, applied researchers have little guidance as to which of these methods to use 

in their own research under which conditions. Whereas CFA, IRT, and LCFA use 

different terminology, model assumptions, and ME testing procedures, they also share 

numerous conceptual similarities. One of the two purposes of this article is to 

illustrate the similarities and differences between the three procedures for studying 
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ME by formulating them within a generalized latent variable modelling framework 

(Skrondal and Rabe-Hesketh, 2004). More specifically, it will be shown that each of 

the three investigated procedures can be viewed as a special case of a more general 

baseline measurement model. Second, we wish to determine the performance of the 

three procedures in detecting the different types of sources of measurement 

inequivalence when dealing with Likert-type ordinal questionnaire items, which is the 

most commonly used item format in survey research. For this purpose, we employ the 

three approaches -- CFA, IRT, and LCFA -- under simulated conditions. 

The remainder of this paper is organized as follows. First, we present the 

generalized latent variable modelling framework, as well as describe the three 

approaches to the analysis of ME that will be compared in this study. After 

introducing the design of the simulation study, results are presented and discussed.   

 

1.  Approaches to investigating measurement equivalence 

 

 The CFA, LCFA, and IRT approaches to the analysis of ME stream from 

different methodological realms and have a somewhat different focus, use different 

procedures, and label parameters differently. This has, consequently, led to rather 

isolated practices of ME research which was usually constrained to the specific 

terminology and methods characteristic for a given methodological framework. 

However, aside from their apparent differences there are many common elements 

between the three approaches, from the theoretical assumptions about measurement 

models to the model parameters and measurement procedures employed. Although 

these conceptual and procedural similarities may often be overlooked, they can be 

better understood when approached from the perspective of generalized latent variable 
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modeling, which contains all three approaches as special cases. In the following we 

introduce the common framework and terminology that we will use in this study, as 

well as delineate both the differences and similarities between the three approaches. 

On the basis of this we formulate the main research questions and define the design 

factors for the simulation study that was setup to investigate and compare the 

performance of the three approaches to ME.   

 

1.1   Generalized latent variable models 

 

A common feature of the three relevant approaches to the analysis of 

measurement equivalence (CFA, IRT, LCFA) is that they are all latent variable 

models. More specifically, they are all three models in which one or more 

unobservable variables representing the constructs of interest (such as attitudes, 

values, traits, abilities) are connected to a set of observed measures, items, or 

indicators, for instance, to a set of as rating questions in the form of Likert scales.  

 Let � denotes the vector of L latent variables (l = 1, …, L), y the vector of K 

observed variables (k = 1, …, K), and yk the kth observed variable. A latent variable 

model is a model for f (�, y), the joint probability density of the latent and observed 

variables. The causal mechanism shared by the three investigated latent variable 

models can be represented by their following two main assumptions (Skrondal and 

Rabe-Hesketh, 2004):  

1. The responses on the observed indicators reflect an individual’s position on 

the latent variable(s). 

2. Indicators are independent of one another, controlling for latent variables. This 

is often referred to as the assumption of local independence. 
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These two assumptions can be expressed mathematically as follows: 

 

f (�, y) = f (�) f (y|�) = f (�)∏
=

K

k 1

f (yk|�) ,                                                (1) 

 

More specifically, the decomposition of f (�, y) into f (�) f (y|�) indicates that y 

depends on �, and the fact that f (y|�) is replaced by the product ∏
=

K

k 1

f (yk|�) expresses 

that the K item responses are assumed to be independent of one another given �. Note 

that f (�) represents the distribution of the latent variables and f (yk|�) the distribution 

of item k conditional on the latent variables scores. 

 As shown by Bartholomew and Knott (1999), depending on the specification 

of the distribution of the latent variables - f(�) - and the conditional distributions of 

the K item -- f (yk|�) -- four main types of latent variable models can be obtained: 

factor analysis, item response theory models, latent profile analysis, and latent class 

analysis (see Table 1).  

 

[INSERT TABLE 1 ABOUT HERE] 

 

 This four-fold classification shows that in factor analysis and IRT latent 

variables are continuous normally distributed, whereas in latent profile and latent 

class analysis they are discrete and thus have multinomial distribution. Moreover, in 

IRT and latent class analysis response variables are treated as nominal or ordered 

categorical variables with multinomial (or binomial) distributions, whereas in factor 

analysis and latent profile models they are treated as normally distributed continuous 

variables. It should be noted that the nature of the response variables affects not only 
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the form of f(yk|�) but also the type of regression model connecting the item responses 

to the latent variable(s) (this is sometimes referred to as the link function). In factor 

analysis and latent profile analysis these are typically linear regression models, 

whereas IRT and latent class analysis usually make use of logit or probit models, 

yielding the well-known s-shaped relationship between latent and response variables.  

It should be noted that we will use variants of factor analysis and latent classes 

analysis referred to as confirmatory factor analysis and latent class factor analysis, 

respectively. We will not use latent profile models. 

 

 

1.2   Analysis of measurement equivalence 

 

In its most broad term, measurement equivalence has been defined by 

Mellenbergh (1989) as:  

 

f (y| �, g) = f (y| �) ,                                                      (2)  

 

where g denotes group membership (g = 1, …, G). Thus, measurement equivalence 

means that the probability distribution of the observed scores y conditional on the 

latent variable(s) � is the same for all groups. In other words, two individuals with the 

same � but from different groups are equally likely to give any specific set of 

responses.  

 Below we describe how the issue of ME is typically dealt within CFA, IRT, 

and LCFA, as well as introduce an integrating framework and common terminology 
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based on the generalized latent variable modelling approach presented in the previous 

section.  

 

1.2.1   CFA 

 

Assuming that the factor structure is the same for all groups, a multi-group 

CFA model implies the following linear regression model for item k for someone 

belonging to group g (Joreskög, 1971): 

  

 .),|(
1

l

L

l

g
lk

g
kk gyE Θ+=Θ �

=

λτ                                                   (3) 

 

Here, g
kτ represents the intercept and g

lkλ  the factor loading for latent variable l. When 

factor loadings are equal across groups ( 1
lkλ = 2

lkλ =…= G
lkλ ), so called ‘metric 

equivalence’ is achieved. However, for the valid comparison of factor means across 

groups, ‘metric equivalence’ is not sufficient, but the stricter ‘scalar equivalence’ 

condition should be satisfied. This condition requires that both intercepts and loadings 

are equal across groups ( 1
lkλ = 2

lkλ =…= G
lkλ  and 1

kτ = 2
kτ =…= G

kτ ). 

 

1.2.2   IRT 

 

The most commonly used IRT models for polytomous items with ordered 

categories are the graded response (Samejima, 1969), rating scale (Andrich, 1978), 

partial credit (Masters, 1982), and generalized partial credit model (Muraki, 1999). 

The latter three are strongly related IRT models, which use an adjacent category 



 8 

ordinal logit model to connect the latent variable to the item responses (see, e.g., 

Heinen, 1996; Vermunt, 2001). In this study, we used a multiple-group version of the 

generalized partial credit model. The log of odds of selecting category s of item k 

instead of category s-1 given a persons latent trait and membership of group g is 

assumed to have the following form (Bock and Zimovski, 1997): 

 

),(
),|1(

),|(
log g

ks
g
k

k

k ba
gsyP

gsyP −Θ=�
�

�
�
�

�

Θ−=
Θ=

                                    (4)
 

 

for 2 � s � Sk, where s denotes one of the Sk categories of variable yk. Here, g
ka  is the 

slope or ‘discrimination’ parameter for group g and item k, and g
ksb  is location or 

‘difficulty’ parameter for group g, item k, and category s. Thus, both difficulty and/or 

discrimination parameters may vary across groups and cause inequivalence or 

‘differential item functioning’, often referred to as DIF. When DIF is present only in 

the location parameters g
ksb , it is called uniform DIF. Nonuniform DIF occurs when 

slope parameters differ across groups. 

 

 

1.2.3   LCFA 

 

Magidson and Vermunt (2001) proposed a restricted latent class model with 

multiple ordinal latent variables that they called latent class factor analysis (LCFA). It 

is a latent variable model with the L discrete latent variables with fixed and 

equidistant category scores. Similar to the multiple group extension of the standard 

latent class model (Clogg and Goodman, 1985; Hagenaars 1990; McCutcheon, 2002), 
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it is also possible to define a multiple group variant of the LCFA model (Moors, 2004; 

Kankaraš and Moors, forthcoming). Among various types of multigroup LCFA 

models for ordinal indicators we used the model in which, as in the partial credit 

model, item responses are related to the latent variables by means of an adjacent-

category logit model:   

 

l

L

l

g
kl

g
ks

k

k

gsyP
gsyP Θ+=�

�

�
�
�

�

Θ−=
Θ=

�
=1),|1(

),|(
log βα                                 (5) 

 

Here, g
ksα  are item- and category-specific intercepts and g

klβ  item- and factor-

specific slopes. As can be seen, each of these can be assumed to differ across groups. 

The situation in which a set of g
ksα  parameters differ across groups is sometimes 

referred to as a ‘direct effect’ because such a model can also be defined by including 

the grouping variable as a nominal predictor in the model for item k. Such direct 

effects are present when group differences in item responses can not fully be 

explained by group differences in the latent factors. Note that this type of 

inequivalence is conceptually similar to scalar inequivalence in CFA and uniform DIF 

in IRT. Also g
klβ  parameters may vary across groups. This is sometimes referred to as 

‘interaction effects’ as such group differences occur when the relationship between 

item responses and latent factors is modified by the group membership, i.e. by the 

interaction effect of the grouping variable and the latent factor concerned. Note that 

this is conceptually similar to ‘metric inequivalence’ in CFA and nonuniform DIF in 

IRT.  
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1.2.4   General model for the analysis of ME 

 

The three presented approaches can be formulated using a unifying notation in 

following way: 

),|( gyE k Θ = l

L

l

g
kl

g
k Θ+�

=1
10 ββ  ,                                              (6a) 
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log
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k

k  = l

L

l

g
kl

g
ks Θ+�

=1
10 ββ  ,                                               (6c) 

 

As can be seen, we use a common notation for intercept (�0) and slope (�1) 

parameters. The slope parameters are conceptually similar across the three 

approaches, and indicate the strength of the effect of latent variable l on indicator 

variable k for group g (McDonald, 1999; Magidson and Vermunt, 2004). These terms 

were denoted by g
klλ , g

ka , and g
klβ  in equations (3), (4), and (5), respectively. Whereas 

the interpretation of the intercept parameters is similar in the IRT and LCFA 

approaches (equations 6b and 6c), these are not directly comparable with those in the 

CFA approach (Meade and Lautenschlager, 2004a). Due to the different treatment of 

the observed variables (continuous vs. ordinal-discrete), CFA models have only one 

intercept per item, while IRT and LCFA models have Sk-1 free �0 parameters per item. 

Note that the intercepts were denoted by g
kτ  and g

ksα  in equations (3) and (5). In the 
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IRT model, ,0
g
k

g
ks

g
ks ab−=β  that is, minus the item difficulty times the item 

discrimination. 

 

[INSERT TABLE 2 ABOUT HERE] 

 

Table 2 summarizes the relevant characteristics of the three approaches to ME. 

It presents the assumptions related to the latent and the response variables, along with 

the conceptual similarities between the model parameters – intercepts and slopes – as 

well as between the two most important forms of inequivalence in these parameters. 

 

 

1.2.5 Procedures of the three approaches for analyzing ME 

 

In all three approaches, the study of ME is based on the comparison of models 

that differ in the degree of inequivalence - in the number of item parameters that is 

allowed to vary across groups – with the aim to find the best fitting model with the 

lowest level of inequivalence possible. The most commonly used model comparison 

test in CFA is the chi-square difference test, which is in fact a likelihood-ratio (LR) 

test between nested models. Other popular fit indexes are measures such as Root 

Mean Square Error of Approximation (RMSEA), Comparative Fit Index (CFI), and 

Akaike Information Criterion (AIC). Note that a multiple group CFA typically starts 

from the baseline, unrestricted model in which all parameters are group specific, and 

subsequently moves to more restricted models (Vandenberg and Lance, 2000; 

Steenkamp and Baumgartner, 1998). Models are compared on a scale level with 

models in which they are nested, starting with the model with equal loadings and 
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followed by the model with equal loadings and intercepts. When inequivalence is 

found on a scale level, a researcher can proceed with item-level analysis in search of 

partially equivalent models. Measurement inequivalence is present to the degree that 

inclusion of equality restrictions of parameters across groups significantly deteriorates 

the model fit.  

Similar model comparison procedures based on the LR chi-square tests are used 

in IRT based ME analysis. Differently form CFA, multiple group IRT starts from the 

most restricted equivalent measurement model, which is then compared with models 

in which the parameters in a single item are allowed to vary freely across groups 

(Thissen, Steinberg, and Wainer, 1988; Meade and Lautenschlager, 2004a). As for 

CFA, for IRT models guidelines are provided for the required level of invariance in 

order to be able to compare the latent scores across groups to be comparable; i.e., the 

minimal requirement is that parameters of at least one item should be invariant across 

groups (Mead and Lautenschlager, 2004; Steenkamp and Baumgartner, 1998). 

In LCFA, the study of ME is based on the comparison of measurement models 

that differ in the number of direct and interaction effects included. LCFA typically 

relies on information criteria such as AIC, BIC and AIC3 that evaluate models both in 

terms of their fit and their parsimony, as well as on LR test (Moors, 2004; Kankaraš 

and Moors, forthcoming). 

 

 

2.  Data and method 

2.1 Study overview 

We performed a simulation study to determine the ability of the three latent 

modelling approaches to detect measurement inequivalence in rating scale questions 
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under a variety of conditions. The investigated conditions were related to (1) type of 

inequivalence, (2) nature of the latent variable, (3) number of inequivalent items in a 

scale, (4) sample size, (5) model fitting strategy, and (6) statistics used for model 

selection. More specifically, our research questions were: 

 

1) How well do CFA, IRT and LCFA perform in detecting inequivalences in the 

slope and intercept parameters? 

2) What is the influence of the assumed distribution of the latent variable (categorical 

or continuous) on the performance of the three approaches? 

3) Does the performance of the three approaches depend on the number of 

inequivalent items in a scale? We compared conditions with one and three 

inequivalent items in a scale. 

4) Does sample size have an effect on the ability of the three approaches to detect 

inequivalences? There were two different sample sizes: with 200 and with 1000 

respondents per group. 

5) Is the performance affected by whether one performs a scale-level analysis (the 

typical CFA approach) or an item-level analysis (the typical IRT approach)? 

6) Are conclusions different when using LR (or chi-square difference) tests 

compared to using AIC?   

 

We generated data sets containing three types of inequivalences: two types 

concerned the intercepts (�0) and one the slope (�1). Differences in �0 parameters 

across groups reflected two well-documented response styles occurring with rating 

scales, namely, acquiescence and extreme response. Acquiescence is defined as a 

respondent’s tendency to agree (or disagree) with given statements, irrespective to 
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their (positive or negative) content (Paulhus, 1991). To the extent that agreement 

tendency is associated with cultural background it is prone to be one of the factors that 

can cause measurement inequivalence in the cross-cultural comparisons (Moors, 

2003; Billiet and McClendon, 2000). Extreme response style is defined as a 

respondent’s tendency to choose the extreme categories of a response scale (i.e., 

completely agreeing or disagreeing) independently of the specific item content 

(Greenleaf, 1992). It may bias cross-cultural comparisons as it is a characteristic that 

has been shown to differ across cultures (Hui and Triandis, 1989).  

Given that acquiescence and extreme response style might occur, what can we 

expect from the three approaches? When dealing with rating questions, probably the 

most important difference between the three approaches is the fact that the CFA, 

unlike the IRT and LCFA, does not contain a separate �0 parameter for each item 

category (has only one intercept per item). Hence, it is expected that the CFA will 

experience more difficulties in detecting inequivalences in �0 parameters (Meade and 

Lautenschlager, 2004a). On the other hand, since the �1 parameters have a similar 

interpretation in each of the three models, they should have similar success rates in 

detecting differences between groups in these parameters. 

Another important distinction between the approaches is in the nature of the 

latent variable(s). We were interested in what consequences misspecification of the 

latent variable distribution has on the validity of results of these approaches. For this 

purpose, we generated data sets based on two measurement models: one with a 

continuous, normally distributed latent variable, and one with an ordinal, uniformly 

distributed latent variable with three categories. The uniform distribution was chosen 

because it is rather different from a normal distribution and still relatively common in 

latent class analysis. From a theoretical point of view, one would expect that CFA and 
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IRT perform better with the continuous latent variable and LCFA with the discrete 

one.  

One of the factors found to have substantial influence on the performance of 

the CFA and IRT methods is the sample size, i.e., because of lack of power a smaller 

sample size reduces the ability of the two approaches to detect inequivalence in data 

(Meade and Lautenschlager, 2004a; Meade and Bauer, 2007; French and Finch, 2006; 

Meade and Lautenschlager, 2004b). Aside from sample size we also varied the 

number of inequivalent items in a scale. This factor is found to influence the results of 

the CFA and IRT analyses in a similar manner (but to a lesser extent) as sample size 

does (Meade and Lautenschlager, 2004a).  

Finally, we wanted to see whether the choice of model fitting strategy (scale-

level versus item-level analysis) and fits measures (the chi-square difference test and 

the AIC) affects the encountered results. These latter two factors do not determine 

how the data are simulated, but how they are analyzed.  

 

2.2   Properties of the simulated data sets 

  

Data set were generated from two measurement models, one with a continuous 

and another with a discrete latent variable. Both types of models contained five items 

with five ordinal response categories, where the relationship between the latent 

variable and the items was based on the logit link function. The number of groups was 

set to two. The specific choice of the group-specific population parameters is 

discussed below. It should, however, be noted that we fixed the latent variable mean 

and variance (to 0 and 1) and assumed these to be equal across the two groups. The 

two different sample sizes were 200 and 1000 observation per group: a sample size of 
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200 can be considered to be the minimal recommended size in both IRT and CFA 

(Meade and Lautenschlager, 2004a), while a sample size of (at least) 1000 is common 

in cross-national research.  

Out of five items in the scale, either one item (item 3) or three items (items 3, 4, 

and 5) were set up to be inequivalent across the two groups. There were three forms of 

inequivalence:  

- Inequivalence in �1 parameters, 

- Inequivalence in �0 parameters in form of agreement bias, and  

- Inequivalence in �0 parameters in form of extreme response bias; 

 

The baseline value for the �1 parameters was 1.00 (in logit units). The 

inequivalent �1 condition was created by setting its value to 2.00 in Group 2 for the 

inequivalent item(s), that is, by assuming a stronger relationship between the latent 

variable and the item(s) concerned. This form of inequivalence may occur when other 

factors influence the relationship between latent and response variables and groups 

differ on these factors.  

The baseline values for the category-specific �0 parameters were -1.0, 0.5, 1.0, 

0.5, and -1.0, which roughly approximates a normal distribution for the answers on a 

Likert scale.1 In the agreement bias condition, inequivalence was defined by adding 1 

to the highest rating parameter and subtracting 1 from lowest rating parameter for 

Group 2. This resulted in following �0 parameters for Group 2: -2.0, 0.5, 1.0, 0.5, and 

0.0. Presuming that the Likert scale represent answer options ranging from 

‘completely disagree’ (category 1) to ‘completely agree’ (category 5), then this 

                                                 
1 The implied item distributions for each level of the ordinal latent variable and for each group are 
provided in Appendix 1.  
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pattern of inequivalence would represent ‘agreement bias’ in Group 2 since it is more 

likely to select the higher categories than Group 1, controlling for the latent variable.  

The extreme response bias condition was defined by adding 0.5 to the �0’s for 

the two extreme categories (categories 1 and 5), and subtracting 0.17 from categories 

2 and 4 and 0.67 from category 3. Consequently, for inequivalent item(s) in Group 2 

the �0’s were -0.5, 0.17, 0.67, 0.17, and -0.5. In this way, we have ‘flattened’ the 

answer distribution for Group 2 by making the �0 parameters more similar to one 

another. This pattern of �0 parameters resulted in higher probability of answering with 

the extreme options (1 and 5) compared to the respondents from Group 1, controlling 

for latent variable. 

By combining the four design factors – distribution of latent variable (2 

conditions), form of inequivalence (3), sample size (2), and number of inequivalent 

items (2) – we obtained 24 different conditions. For each of these conditions, we 

performed 100 replications. So, in total 2400 data sets where generated and analyzed. 

 

2.3   Analyses of the simulated data sets 

  

The three studied latent variable modeling approaches are accompanied with 

somewhat different model fitting strategies for studying ME. CFA is typically 

conducted at the scale level, i.e., by changing the parameter settings for all scale items 

simultaneously and subsequently comparing this model with a baseline model. A 

researcher would typically proceed to the item-level analysis after inequivalence is 

found at the scale level. In contrast, the IRT approach starts with separate item-level 

tests, without prior testing for scale-level inequivalence, which involves changing the 

parameter settings for a single item at a time. The LCFA procedure combines scale- 
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and item-level analysis. In order to foster comparison of the results between the three 

approaches, which was our primary research interest, we used both scale- and item-

level procedures. Moreover, we conducted item-level analyses for all items, 

irrespective of whether there was evidence for scale-level inequivalence, which 

allowed us to determine how well the three procedures can detect inequivalence in a 

given item or set of items, irrespective of their ability to detect inequivalence at the 

scale level. 

For the scale-level analyses, we first estimated a model in which all item 

parameters were allowed to vary across the two groups (Model A). This unrestricted 

model served as our baseline model. Then, we tested the equivalence of �1 parameters 

by comparing the former unrestricted model with a model in which all �1 parameters 

are fixed to be equal across the two groups (Model B). When the �1 parameters were 

found to be equivalent, we conducted the final step in which we tested equivalence of 

�0 parameters by contrasting the previous restricted model with equal loadings with a 

model in which both �0 and �1 parameters are restricted to be equal across groups 

(Model C). 

For the item-level analysis, we compared models in which the �1 or �0 for one 

items are equated across the two groups with the unrestricted model. More 

specifically, inequivalence in the �1 for item k is assessed by comparing the 

unrestricted model (Model A) with a model in which this parameter is equated across 

the two groups for item k (Model Bk). In order to test for inequivalence in �0 at the 

item level we need to assume equivalence in �1 parameters. Therefore, testing scalar 

equivalence of item k was based on the comparison of the model with equal loadings 

for all items (Model B discussed above) with the model which in addition assumes 

that the intercept is equal for the item concerned (Model Ck).  
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As model selection measures we used the chi-square difference (or LR) test, 

which is common in CFA- and IRT-based procedures (Vandenberg and Lance, 2000; 

Meade & Lautenschlager, 2004a), and the AIC that is typically used in LCFA as well 

as in CFA (Kankaraš and Moors, forthcoming). An alpha level of 0.05 was used in all 

analyses. In CFA and IRT, for identification purposes, it is required that one item is 

specified to be invariant. We used the first item for this purpose, except for the models 

in which the invariance of this item was tested, in which case the second item was 

chosen as the reference item.  

Data simulations and analyses were conducted using version 4.5 of the Latent 

GOLD program (Vermunt and Magidson, 2008). It includes a syntax module which 

proves to be very flexible in modelling options necessary for our simulation study. 

Examples of Latent GOLD syntax used are presented in Appendix 2.   

      

 

3.  Results 

 

 The results of our study will be summarized using three outcome measures. 

The first one is the number of true positives; that is, the number of replicate samples 

(out of the 100 per design cell) in which the applied procedure correctly identified 

inequivalence in the item parameters. The second is the number of false positives or 

type I errors, referring to the number of replicates in which inequivalence is identified 

in the wrong parameters. One such example is the case in which the actual 

inequivalence was in the �1 parameters but the model concerned finds inequivalence 

in the �0 parameters (or vice versa). The third outcome variable involves type II errors 

or false negatives, which counts the number of replication samples in which 
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inequivalence in neither �1 and �0 parameters was detected where it should have. This 

occurs, for instance, as a result of lack of power of the performed test.  

 

[INSERT TABLE 3 ABOUT HERE] 

 

 Table 3 reports the number of replicate samples in which inequivalence is 

detected for the conditions with three inequivalent items in a scale. Information is 

given for the scale as well as the item-level analyses. These results are obtained when 

using the chi-square difference test as the statistic for model selection. Three forms of 

inequivalence are listed, i.e., inequivalence in the form of agreement bias, extreme 

response bias, and inequivalence in the slope parameters. Separate results are 

presented for the two types of latent variable distributions (ordinal and continuous) 

and two different sample sizes (200 and 1000). Below, we first discuss the results for 

agreement bias, then for extreme response bias, and subsequently for inequivalence in 

the slope parameters. Later on we present more detailed findings regarding the effects 

of the form of inequivalence, the number of inequivalent items, and the used fit 

statistic.  

 

3.1   Agreement bias  

  

The results of the scale-level analyses indicate that CFA, IRT and LCFA 

perform well in detecting inequivalence in the form of agreement bias. For all 

conditions, the ‘false positive’ rate was smaller than 8% for each of the three 

approaches. Furthermore, invariance in �0 parameters (‘true positive’ rate) is found in 

most of the remaining cases, although some differences in performance across 
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conditions can be observed. One differences between the three approaches that 

attracts attention is that the CFA test shows somewhat higher 'false negative' rates 

with the smaller sample sizes of 200 (23 and 32 for the ordinal and continuous models 

respectively) suggesting that the power of the model is somewhat to low. Other than 

this problem, there are no major differences in results of the three approaches across 

the given conditions.  

Results from the item-level analysis show a rather similar pattern. Here, again 

all three approaches detect inequivalent items rather well, but with reoccurring power 

problems with the smaller sample size. ‘False positive’ rates for items 1 and 2 are 

rather low and inequivalent items 3, 4, and 5 are identified with perfect accuracy in 

the large sample size conditions. However, with the smaller sample size of 200, 

detection rates drop significantly, especially for CFA and IRT.  

 

3.2   Extreme response bias 

  

When inequivalence appears in the form of extreme response bias, scale-level 

results shows huge differences in performance between approaches. IRT and LCFA 

approaches turn out to have low ‘false positive’ rates (<10) and high rates of ‘true 

positives’ (>80) in all conditions. In contrast, CFA either wrongly indicates that 

inequivalence is present in �1 rather than in �0 parameters (‘false positive’) or 

indicates that there is no inequivalence (‘false negative’). Again, power issues are 

noticeable, as detection rates are systematically lower for the smaller sample size 

condition.  

Similar results are obtained with the item-level analysis. CFA fails in detecting 

items with inequivalence in �0 parameters. The IRT and LCFA approaches, on the 
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other hand, perform much better with high ‘true positive’ rates and small ‘false 

positive’ rates. ‘True positive’ rates are somewhat smaller in the smaller sample size 

simulations, but even then, they are rather high (>64). The only significant difference 

between these IRT and LCFA is noticeable when a continuous latent variable is 

assumed for which LCFA has somewhat higher ‘false positive’ rates (10) than IRT.  

 

 

3.3   Inequivalence in slope parameters  

 

All three approaches prove to be good in detecting inequivalence regarding the 

�1 parameters (the loadings). When samples with 1000 respondents are simulated 

‘true positive’ rates are almost perfect. However, for the smaller sample size the ‘true 

positive’ rates are substantially lower, particularly in the IRT approach. Once again, 

the LCFA approach has somewhat better performance when the latent variable is 

ordinal compared with the continuous latent variable condition (100 versus 75 true 

positives, respectively). An unexpected finding is that in the small sample case also 

CFA has somewhat higher ‘true positive’ rates in the ordinal compared to the 

continuous latent variable condition (100 and 84, respectively). It is also worth noting 

that the CFA more frequently yields 'false negatives' than 'false positives', whereas for 

IRT and LCFA both types of mistakes show up more equally. 

The analyses at the item level show similar patterns as those at the scale-level. 

While all three approaches demonstrate good ability to detect inequivalent items, their 

efficacy is affected by the sample size. Power issues are, however, less pronounced 

for the CFA and LCFA when the latent variable is ordinal, whereas in the IRT 
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approach similar rates are observed irrespective of the nature of latent variable. ‘False 

positive’ rates are generally small (<10).   

 

 

3.4   Other results 

 

[INSERT TABLES 4, 5 and 6 ABOUT HERE] 

 

In this section, we present more details on the simulation results for three 

different design factors: Table 4 focuses on the type of inequivalence, Table 5 

compares the two conditions which differ with respect to the number of inequivalent 

items, and Table 6 compares the results obtained with two different fit statistics. We 

report the average and the standard deviation of the number of replications in which 

inequivalence was detected across levels of the other conditions. 

Comparing results for different types of inequivalence (Table 4) we find that in 

the case of agreement bias, the LCFA is somewhat better than the other two 

approaches in detecting inequivalence at the item level, while all three approaches 

have similar success at the scale level. CFA tests are clearly not able to correctly 

identify extreme response bias on both scale and item level (low ‘false positive’ 

rates). In this situation IRT and LCFA perform much better, with similar, relatively 

high ‘true positive’ rates across the board. When �1 parameters are different across 

groups, the CFA approach has somewhat better ‘true positive’ rates compared to the 

other two approaches, while IRT and LCFA tests have somewhat higher rates of ‘false 

positives’. Rates of ‘false negatives’ are generally low (M<26) for all approaches 

indicating relatively satisfactory levels of tests’ power. 
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Varying the number of inequivalent items in a scale (Table 5) has similar effects 

on the results as varying the sample size which was discussed in the previous section. 

In particular, the presence of more inequivalent items increases the ‘true positive’ and 

decreases the ‘false positive’ rates. Nonetheless, there are some differences. First, 

contrary to the sample size effect, the number of inequivalent items does not affect 

detection rates in an item-level analysis. Secondly, while sample size affects the 

power of all three approaches, the number of inequivalence items in the scale does not 

influence the performance of CFA.  

The two fit criteria that we used in our analyses yielded, generally speaking, 

similar results across approaches and conditions. However, as can be seen from Table 

6, in the IRT and LCFA scale-level analyses AIC performed less well than the various 

chi-square difference tests. The AIC measure yielded somewhat lower ‘true positive’ 

and higher ‘false negative’ rates for these conditions. In the item-level analyses, on 

the contrary, AIC  has slightly better ‘true positive’ rates with all three approaches, 

but also higher rates of ‘false positives’, especially with LCFA. 

 

4.  Discussion 

  

The main finding of our simulation is that all three investigated approaches --- 

CFA, IRT and LCFA -- are generally able to detect inequivalences in rating scale 

items at both the scale and item level. There is one clear exception to this general 

finding, i.e., when the item intercepts differ as a results of differential extreme 

response styles, the CFA test is less adequate and wrongfully points at inequivalent 

slopes instead of intercepts. Although this might come as a surprise at first glance, it 
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becomes more understandable if one realizes that an extreme response style has a 

similar effect on the item distribution as larger slope parameters have. The subtle 

difference between these two forms of inequivalence can only be detected with a 

model with separate �0 parameters for each response category, like IRT and LCFA, 

but unlike CFA.  

The fact that CFA may have difficulty to detect inequivalences in �0 parameters 

has been indicated before (Meade and Lautenschlager, 2004a). However, contrary to 

Meade and Lautenschlager’s conclusions, we showed that this is not always the case, 

but that it depends on the source of inequivalence. With inequivalences associated 

with differential acquiescence, CFA was equally successful as were IRT and LCFA. 

Hence, we need to conclude that the performance of the CFA approach in identifying 

inequivalence in �0 parameters depends upon the specific form in which �0 parameters 

differ across groups. Inequivalence in �1 parameters is detected in a rather high 

number of cases by all three approaches, although with slightly more precision by the 

CFA. These results for the CFA are expected given that the CFA is well designed for 

analysis of �1 parameters and are in accordance with results in previous studies 

(Meade and Lautenschlager, 2004a; French and Finch, 2006). However, we like to 

underscore that the analyses also confirmed that IRT and LCFA, aside for being well 

suited for inspecting differences in �0 parameters, are also successful in detecting 

difference in �1 parameters.  

Another important finding, both from a theoretical and practical point of view, is 

that the nature of the latent variable had little influence on the performances of 

different approaches. CFA and IRT that assume continuous normally distributed latent 

variables, have very similar performances with ordinal and continuous latent 

variables. Likewise, the LCFA also proves its omnipotence with generally good 
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performance in models with continuous latent variable, notwithstanding that it still 

performs slightly better when used in its own playground, with discrete-ordinal latent 

variables. Admittedly, we only compared a continuous normal with a three-category 

uniform distribution and in principle other latent variable distribution could give 

different results. Nevertheless we feel that this robustness of the three methods for 

possible misspecification of the latent variable distribution is, from a researcher's 

practice point of view, surely encouraging. 

The number of respondents per group (sample size) proved to be one of the most 

important factors affecting the performance of the three approaches. CFA, IRT, and, 

to somewhat lesser degree, LCFA are all vulnerable to lack of power caused by small 

number of subjects, which is found to be the case in many previous Monte Carlo 

studies (Meade and Bauer, 2007; French and Finch, 2006; Meade and Lautenschlager, 

2004a). Thus, when using the CFA and IRT tests a researcher should use as large a 

sample as possible in order to accurately detect inequivalences at the scale and item 

levels. In the situation with smaller sample sizes, it is necessary to place additional 

emphasis on adopting the correct procedure and, if feasible, use alternative methods.  

In comparing two fit statistics, the chi-square difference test and the AIC, we 

found that the former has higher power in the scale level analyses. The AIC-test 

reveals somewhat higher ‘true positive’ rates in the item-level analyses accompanied, 

however, with higher ‘false positive’ rates. Nevertheless, generally speaking two fit 

statistics test performed very similarly and are therefore best to be used together since 

they complement and verify each other. 

   One of the important aspects of this study is the use of the same model fitting 

procedure for analysing ME in all three approaches. By using one standard procedure 

we have inevitably made some adjustments to the specific procedures of the three 



 27 

approaches. In particular, both IRT and LCFA tests, when analysing individual items, 

usually adopt procedures based on the comparison of the ‘restricted’ model with all 

items set to be equal across groups with subsequent models in which parameters are 

set free one-by-one, yielding a forward-inclusion procedure. This procedure is not that 

different from the backward-elimination procedure that we used in this research, since 

both procedures are based on the comparison of subsequent models that differ only in 

the status of the parameters of one item. However, we favour and recommend the 

‘backward-exclusion’ procedure used in this study, as it insures that the more 

restricted model is compared with a model that fits data, which is not always the case 

in the ‘forward including’ procedure.  

One of the novelties of this research was the comparison of the LCFA approach, 

which is less known, with two other more standard CFA and IRT approaches to ME. 

An important finding from this comparison was that LCFA proved to be a valid and 

reliable alternative for dealing with inequivalence both at the scale and the item level. 

When latent variable(s) are of categorical nature, the LCFA should be the first choice 

for the analysis of ME. What is more, although it has shown slightly better 

performance when used with ordinal latent variables, results from this study indicate 

that the LCFA is a viable option in case of continuous latent variable(s) too, at least 

for the given characteristics of the simulation data used in this study. 

Meade and Lautenschlager (2004a) and Raju et al. (2002) called for further 

studies on the CFA and IRT-based tests of ME and the relationships between them. In 

this study, we widened the range of compared approaches to ME by including a rather 

new and promising procedure – multi group LCFA. Although this study shredded 

some light on the distinctive characteristics and inherent similarities of the three 

approaches as well as on the conditions under which they are most suitable to be 
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applied, we feel that further work is still needed. The two measurement models in this 

study, one with a discrete and one with a continuous latent variable, are both modelled 

with non-linear relationship between latent and indicator variables, which is – to some 

extent – favouring the IRT and LCFA methods. Of course, this choice is made 

because indicator variables in attitude research are rarely interval or ratio level 

variables. Nevertheless, there is also need for simulation studies modeling linear 

relationships in the measurement scales and then assess the performance of the CFA, 

IRT and LCFA procedures. Furthermore, the number of design factors included in the 

analysis was limited. Future studies should investigate the influences of differences in 

latent variable means and variance across groups, different forms and magnitudes of 

imbedded inequivalence, number of groups compared, items per scale, and response 

categories per item, in order to determine and compare performances of the three 

approaches to ME.  
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Table 1: Classification of latent variable models 

LATENT VARIABLES 

 Continuous 

(Normal) 

Categorical 

(Multinomial) 

Continuous 

(Normal) 
Factor Analysis  

Latent Profile 

Analysis RESPONSE 

VARIABLES Categorical 

(Multinomial) 

Item Response 

Theory 

Latent Class 

Analysis 
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Table 2   Characteristics of the CFA, IRT and LCFA models for ME 

 CFA IRT LCFA 

A. Model assumptions  

Distribution of latent 

variable - f(�) 

Continuous 

Normal 

Continuous 

Normal 

Discrete 

Multinomial 

Distribution of response 

variables - f(yk|�) 

Continuous 

Normal 

Discrete 

Multinomial 

Discrete 

Multinomial 

Regression model for 

response variables  
Linear Logit Logit 

B. Model parameters  

Intercept parameter �0 Item intercept 

Function of 

difficulty 

parameter 

Intercept 

Slope parameter �l Factor loading 
Discrimination 

parameter 
Beta loading 

Inequivalent �0 
Scalar 

inequivalence 
Uniform DIF Direct effect 

Inequivalent �1 
Metric 

inequivalence 

Non-uniform 

DIF 

Interaction 

effect 
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Table 3. Number of samples (out of 100) in which measurement inequivalence was detected in the condition with 3 inequivalent items in a scale  
 

*Numbers in bold represent ‘true positive’ rates, columns ‘Equivalent’ give ‘false negative’ rates, while rest of the numbers shows ‘false positive’ rates  

Scale-level analysis Item- level analysis 

Loadings Intercepts Equivalent Item 1 Item 2 Item 3 Item 4 Item 5 

Fo
rm

 o
f 

in
eq

ui
va

le
nc

e 

L
at

en
t v

ar
ia

bl
e 

di
st

ri
bu

tio
n 

Sa
m

pl
e 

si
ze

 

C
FA

 

IR
T

 

L
C

FA
 

C
FA

 

IR
T

 

L
C

FA
 

C
FA

 

IR
T

 

L
C

FA
 

C
FA

 

IR
T

 

L
C

FA
 

C
FA

 

IR
T

 

L
C

FA
 

C
FA

 

IR
T

 

L
C

FA
 

C
FA

 

IR
T

 

L
C

FA
 

C
FA

 

IR
T

 

L
C

FA
 

200 0 6 8 77 92 91 23 2 1 2 2 8 3 3 4 42 53 79 42 57 91 42 66 9 3 
Ordinal 

1000 4 5 5 96 95 95 0 0 0 1 3 5 5 4 7 99 100 100 100 100 100 99 100 100 

200 1 2 6 67 92 92 32 6 2 1 2 11 1 5 10 40 51 80 41 49 76 37 43 7 2 

A
gr

ee
m

en
t 

bi
as

 

Continuous 
1000 0 5 4 100 95 96 0 0 0 2 3 8 3 2 5 100 100 100 100 100 100 100 100 100  

200 53 9 4 2 88 95 45 3 1 1 4 4 0 1 3 0 84 86 1 71 78 0 78 8 6 
Ordinal 

1000 100 2 5 0 98 95 0 0 0 1 3 2 2 4 5 2 100 100 2 100 100 2 100 100 

200 39 10 6 0 80 90 61 10 2 1 2 11 3 1 10 1 65 80 2 64 76 1 66 7 2 

E
xt

re
m

e 
bi

as
 

Continuous 
1000 100 6 8 0 94 92 0 0 0 1 0 10 0 2 10 0 100 100 1 100 100 0 100 100 

 
200 100 79 100 0 16 0 0 5 0 2 3 4 2 3 3 82 64 91 81 63 84 86 60 8 3 

Ordinal 
1000 100 99 100 0 1 0 0 0 0 2 4 2 2 4 6 100 99 100 100 100 100 100 99 100 

200 84 70 75 0 22 25 16 8 0 4 3 10 4 3 8 68 48 52 68 46 44 67 47 5 4 

B
ia

s i
n 

sl
op

e 
pa

ra
m

et
er

s 

Continuous 
1000 100 100 98 0 0 2 0 0 0 1 7 6 1 7 8 100 100 96 100 100 100 100 100 9 8 
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Table 4. Mean and standard deviation of the number of samples in which 

inequivalence was detected by form of inequivalence 

SCALE LEVEL ITEM LEVEL 

True 

positives 

False 

positives 

False 

negatives 

True 

positives 

False 

positives 

Type of 

inequivalence 
Analysis 

M SD M SD M SD M SD M SD 

CFA 80.6 17.5 3.3 3.0 16.1 18.1 74.6 26.6 3.1 2.1 

IRT 78.2 22.6 7.1 2.7 14.7 22.1 78.7 22.6 3.8 1.9 Agreement bias 

LCFA 79.8 21.3 8.6 2.8 11.7 19.2 91.3 11.1 14.1 11.0 

CFA 0.6 0.8 72.8 29.0 26.7 28.5 2.6 2.4 2.8 2.1 

IRT 73.0 28.0 8.3 3.1 18.7 26.5 88.4 13.0 3.6 2.1 
Extreme 

response bias 
LCFA 79.0 24.1 7.3 2.5 13.7 22.7 90.8 11.1 13.8 11.5 

CFA 94.6 9.1 0.0 0.0 5.4 9.1 91.0 11.4 6.3 4.8 

IRT 80.7 23.0 12.4 16.1 6.9 9.9 79.8 21.9 10.9 7.0 

Inequivalence 

in �1 

parameters LCFA 83.4 21.9 12.5 14.7 4.1 9.7 87.0 17.7 11.5 6.8 
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Table 5. Mean and standard deviation of the number of samples in which 

inequivalence was detected by number of inequivalent items per scale 

SCALE LEVEL ITEM LEVEL 

True 

positives 

False 

positives 

False 

negatives 

True 

positives 

False 

positives 

Number of 

inequivalent 

items 

Analysis 

M SD M SD M SD M SD M SD 

CFA 56.3 43.0 24.4 37.2 19.3 24.4 56.5 42.6 4.0 3.6 

IRT 67.4 29.4 11.4 12.3 21.2 26.3 80.5 22.4 6.2 5.7 

 

1 
LCFA 70.3 26.5 12.1 10.5 17.6 23.0 88.1 16.0 13.6 10.4 

CFA 60.8 44.4 26.3 39.0 12.9 18.4 55.9 42.1 4.3 3.6 

IRT 87.2 11.9 7.2 5.3 5.6 8.4 82.9 19.2 5.9 5.1 3 

LCFA 91.2 8.2 6.8 5.9 2.0 4.1 90.2 12.9 12.1 9.1 
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Table 6. Mean and standard deviation of the number of samples in which 

inequivalence was detected by fit statistic 

SCALE LEVEL ITEM LEVEL 

True 

positives 

False 

positives 

False 

negatives 

True 

positives 

False 

positives 
Fit criteria Analysis 

M SD M SD M SD M SD M SD 

CFA 58.0 43.9 23.7 37.6 18.3 24.2 52.9 42.4 1.8 1.5 

IRT 81.1 20.6 9.5 12.0 9.4 15.3 79.1 22.7 3.3 2.2 

Chi-square 

difference 
LCFA 84.2 18.1 9.5 11.0 6.3 12.0 87.5 16.0 7.7 6.5 

CFA 59.2 43.7 27.0 38.5 13.9 19.0 59.2 41.9 6.3 3.6 

IRT 73.5 27.5 9.1 6.7 17.4 24.9 85.5 16.3 8.8 6.4 AIC 

LCFA 77.3 25.4 9.4 6.4 13.4 22.4 91.9 10.6 18.4 9.8 
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Appendix 1 – Implied class-specific item distribution under 

agreement bias, extreme response bias, and bias in slope parameters 

Agreement bias: 

Item category  

 1 2 3 4 5 

Class 1 0.3251 0.4281 0.2074 0.0370 0.0024 

Class 2 0.0545 0.2442 0.4026 0.2442 0.0545 Group 1 

Class 3 0.0024 0.0370 0.2074 0.4281 0.3251 

Class 1 0.1497 0.5360 0.2597 0.0463 0.0082 

Class 2 0.0189 0.2306 0.3801 0.2306 0.1398 Group 2 

Class 3 0.0006 0.0237 0.1332 0.2749 0.5675 

 

Extreme bias: 

Item category  

 1 2 3 4 5 

Class 1 0.3251 0.4281 0.2074 0.0370 0.0024 

Class 2 0.0545 0.2442 0.4026 0.2442 0.0545 Group 1 

Class 3 0.0024 0.0370 0.2074 0.4281 0.3251 

Class 1 0.5245 0.3002 0.1454 0.0259 0.0039 

Class 2 0.1098 0.2139 0.3526 0.2139 0.1098 Group 2 

Class 3 0.0039 0.0259 0.1454 0.3002 0.5245 
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Bias in slope parameters: 

Item category  

 1 2 3 4 5 

Class 1 0.3251 0.4281 0.2074 0.0370 0.0024 

Class 2 0.0545 0.2442 0.4026 0.2442 0.0545 Group 1 

Class 3 0.0024 0.0370 0.2074 0.4281 0.3251 

Class 1 0.6921 0.2678 0.0381 0.0020 0.0000 

Class 2 0.0545 0.2442 0.4026 0.2442 0.0545 Group 2 

Class 3 0.0000 0.0020 0.0381 0.2678 0.6921 
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APPENDIX 2 – Latent Gold syntax files used in the simulation study 

 

This appendix explains the Latent GOLD 4.5 syntax files we used for our simulation 

study. The variables and equations sections of the syntax file for a fully heterogeneous 

CFA model in which the first item serves as reference item is as follows:  

 variables 

   dependent y1 continuous, y2 continuous, y3 continuous,  

             y4 continuous, y5 continuous; 

   independent group nominal; 

   latent theta continuous; 

equations 

   theta | group; 

   theta <- group; 

   y1 <- 1 + (1) theta; 

   y2 <- 1 | group + theta | group; 

   y3 <- 1 | group + theta | group; 

   y4 <- 1 | group + theta | group; 

   y5 <- 1 | group + theta | group; 

In the variables section we provide the relevant information on the dependent, 

independent, and latent variables to be used in the analysis. In a factor analysis, the 

dependent and latent variables are defined to be continuous. The first two equations 

concern the variance and the regression model for the latent variable: the variance is 

assumed to depend on group (indicated with “| group”) and the mean is regressed on 

group (the intercept is omitted for identification purposes). The other five equations 

concern the regression models for items y1 to y5. These contain the term “1” referring 

to the intercept and the term “theta” referring to the slope. Except for the reference 

item y1, these are indicated to differ across groups with “| group”. The term “(1)” 
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preceding “theta” in the model for y1 indicates that the loading for the first item is 

fixed to 1, which is required for identification purposes. 

The only necessary modification to obtain an IRT model for ordinal items is 

that the definition of the dependent variables should be  

dependent y1 ordinal, y2 ordinal, y3 ordinal,  

          y4 ordinal, y5 ordinal; 

that is, by indicating that the items are ordinal instead of continuous. A latent factor 

class model is obtained by indicating that also the latent variable is ordinal : 

latent theta ordinal 3; 

where “3” indicates that there are 3 latent classes. Moreover the first three equations 

should be replaced by these two:  

theta <- 1 + group; 

y1 <- 1 | group + theta | group; 

i.e., there is no latent variable variance, the latent variable intercept is identified can 

thus be included in the model, and no identifying constraints need to be imposed on 

the item parameters. The other more restricted models assuming equivalent item 

intercept and/or slopes across groups are obtained by removing “| group” from the 

term(s) concerned.

 

 

 

 

 

 

 

 

 

 

 

 


