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ESTIMATING MULTILEVEL MODELS ON DATA STREAMS

Abstract

Social scientists are often faced with data that have a nested structure:

pupils are nested within schools, employees are nested within companies, or

repeated measurements are nested within individuals. Nested data are

typically analyzed using multilevel models. However, when data sets are

extremely large or when new data continuously augment the data set,

estimating multilevel models can be challenging: the current algorithms used

to �t multilevel models repeatedly revisit all data points and end up

consuming much time and computer memory. This is especially troublesome

when predictions are needed in real time and observations keep streaming in.

We address this problem by introducing the Streaming

Expectation-Maximization Approximation (SEMA) algorithm for �tting

multilevel models online (or �row-by-row�). In an extensive simulation study,

we demonstrate the performance of SEMA compared to traditional methods of

�tting multilevel models. Next, SEMA is used to analyze an empirical data

stream. The accuracy of SEMA is competitive to current state-of-the-art

methods while being orders of magnitude faster.

Key words: Data streams, Expectation-Maximization algorithm, Multilevel Models,

Machine (online) learning, SEMA, nested data
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Introduction

Novel technological advances�such as the widespread use of smartphone

applications and the increased use of experience sampling methods�facilitate

monitoring individuals over extensive periods of time (Barrett and Barrett, 2001; Beck,

2015; Buskirk and Andrus, 2012). When we monitor the behavior of customers on

webpages, patients' compliance with their medical regimen, or students' performances,

we are often interested in the behavior or traits of individuals. Based on individual-level

estimates of traits, we can tailor actions or treatments; e.g., we could recommend certain

books tailored to individuals' preferences as displayed by their browsing behavior (see,

for example, Kaptein and Duplisnky, 2013). Such tailoring can only be carried out in

real-time when up-to-date predictions at the level of the individual are continuously

available. In this paper, we present a computationally-e�cient algorithm for generating

predictions of individuals' traits in situations in which data are continuously collected.

When continuously monitoring the attitudes and behaviors of individuals, data

collection is e�ectively never �nished: new customers continue to visit websites, patients

continue to see their doctors, and students continue to enter and leave universities. This

situation, in which new data enter continuously, is known as a data stream (Gaber,

2012; Gaber, Zaslavsky, and Krishnaswamy, 2005). Due to the continuous in�ux of new

observations, data streams quickly result in (extremely) large data sets�possibly larger

than would �t in computer memory. Even when the storage of all of these observations

is technically feasible, obtaining up-to-date predictions using all available information is

often computationally infeasible: the computational time to re-estimate the necessary

model parameters each time the data set is augmented often increases non-linearly and

quickly becomes unacceptable. In addition, the aforementioned examples all describe

situations in which the collected data have a nested structure. This nesting introduces

dependencies among the observations, and these dependencies in turn violate a key

assumption of many statistical models that assume that observations are (conditionally)

independent (Kenny and Judd, 1986). Nested structures are often dealt with using

multilevel models (Goldstein and McDonald, 1988; Steenbergen and Jones, 2002) which,
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due to their complexity, only exaggerate the computation-time problems encountered

when dealing with streaming data. Since the likelihood function of a multilevel model

has to be maximized iteratively (using, for example, the Expectation-Maximization

algorithm (EM, Dempster, Laird, and Rubin, 1977)), the computation time increases

exponentially. Thus, when real-time predictions of individuals' scores are needed during

a data stream, e�cient computational methods designed to deal with data streams are

needed.

In the literature, several adaptations of the EM algorithm that are computationally

more e�cient than the traditional EM algorithm have been proposed. For instance,

Neal and Hinton (1998) provide analytic proof and justi�cations for a number of

possible adaptations to the general EM algorithm to deal with large and/or growing

data sets using batches of data. These adaptations are further explained and extended

in McLachlan and Peel's Finite Mixture Models book (2000, ch. 12) and by Thiesson,

Meek, and Heckerman (2001). Wolfe, Haghighi, and Klein (2008) discuss how to

parallelize the EM algorithm to deal with extremely large, but static, data sets. Finally,

for a number of speci�c statistical models, computationally e�cient versions of the EM

algorithm have recently been proposed (Cappé and Moulines, 2009; Cappé 2011; Ippel,

Kaptein, and Vermunt, 2016a; Liu, Almhana, Choulakian, and McGorman, 2006). The

current paper adds to this literature by presenting a computationally e�cient algorithm

for the estimation of multilevel models�or �linear mixed models��in data streams.

While Ippel, Kaptein, and Vermunt, (2016a) already present an e�cient algorithm for

simple random intercept models, the current work non-trivially extends these

results�most notably in the `E-step'�to allow for an arbitrary number of random

e�ects and the covariances between these, and the inclusion of additional level 1 e�ects.

The SEMA (Streaming Expectation Maximization Approximation) algorithm can

be categorized as an online-learning algorithm. Online learning refers to �computing

estimates of model parameters on-the-�y, without storing the data and by continuously

updating the estimates as more observations become available� (Cappé, 2011). A simple

illustration of online learning can be provided by inspecting the computation of a simple
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sample mean. The standard, o�ine, algorithm for computing a sample mean using,

1

n

n∑
t=1

xt,

is ine�cient since whenever a new data point enters, we increment n by one, and we

redo our computation by revisiting all our stored data points. As a result, all data have

to be available in computer memory, and the computation time grows each time a new

observation is added.

An online algorithm for computing the sample mean solves these issues. When

computing the sample mean online, it is only necessary to store the su�cient statistics,

n and x̄, and update these when a new data point enters1:

n← n+ 1

x̄← x̄+
xt − x̄
n

.
(1)

Here, n is the total number of observations, x̄ is the sample mean, and `←' is the

assignment operator, indicating that the left hand side is replaced by what is on the

right-hand side. Note that we will use this operator throughout the paper.

In the following section, the traditional, o�ine, estimation of multilevel models

using the EM algorithm is explained in detail. Next, we illustrate the online �tting

procedure of multilevel models using the SEMA algorithm we propose and we discuss

its computational gains. Subsequently, we present a simulation study examining the

performance of SEMA in terms of estimation accuracy and prediction error. Note that,

in the online supplementary material, a second simulation study is presented to provide

a thorough overview of SEMA's performance. The simulation study is followed by an

empirical example which highlights the challenges researchers encounter when analyzing

data streams in practice. Finally, the results of both evaluations are discussed and

several directions for future research are highlighted.

1See, e.g., Ippel, Kaptein, and Vermunt (2016b).
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O�ine estimation of multilevel models

Let individual j have i = 1, . . . , nj observations and let n =
∑J

j=1 nj be total

number of observations collected from J individuals. The multilevel model can be

denoted as:

yij = x′ijβ + z′ijbj + εij, (2)

bj ∼MVN (0,Φ)

εij ∼ N (0, σ2),

where yij is the response i of individual j, xij is a p× 1 vector of �xed e�ect data, zij is

a r × 1 vector of random e�ects data, β is a p× 1 vector of �xed-e�ect coe�cients, bj is

a r × 1 vector of random e�ects coe�cients, Φ is a r × r matrix with (co)variances of

the random e�ects, εij is the error term for each observation, and σ2 is the variance of

the error term. The number of observations per individual, nj, might di�er across

individuals. Furthermore, the variance of the random e�ects and the error variance are

assumed to be independent: ε ⊥ bj.

Often, the maximum likelihood framework is used to estimate the parameters of

the above multilevel model. If the random e�ects (bj) would have been observed,

maximizing the log-likelihood

`(β,Φ, σ2|y, bj) = −n
2

lnσ2 − 1

2

J∑
j=1

nj∑
i=1

((yij − x′ijβ − z′ijbj)
σ

)2

−J
2

ln |Φ| − 1

2

J∑
j=1

b′jΦ
−1bj

(3)

would be relatively straightforward. However, since the random e�ects are not directly

observed (i.e., these are latent) we are confronted with a missing-data problem. The

EM algorithm (Dempster, Laird, and Rubin, 1977) handles this missing data problem

by imputing the missing values with the expectations of bj's given the model

parameters β, Φ, and σ2 in the E-step, and subsequently maximizing the log-likelihood

function given these expectations in the M-step.
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The o�ine E-step

When the missing bj's are imputed, there exist closed-form expressions to compute

the model parameters. These expressions rely on a number of complete-data su�cient

statistics (CDSS), which are computed as part of the E-step. Each of the model

parameters, β,Φ, and σ2, has its own CDSS which we refer to as t1, T2, and t3.

The CDSS for β is de�ned as follows:

t1(k) =
J∑
j=1

X ′jZj b̂j(k), (4)

where Xj is an nj × p matrix, Zj is nj × r matrix, k indexes the current iteration, t1(k)

is an p× 1 vector, and b̂j(k) is given by:

b̂j(k) =C−1
j(k)(Z

′
jyj −Z ′jXjβ̂(k−1)). (5)

Here Cj(k) quanti�es the uncertainty of the imputations of bj's, and the subscript k − 1

indicates that β̂ of the previous iteration is used in the computation.2 Cj(k) itself is an

r × r matrix given by:

Cj(k) = Z ′jZj + σ̂2
(k−1)Φ̂

−1
(k−1). (6)

The CDSS for the variance of the random e�ect, T2(k), is given by:

T2(k) =
J∑
j=1

b̂j(k)b̂
′
j(k) + σ̂2

(k−1)

J∑
j=1

C−1
j(k), (7)

where T2(k) is an r × r matrix. In words, T2(k) is the sum of the squared random-e�ect

coe�cients plus the additional uncertainty due to the fact that bj(k) is not observed.

Lastly, the CDSS of the residual variance, σ2
(k), t3(k) is given by:

t3(k) =
J∑
j=1

u′u+ σ̂2
(k−1)tr(

J∑
j=1

C−1
j(k)Z

′
jZj). (8)

where u = yj −Xjβ̂(k−1) −Zj b̂j(k), is the residual.

2For more details and proof, see Raudenbush and Bryk (2002), Chapter 14.
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The o�ine M-step

In the M-step, the log-likelihood function is maximized, given the CDSS computed

in the E-step. In iteration k, the coe�cients of the �xed e�ects, β, are computed using

the normal equations:

β̂(k) =
( J∑
j=1

X ′jXj

)−1
J∑
j=1

X ′jyj − t1(k). (9)

The variance of the random e�ects (Φ(k)) is computed by dividing T2(k) by the number

of individuals:

Φ̂(k) =
T2(k)

J
. (10)

Lastly, the residual variance (σ2
(k)) is given by:

σ̂2
(k) =

t3(k)

n
(11)

Online estimation of multilevel models

Here, we introduce the Streaming Expectation Maximization Approximation

(SEMA) algorithm. At the end of this section, the full algorithm (see Algorithm 1) is

described.

The online E-step

Previously, we used subscript k to indicate the iterations of the EM algorithm. In

this section, we drop this subscript to emphasize that unlike the EM algorithm, the

SEMA algorithm only updates the CDSS using a single data point, without revisiting

previous data points. Note that, the term data point refers to a vector which includes

an identi�er for an individual, the covariates with �xed e�ects and random e�ects, and

the observation of the dependent variable. When a data point enters, the SEMA

algorithm performs an E-step only for the individual that belongs to the data point that

recently entered. After the E-step for this individual, all three model parameters are
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updated in the M-step. Due to this updating scheme, SEMA updates the parameter

estimates when a new data point enters, instead of �tting the model anew.

Two aspects of Eq. 4 (t1) are challenging in the context of a data stream. First,

the CDSS for β̂ consists of a summation over J individuals. If the (weighted)

contribution of a new data point would simply be added, then this would result in

including the data from the same individual repeatedly. Second, to compute t1 we need

b̂j which depends on the model parameters. Because the model parameters are updated

each time a new data point enters, obtaining the exact same result using either the

online or o�ine computation of this CDSS, would imply that all contributions to t1

need to be recomputed for each data point. This is not feasible. Therefore, we resort to

an approximate solution. Note that this approximation improves as the number of

observations per individual grows.

The solution we chose is as follows: when a new data point enters, the contribution

of the individual belonging to this data point is subtracted from t1 to account for the

fact that this individual has already contributed to t1. Next, b̂j of this individual is

recomputed, such that the new contribution to t1 of this individual can be added.

Because the online implementation of the CDSS is not exactly the same as the o�ine

CDSS, we refer to the online computed CDSS of the �xed e�ects as t̃1. The

contribution to t̃1 resulting from a single individual can be computed using:

t̃1(t) ← t̃1(t−1) − t1jt(t−1)
+ t1jt(t) , (12)

where t1jt(t−1)
represents the previous contribution of individual jt, which is the

individual associated with the most recent data point.

For the CDSS, we use subscript t to indicate that the CDSS is obtained by

subtracting the previous contribution of individual jt after which the new contribution

is added. The computation of t1j is given by

t1j = X ′jZj b̂j, (13)

where the X ′jZj matrix can be updated online:

X ′jZj ←X ′jZj + xijz
′
ij. (14)
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Here, X ′jZj is only updated for the individual associated with the most recent data

point, and xij and z
′
ij are the new values of �xed e�ects and random covariates of this

individual. Unlike Eq. 12, Eq. 14 is exact. Using Eq. 14, none of the data points

themselves (xij and zij) need to be stored since only the results of the matrix

multiplication is stored. When new data present themselves, the outer product of xijz
′
ij

is merely added to the current result.

The coe�cients of the random e�ects (Eq. 5: b̂j = C−1
j (Z ′jyj −Z ′jXjβ̂)) can

similarly be approximated online. We �rst detail how Cj (Eq. 6) is computed online.

The computation of Cj uses a matrix product Z ′jZj. When new data enter this matrix

product can be updated online as follows:

Z ′jZj ← Z ′jZj + zijz
′
ij, (15)

which is similar to Eq. 14. The Z ′jZj matrix needs to be stored per individual. The

online computation of Cj is given by:

Cj = Z ′jZj + σ̂2Φ̂−1. (16)

Using the online formulation of Cj, the next step to compute b̂j is given by:

zjyj ← zjyj + zijyij, (17)

where zjyj is an r × 1 vector. Note that the matrix multiplication Z ′jXj (see, Eq. 5) is

equal to the transpose of the matrix X ′jZj in Eq. 14. The online computation of b̂j is:

b̂j = C−1
j (zjyj − (X ′Zj)

′β̂) (18)

Similar to the computation of t̃1, T̃2 is also a summation over individuals (Eq. 7:

T2 =
∑J

j=1 b̂j b̂
′
j + σ̂2

∑J
j=1C

−1
j ). Therefore, a similar update regime is used for this

CDSS:

T̃2(t) ← T̃2(t−1) − T2jt(t−1) + T2jt(t), (19)

where

T2j = b̂j b̂
′
j + σ̂2C−1

j . (20)
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In order to update T̃2 online, the previous contribution of this individual is again

subtracted before the new contribution is computed and added.

Finally, the online computation of t3 is presented (Eq. 8). The computation of t3 is

unlike the previous two CDSS, a summation over n data points. Therefore, we �rst

rewrite the contribution of each single data point, as a contribution of an individual to

the t̃3:

t3j = y′jyj + β̂′X ′jXjβ̂ + b̂′jZ
′
jZj b̂j − 2y′jXjβ̂ − 2y′jZj b̂j

+ 2β̂′X ′jZj b̂j + σ̂2tr(C−1
j )

(21)

where y′jyj is computed as the sum of the squared observations of the dependent

variable:
∑nj

i=1 y
2
ij, and where the computation of X ′jXj is similar to that of Z ′jZj.

Using Eq. 21, t̃3 can be updated similarly to the other CDSS:

t̃3(t) ← t̃3(t−1) − t3jt(t−1) + t3jt(t), (22)

Eq. 21 is a reformulation of the estimation of t̃3(t), compared to what was presented in

Ippel, Kaptein, and Vermunt (2016a). In the 2016 paper, t̃3(t) is computed using

averages as summary statistics. That implementation, however, cannot be used when

one choses to model level 1 e�ects (�xed e�ects and random slopes). Using the current

implementation, level 1 e�ects can be included in the model. The online implementation

of the E-step presented here makes it possible to drop the historical data points and

only store summaries of the data points (see for exact details Algorithm 1 below).

The online M-step

The online implementation of the M-step of both the variance of the random

e�ects, Φ̂ = T̃2

J
, and the residual variance, σ̂2 = t̃3

n
, is the same as the o�ine

implementation discussed above. This, however, does not hold for the online

computation of β̂ = (
∑J

j=1X
′
jXj

)−1∑J
j=1X

′
jyj − t̃1, which we detail in this section.

The �rst element of Eq. 9 is the
∑J

j=1X
′
jXj matrix. This matrix can be updated

online using the same update regime as already presented in Eq. 14:

X ′X ←X ′X + xijx
′
ij. (23)



Psychometrika Submission November 12, 2018 12

However, in order to subsequently compute β̂, the inverse of X ′X is needed.

Computing the inverse of a matrix can be a costly procedure if the number of covariates

is large. A solution is to directly update the inverted matrix using the

Sherman�Morrison formula (Escobar and Moser, 1993; Plackett, 1950; Sherman and

Morrison, 1950):

(X ′X)−1 ← (X ′X)−1 −
(X ′X)−1xijx

′
ij(X

′X)−1

1 + x′ij(X
′X)−1xij

. (24)

Using this formulation, X ′X only has to be inverted once, after which the inverted

matrix is directly updated with the new data. In practice, this means that one has to

wait until enough data have entered, such that X ′X is invertible.

The second part of Eq. 9 is the multiplication of the covariates with the dependent

variable. This can be updated online as follows:

xy ← xy + xijyij, (25)

where xy is a p× 1 vector. Inserting the online computed components of Eq. 9 into the

equation results in the computation of β̂:

β̂ = (X ′X)−1(xy − t̃1) (26)

We present an overview of the SEMA algorithm, assuming that X ′X is already

inverted, in Algorithm 1. The �rst line indicates which elements the algorithm uses,

where θ denotes the elements which are available at the global level, whereas θj contains

all the elements which are stored for each individual. Only θj for the individual that

belongs to the most recent data point is used in the update step, the remaining θj's do

not have to be available in memory. The standard EM algorithm would use all data,

from each individual, to �t the model. Thus, while the memory usage of the EM

algorithm grows as a function of n, SEMA's memory usage only grows with J . An

implementation of the SEMA algorithm in [R] (R core Team, 2016) can be found at

https://github.com/L-Ippel/SEMA.
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Algorithm 1 SEMA: Notation and equations can be found in the second and third

section of this paper.

1: input: xij, zij, yij, θ, θj

2: θ = n, J,J , (X ′X)−1,xy, β̂, t̃1, Φ̂, T̃2, σ̂
2, t̃3

3: θj = nj, y
2
j , bj,Z

′
jZj,X

′
jZj,Cj,X

′
jXj,xjyj, zjyj, t1j,T2j, t3j

4: for t in data stream do

5: if jt is unknown then

6: J ← {J , jt} . J is vector with identi�ers

7: J ← J + 1 . J is the length of vector J

8: create new record for jt

9: end if

. update global parameters

10: n← n+ 1

11: xy, (X ′X)−1 (Eq. 25 and 24)

. update individual parameters

12: nj ← nj + 1

13: y2
j ← y2

j + y2
ij

14: X ′jXj (Eq. 23), xjyj (Eq. 25), Z
′
jZj (Eq. 15), X

′
jZj (Eq. 14), zjyj (Eq. 17)

. E-step

15: compute Cj, bj (Eq. 16 and 18)

16: compute t1j,T2j, t3j (Eq. 13, 20, and 21,)

17: update t̃1, T̃2, t̃3 (Eq. 12, 19, and 22)

. M-step

18: compute model parameters β̂, Φ̂, σ̂2 (Eq. 26, 10, and 11)

19: return β̂, Φ̂, σ̂2

20: end for
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Computational complexity

We have motivated the SEMA algorithm described above by focusing on its

computational gains. While below we strengthen this argument by presenting the

running-times of both EM and SEMA in our simulation studies, we �rst focus

theoretically on the computational gains attained by SEMA. Evaluating the exact

computational complexity of the EM algorithm is not straightforward. First, the

complexity is dependent on the stopping criterion of the algorithm (maximum number

of iterations versus some convergence rule); Second, the implementation (using the

formulations which are sums over data points versus sums over individuals) in�uences

the computational complexity. Third, the context in which the complexity is evaluated

matters: the number of individuals in the data compared to the number of observations

within individuals in�uences the number of computations needed. Finally, it makes a

large di�erence whether all the observations are assumed to already be available in

memory or whether new observations streaming in. Because of these di�culties we do

not provide exact bounds, but rather we provide an intuition regarding the

computational gains of switching from an o�ine (EM) algorithm to an online (SEMA)

algorithm.

To illustrate the computational gains of SEMA, let us revisit the computation of a

simple sample mean�as discussed in the introduction�either o�ine or online. Using

an o�ine procedure, each time a new data point enters, the entire procedure needs to

be redone: we need to recount the number of data points and we need to recompute a

sum over all the data points. Ignoring the details of the exact computation, this process

thus executes one set of computations for n = 1, two sets of computations for n = 2,

etc. Hence, the number of computations involved scales by

1 + 2 + 3 + · · ·+ n =
1

2
n(n+ 1),

= O(n2).

as a function of n. It is well known that when data keep entering at a rapid pace even

rather simple computations become infeasible when the number of computations scales
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quadratically with n (ch. 3, Cormen, Leiserson, Rivest and Stein, 2009). Using an

online algorithm instead, the mean can be directly updated as shown in Equation 1.

The computational complexity of this online algorithm to compute the sample mean is

equal to

1 + 1 + 1 + · · ·+ 1 = n,

= O(n),

and is thus linear in n.

In Figure 1, the di�erences in computational complexity between the o�ine and

online computations of the sample mean is illustrated. For the EM algorithm versus the

SEMA algorithm this di�erence is magni�ed. While SEMA is still O(n), the o�ine EM

algorithm repeatedly revisits the all the data to re-estimate the multilevel model and

thus the number of computations grows even faster than O(n2). This is illustrated most

easily by comparing speci�c parts of the EM and the SEMA algorithm; we highlight

two di�erences that directly in�uence the computation times:

1. The computation of (X′X)−1: while the EM algorithm recomputes the X′X matrix

each time a new data point arrives and subsequently and computes the inverse of

this matrix, the SEMA algorithm directly updates the inverted matrix. Inverting the

matrix can be especially costly when there is a large number of co-variates. Thus,

SEMA beats EM by both not revisiting historical data, and by not requiring

repeated matrix inversions.

2. The computation of the CDSS: Using the traditional formulation of the EM

algorithm, all contributions to the CDSS for all individuals are re-estimated when

new data enter, and this process is repeated multiple times; it is repeated for as

many iterations as necessary to allow the EM algorithm to converge. On the other

hand, the SEMA algorithm only recomputes the contributions to these CDSS for one

single individual, and does so only once.

Note that some of these improvements do come at a cost: because CDSS

contributions associated with individuals that do not re-occur in the data stream are
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not updated, their estimates become outdated. Especially when individuals do not

return repeatedly, these outdated contributions could bias the resulting estimates.

Regular updates�or �sweeps��through the individual level estimates that recompute

the CDSS contributions for all individuals at given intervals could decrease this bias.

This idea is already introduced in Ippel, Kaptein, and Vermunt (2016a), and referred to

as �SEMA Update�.

=========================

Insert Figure 1 about here

=========================

Simulation study

Design

Our simulation study is directly inspired by the application presented in Kooreman

and Scherpenzeel (2014). In this study, the authors use a random intercept model with

level 1 and level 2 predictors to analyze their longitudinal data regarding �uctuations in

people's weight (for more details see �SEMA in action� below). By carefully extending

the model used by Kooreman and Scherpenzeel (2014), we examine the in�uence of two

important factors on the performance of SEMA.

First, we examine changes in the number of random e�ects. Varying the number of

random e�ects in�uences the reliability of the random coe�cients, because the

information of the data is spread out over more latent variables. Accordingly, the

settings with more random e�ects are expected to be more di�cult for SEMA to �t the

multilevel model, i.e., SEMA will need to process more data before the parameter

estimates are close to the ML values. Second, we examine variations in the associations

between the random e�ects; this factor is also well-known to a�ect the performance of

the EM algorithm. Increasing the strength of the associations between the random

e�ects, i.e., introducing collinearity, makes it more di�cult to estimate the coe�cients.
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In our simulations, we examine a total of 4 conditions. Inspired by the application

presented in Kooreman and Scherpenzeel (2014) all four conditions consider 15 �xed

e�ects: 5 continuous and one categorical variable with 4 categories (i.e., 3 dummy

variables) at level 1, and 3 continuous variables and 2 categorical variables, one

consisting of 2 categories (to represent gender) and one variable with 3 categories

(education level) at level 2. Next, the four conditions are as follows:

• Condition A: a simple random intercept model (a model containing a single variance

component),

• Conditions B, C, and D: a random intercepts and slopes model with weak (B),

medium (C), and strong (D) associations between these random e�ects. Note that in

these three conditions we have a total of 5 variance components, one for intercept,

and four �slopes� for four of the �ve level 1 �xed e�ects.

Inspired by the application, the (true) parameter values used to generate the data

are:

• Fixed e�ects: 100.0, 0.1, 0.5, 0.9, 1.3, 1.7, 2.1, 2.5, 2.9, 3.3, 3.7, 4.1, 4.5, 4.9, and 5.3;

• Variance random e�ects: 50 (condition A), .2, .6, 1.8, and 5.0 (conditions B�D);

• Correlations between the random e�ects: 0 (condition B), .15 (condition C) or .5

(condition D);

• Residual variance: 5.0 (all conditions);

The generated data streams consists of n = 50, 000 observations and the number of

individuals was equal to 1,000. The data were generated as follows: �rst the level-2

observations were generated, both �xed e�ects data as well as the random e�ects

coe�cients including the (co)variances. The coe�cients of the random e�ects as well as

the level-2 data were drawn from multivariate normal distributions. Then, using these

1,000 individuals, 50,000 samples were drawn at random, resulting in a data stream

were the observations from each individual are spread out over the entire data stream.
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In expectation, each individual has nj = 50 observations. In a second simulation study,

the details of which are presented in the supplementary material online, we vary the

number of observations per individual and the number of �xed e�ects. Here we �nd

that a larger number of observations per person (e.g., a larger nj) improves SEMA

estimates, while the number of �xed e�ects has a negligible e�ect on SEMA's

performance. Additionally in the online material, we provide an illustration of the e�ect

of the ordering of the data points during the data stream. A data stream of length

n = 1, 000, 000 was simulated using eleven di�erent orderings of the data points. This

simulation study shows that the performance of SEMA, given a long data-stream, is

invariant to the order in which the data points present themselves.

Procedure

At the start of the analysis of the data stream, we used a training set of n = 2, 000.

While the EM and SEMA algorithms require some data to ensure that the X′X is

invertible, this training set is mainly used to ensure that the start values are chosen well.

When these start values are far from the ML values, the EM algorithm requires many

iterations to converge. For the SEMA algorithm, this issue is even more pronounced as

the CDSS are only updated one individual at a time. Since this study is not concerned

with how many iterations the EM algorithm requires to converge, the start values for

the EM algorithm are those values the data were generated with. The EM algorithm

was run until convergence with a maximum of 800 iterations, where convergence is

de�ned by parameter values changing less than 0.0001 from one iteration to the next.

The obtained values were subsequently used as start values for the SEMA algorithm.

Besides the SEMA algorithm as introduced in this paper, we also implemented

SEMA Update (SU, Ippel, Kaptein, and Vermunt 2016a). In this algorithm, at set

times, the estimates for each of the J individuals are updated by performing a �sweep�

through all the currently stored estimates. This update is useful in situations where

individuals do not return often (or drop out), since the update allows their outdated

contributions to be revised. Note that this update only uses the statistics which are
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aggregated at the individual level and it therefore does not revisit older data points.

We compare these two implementations of the SEMA algorithm with two

implementations of the EM algorithm. The �rst implementation uses all data. To keep

the simulation study within an acceptable running time, the EM algorithm was set to

update the parameter estimates in (incremental) batches of n = 1, 000 data points. The

maximum number of iterations was set to 20, and the start values were those estimates

obtained in the previous batch. At the end of the stream the EM algorithm was run

until convergence. The second EM implementation was inspired by an approach

commonly used in data streams: a sliding window (Gaber, Zaslavsky, and

Krishnaswamy, 2005)). A sliding window is an e�cient tool to make sure that the

analyses will not take increasingly more time or computer memory by �xing the amount

of data taken into account. Whenever new data enter the data set, the oldest data are

forgotten. Thus the data under consideration, i.e., the �Window�, only consist of the m

most recent data points. In our study, the sliding window EM implementation (SWEM)

used a window of m = 10, 000 data points. Similar to the EM implementation, the

SWEM implementation was set to update only every 1,000 data points. During the

simulation study, we monitored two aspects of the estimation procedures. First, we

monitored the accuracy of the parameter estimates of SEMA compared to the EM

implementations. Second, we examined the prediction accuracy of the di�erent

procedures (where for new individuals �rst prediction was generated by setting the

random e�ects (bj) equal to zero). All conditions were replicated 1, 000 times.

Results

In Table 1, the estimated �xed e�ects and their standard errors across conditions

are presented. The results are shown at two points during the stream, n = 25, 000 and

n = 50, 000. Only two coe�cients are presented, though the remaining coe�cients have

similar results. In the online supplementary material, we present �gures of the �xed

e�ects, variance of the random e�ects, and covariances of the random e�ects. The

results of SEMA are very similar to the results of the EM algorithm, although the
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variance over the simulation runs is larger for SEMA compared to EM and SEMA

Update (SU): the additional updates of SU result in smaller variances. The standard

errors are very similar: they deviate with (less than) .002 across methods. The results

of SWEM vary slightly more than the EM due to the fact that this method only uses

the n = 10, 000 most recent data points. In Table 2, the estimates of random e�ects are

presented at two point during the data stream. All methods show a slight

underestimation of the random intercept which can be expected from ML estimates.

Though, all methods do retrieve the data generating values of the random slopes, which

are smaller in value. The estimates of the random intercept vary more than the

estimates of the random slopes, independent of the estimation method.

Table 3 contains the mean absolute error (MAE), the root mean squared error

(RMSE), and the 95% empirical con�dence interval at the end of the data stream for

the �xed e�ects, the variance of the random e�ects, and the residual variance. The

presented results in this table are from the same �xed e�ects and random e�ects

presented in Table 1 and Table 2. The data generating values of the presented

parameters are β = 100 and .1; φ2 = 50 and .2; and σ2 = 5. The residual variance and

the mean absolute prediction error are also presented in Figure 2 and Figure 3. While

EM generally slightly outperforms SEMA, in terms of MAE and RMSE, the con�dence

intervals are very similar and the di�erences are small.

Lastly, in Table 4, we present the mean absolute error and root mean squared error

with 95% empirical con�dence intervals over all n predictions. The method with the

lowest mean absolute error and root mean squared error is SEMA Update (SU),

followed by SEMA, however, all four methods are very similar.

=========================

Insert Table 1 about here

=========================

=========================

Insert Table 2 about here

=========================
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=========================

Insert Table 3 about here

=========================

=========================

Insert Table 4 about here

=========================

In Figure 2 and Figure 3, the four panels present the di�erent conditions. In each

panel error bars depict the 95% empirical con�dence interval. The �rst cluster of bars

belongs to n = 25, 000 and the second cluster to the end of the data stream. Except for

SWEM, the lengths of these bars are highly comparable for both the average residual

variance (Fig. 2), as the moving average, absolute prediction error (Fig. 3). The moving

average absolute prediction error was computed as follows: the window consists of 1000

data points and moves with 100 data points at the time.

The result obtained in this simulation study, combined with the simulation studies

presented in the supplementary material, clearly demonstrate the competitive

performance of SEMA compared to EM. These studies show that the obtained

estimates are similar, and have similar variance. However, it has to be noted that�as

expected based on our theoretical analysis of the computation complexity�the

di�erence in computation time between SEMA and EM is large. Focusing just on

condition A, we �nd that on average the simulation runs took 147.6 seconds per run for

SEMA (including the training set of 2,000 data points), while they took 1255.8 seconds

for traditional EM. This is true despite the fact that SEMA provides updated estimates

for each individual data point during the data-stream, while our implementation of EM

only updates its estimates once every 1, 000 data points.

=========================

Insert Figure 2 about here

=========================
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=========================

Insert Figure 3 about here

=========================

SEMA in action: predicting weight �uctuations.

In this section, the SEMA algorithm is applied to an actual data stream originating

from an experiment done by Kooreman and Scherpenzeel (2014). Using this

application, we illustrate the practical issues that occur when analyzing data streams:

we need to choose appropriate starting values, decide on an update regime of full SEMA

updates, and deal with possible changes in the data generating process that occur over

time. Especially the latter issue is instructive in this study; about 300 participants were

added to the study after approximately two years of running the study. The application

also highlights how the speci�cation of random e�ects that depend on the time in the

stream itself (e.g., days of the week, months, etc.) need to be considered critically as,

for the models to converge, we need observations at each possible level.

The study by Kooreman and Scherpenzeel (2014) concerned the �uctuations in

individuals' weight�over repeated measurements�in a longitudinal study using

respondents from the Longitudinal Internet Studies for Social Sciences (LISS) panel.

Among the respondents of the LISS panel, about 1,000 smart scales were handed out.

These smart weighting scales were equipped with an Internet connection. Respondents

were instructed to use the scale barefoot, such that it could measure, among other

variables, weight, percentage of muscle tissue, and percentage of fat tissue. The smart

scale sent the data to a central server, where the data were combined with respondents'

survey data. The smart scales were handed out in the beginning of 2011 and the data

collection continued until February 2014. While the data set contains the data from

roughly 3 years, the authors used the data of 2011 only. We however analyze the full

available data stream.

Since the data include time stamps, we were able to replay the data stream from

2011 till February 2014. Thus, in this evaluation of SEMA, the data of Kooreman and
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Scherpenzeel (n = 78,021, J = 883) were combined with the data of the remaining

years. The �rst experimental factor of interest was the (instructed) frequency of the

scale usage: every day, every week, or not speci�ed. The second factor was the feedback

respondents received: their weight and the norm what they should weigh, their weight

and their goal weight, or only their weight. Both experimental factors were crossed,

resulting in nine conditions of interest. Before running SEMA on the data stream we

removed a number outliers (0.1% of the data), for which weight �uctuated with more

than 5 kg within a day for a single respondent. The remaining data set consisted of

n = 288, 521 observations from a total of J = 1, 269 respondents. In Table 5, we present

an overview of the model �tted to the data stream by indicating the variables included

as �xed or random, as well as the number of levels (or categories) of each of the

variables.

=========================

Insert Table 5 about here

=========================

Since the authors of the original paper focused on the �e�ect of Monday�, which

implies that on average individuals where 0.2 kg heavier on Mondays than on Fridays,

we similarly focus on the estimation of this �Monday� e�ect. In this application, we

used the same methods as presented in the simulation study. To ensure that we have

good starting values, we used the �rst two months of data (n = 6, 894, J = 472) as a

training set.3 Another practical decision is when to update the o�ine EM algorithm.

For this study, we chose to rerun the EM algorithm every Sunday night, using a

maximum of 1,000 iterations. The sliding window implementation EM used a window of

12,000 data points, which is approximately equal to 2 months of data. SWEM and

SEMA Update performed an additional update every night, where SWEM was allowed

a maximum of 100 iterations and SU was allowed 2 EM cycles, since the model is rather

large and the data rather noisy. In January of 2013, new participants were added to the

3Due to logistic reasons, not all smart scales were handed out at that moment.
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study, a large new group of about 300 new participants. To deal with this sudden�but

known�change in the data-generating process, we retrain the model using all data

observed so far including the newly recruited participants (which is at n = 163, 000). In

order to do so, the EM algorithm was run until convergence with a maximum of 2,000

iterations and after which the parameter estimates of EM algorithm were used as input

for the other methods.

In Figure 4, the estimates of the �xed e�ect of Monday compared to Friday (a), the

variance of the e�ect of Monday (b). In Figure 5, the moving average absolute

prediction error is illustrated. Please �nd all remaining parameter estimates again in

the supplementary material online. The open circles indicate the SEMA algorithm, the

triangles SEMA update, the `×' is SEMA and the black solid circle is Sliding Window

EM. While all methods seem to illustrate a rather similar �uctuation of the Monday

e�ect over time, the sliding window EM (SWEM) implementation �uctuates more than

the other methods since it only uses about 2 months of the most recent data points.

Finally, in Figure 5, the moving average absolute prediction error of all four �tting

procedures are presented. The window consists of 1,000 data points and the window

shifts 100 points at a time. The high outlier from both the EM and SWEM is due to the

fact that in that point in the data stream new participants were included in the stream.

SWEM somewhat outperforms the other methods, most likely because in fact the data

generating mechanism changes over time, a change the other methods are insensitive to.

To conclude, based on our results, there seems to be some evidence in favor of a

�Monday e�ect�. However, this result should be interpreted with care for several

reasons. First, while three out of the four estimation methods replicate the �ndings

reported on by Kooreman and Scherpenzeel (2014), SWEM shows a sharp decrease in

e�ect size towards the end of the stream. Hence, the estimated e�ect seems variable

over time. Second, it has to be noted that the estimated variance of the Monday e�ect

is very large compared to its average e�ect. This implies that while there is some

evidence in favor of a �Monday e�ect� on average, the variance of the e�ect between

participants is large and thus the average e�ect is a poor description of the underlying
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true mechanism. Hence, we would conclude that while an average e�ect of Monday

exists in the data analyzed by Kooreman and Scherpenzeel (2014), the e�ect seems

unstable and very variable between participants. Note that the di�erences between the

EM, SEMA, and SU estimates are negligible and SEMA thus seems well suited to

analyze the current data stream.

=========================

Insert Figure 4 about here

=========================

=========================

Insert Figure 5 about here

=========================

Discussion

In this paper, we developed an extension of the Streaming Expectation

Maximization Approximation (SEMA) algorithm of which a rudimentary version was

supplied in Ippel, Kaptein, and Vermunt (2016a). In its original conception, SEMA was

able to estimate simple multilevel models that contained only level-2 �xed-e�ects and a

single random intercept. The extension we discuss in the paper enables researchers to �t

much more �exible multilevel models that include �xed e�ects at level-1 (e.g., repeated

measurements), level-2 (e.g., individual characteristics), and multiple random intercepts

and random slopes. This extension is not trivial: compared to the initial speci�cation

by Ippel, Kaptein, and Vermunt (2016a), the E-step of SEMA algorithm has been

totally revised to deal with the covariances resulting from the larger number random

e�ects. This change directly in�uences the speci�cation of the CDSS and their update

rules. In this paper we have shown that�due to its online estimation method�SEMA

is computationally more e�cient than traditional �tting procedures. We have

demonstrated in two extensive simulations and one application that this computational
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e�ciency comes at very modest costs: the estimates resulting from SEMA are very close

to the current state-of-art.

Commonly used methods to �t multilevel models (e.g., EM algorithm or Newton

Raphson) repeatedly pass over the data set to estimate the model parameters. When

new data enter, these procedures are repeated to update the model parameters including

the new data. Especially when the number of random e�ects is large, many passes over

the data are required to obtain stable estimates of the model parameters. In such cases,

these traditional �tting procedures quickly become infeasible for large data sets or

continuous data streams. SEMA, on the other hand, only uses each data point only

once, after which it can be discarded. SEMA thus estimates the model parameters in a

computationally less complex manner than the common procedures since it does not

have to revisit the same data repeatedly. Therefore, SEMA can be used to analyze data

streams while accounting for the nested structure that is often observed in data streams.

SEMA also e�ectively deals with the problems of storing extremely large data sets: the

information from each individual data point is aggregated to the level of individuals and

hence more easily stored. Our algorithm enables researchers to use multilevel models for

prediction purposes in real time. In a simulation study, we showed that even when the

number of observations per individual is small and the number of parameters is large,

parameter estimates were estimated accurately. Furthermore, we showed that the

predictive performance of SEMA was competitive to traditional �tting procedures.

Alongside the development of SEMA, many related methods are currently being

developed to analyze data streams. For instance, variational inference, expectation

propagation, and sequential MCMC (sMCMC) sampling are actively explored

(Bayesian) methods to deal with large data sets. Variational methods speed up

posterior computations by replacing the (global) posterior, which often has an unknown

distributional form, by a distribution with a known distributional form (Broderick,

Boyd, Wibisono, Wilson, and Jordan, 2013; Kabisa (Tchumtchoua), Dunson, and

Morris, 2016). (Stochastic) Expectation propagation similarly approximates the

posterior, however it does so locally (Li, Hernández-Lobato, and Turner, 2015).
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SMCMC, provides an appealing extension to MCMC methods because the generated

MCMC draws are updated as opposed to sampled anew when additional data enter

(Yang and Dunson, 2013). The SEMA approach presented in this paper, which involves

updating the likelihood during a data stream, could prove relevant to these �elds of

research by providing a computationally attractive method of updating the likelihood.

While the current extension of SEMA algorithm allows for �tting multilevel models

with �xed and random e�ects in data streams, extensions are possible and need further

development. First, the SEMA algorithm builds on the EM algorithm to �t a linear

multilevel model. However, the EM algorithm is also used to �t non linear models

whose likelihood is a member of the exponential family. Using the strong link with the

EM algorithm, SEMA can potentially also be used to �t a range of alternative models

which deal with multilevel data. Examples include the negative binomial which is a

combination of the Beta distribution with a Poisson distribution or Beta binomial

function which is a combination of respectively a Beta and a Binomial distribution.

These extensions are yet to be developed.

Second, SEMA, and its current [R] implementation, could be extended further by

implementing e�cient parallelization. For truly massive datasets, in which the number

of participants J is extremely large, one might encounter a situation in which the

storage�and subsequent update�of all θj's on a single machine is infeasible. In these

cases we can store subsets of the θj's on di�erent machines�each of which can

e�ciently be retrieved using hashing. Next, we can use the current θ, and the respective

θj to compute an update of θj; as θ will change slowly in a massive data-stream we can

choose to batch update θ occasionally while we update the respective θj's each in

parallel on di�erent machines as the data points arrive.

Third, in Kooreman and Scherpenzeel (2014)�our empirical example�the authors

actually used a multilevel model with more �xed e�ects than the model we used in this

paper. The original model also contained �xed e�ects for the calendar months. Fitting

this model requires observations in (almost) each month, such that the X ′X matrix

becomes invertible (i.e., at least semi-positive de�nite). Consequently, using SEMA as it
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is formulated in this paper, a model including the e�ects of months cannot be �tted to

the data before the data stream has run for almost a year. Further research should

focus on extending the model during the data stream, such that these e�ects can be

included dynamically once enough data has been collected.

Fluctuations over time

In addition to modeling the repeated measurements of the same individuals using a

linear multilevel model, there is a broad range of more complex models that could

potentially deal with dependencies between observations. Cappé (2011), for instance,

studied an online EM algorithm to �t Hidden Markov Models. In such a model, the

in�uence of the previous observation is included in the current estimation model. Also,

when observations are equally spaced, models such as State-Space models

(Arulampalam, Maskell, Gordon, and Clapp, 2002) or autoregressive models (e.g.,

AR(1)) can be used as well to model �uctuations over time. Extending SEMA to cover

these cases provides a promising direction for future work.

Furthermore, the current version of SEMA assumes that the true data-generating

process is stationary and that, over the course of the data stream, we converge to the

�correct� parameter estimates. However, when monitoring individuals over time, it is

likely that the data-generating process itself changes over time, also known as concept

drift (Widmar and Kubat, 1996). Sliding window approaches, in which only the most

recent data points are included in the analysis, are often used in such cases: we

examined SWEM as an example. In this case the chosen window size is inherently

somewhat arbitrary, and appropriate window sizes will depend on the problem at hand.

In general, a larger window stabilizes the estimates with the risk of being less sensitive

to concept drift, while a smaller window allows for the quick detection of concept drift

with the risk of obtaining extremely high variance estimates.

Note that when using a sliding window approach one still re-estimates the model

parameters each time the window slides, albeit using only the data within the window.

SEMA provides an alternative: a �xed learn rate could be used to limit the in�uence of
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the older data when dealing with data streams. In Eq. 1 it is easily seen that the

�learn-rate� for computing an online sample mean is 1
n
. Thus, as the stream becomes

longer (and n grows larger) the learn rate decreases and the computed mean stabilizes.

If, instead, we would alter the update rule of x̄ to read x̄← x̄+ xt−x̄
min(n,α)

for some �xed

value of α of say 10, 000, we e�ectively create a smooth moving window in the sense

that older data points are smoothly discarded�though without revisiting older data

points. This can, with some e�ort, similarly be implemented in SEMA. For instance, for

the estimation of the �xed e�ects the in�uence of the existing (X′X)−1 could be

decreased such that the new data points get more weight. Introducing such a 'smooth

sliding window', where previous data gradually receive less weight, provides a way of

dealing with changing (true) parameter values.

Missing data

In a data stream, in addition to not observing all p covariates for each data point,

often not all covariates enter at the same time. Some information might be missing or

might be observed later, e.g., learning the gender of a respondent after already receiving

a number of data points. Missingness is a research area on its own (Donders, van der

Heijden, Stijnen, and Moons, 2006; van der Palm, van der Ark, and Vermunt, 2016) but

the types of missingness generated in data streams raise new research questions. For

example, related to the issue of item nonresponse, is the issue of unit nonresponse due

to attrition. If a subgroup of respondents, e.g., the less a�uent respondents, drop out of

the study, the parameter estimates of the model could become biased. As SEMA only

updates the CDSS contributions when an individual returns her contributions will

become outdated if she does not return. While we do not explicitly study solutions to

attrition in data streams, additional runs over the individuals (is implemented in

�SEMA Update�), could be used to update all contributions to the CDSS. Alternatively,

one could also choose to update the contributions of those who do not return within a

given period of time (which is related to the partial EM algorithm, see, Neal and Hinton

1998; Thiesson, Meek, and Heckerman, 2001). Note that both types of missingness, unit
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and item, are issues to be dealt with in future research on data streams.

Closing remarks

Continuous data collection is slowly becoming pervasive in the social sciences:

popular data collection methods such as experience sampling and novel sensing

technologies provide continuous data streams of human behavior. Often these data have

a nested structure: observations are nested within individuals and the dependencies

introduced by this nesting should be accounted for in the analysis. In this paper, we

presented the SEMA algorithm, a computationally-e�cient algorithm to analyze data

that contain a nested structure and arrive in a continuous fashion. Hence, multilevel

models with numerous �xed and random e�ects can now be �t to continuous data

streams (or extremely large static data sets), in a computationally e�cient fashion.
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Table (1).
Average results of the estimates of two of the 15 �xed e�ects over 1,000 simulation runs. Data generating
values were: β =100 and β = .1

SEMA SU EM SWEM

Condition n×1000 β̂ s2 se* β̂ s2 se* β̂ s2 se* β̂ s2 se*

rv = 1

25 100.002 0.239 0.015 100.003 0.232 0.015 100.007 0.204 0.014 100.007 0.204 0.014
50 100.001 0.227 0.015 100.002 0.216 0.015 100.005 0.198 0.014 100.007 0.196 0.014
25 0.098 0.001 0.001 0.098 0.001 0.001 0.098 0.001 0.001 0.098 0.001 0.001
50 0.100 0.000 0.000 0.100 0.000 0.000 0.100 0.000 0.000 0.100 0.001 0.001

rv = 5,
cor = 0

25 99.994 0.262 0.016 99.993 0.252 0.016 99.991 0.210 0.014 99.991 0.210 0.014
50 99.992 0.242 0.016 99.991 0.226 0.015 99.986 0.199 0.014 99.986 0.202 0.014
25 0.099 0.001 0.001 0.099 0.001 0.001 0.099 0.001 0.001 0.099 0.001 0.001
50 0.100 0.000 0.001 0.100 0.000 0.001 0.100 0.000 0.001 0.101 0.001 0.001

rv = 5,
cor = .15

25 99.971 0.239 0.016 99.972 0.230 0.015 99.972 0.194 0.014 99.972 0.194 0.014
50 99.970 0.222 0.015 99.970 0.207 0.014 99.970 0.185 0.014 99.972 0.186 0.014
25 0.101 0.001 0.001 0.101 0.001 0.001 0.101 0.001 0.001 0.101 0.001 0.001
50 0.101 0.000 0.001 0.101 0.000 0.001 0.101 0.000 0.001 0.100 0.001 0.001

rv = 5,
cor = .5

25 99.997 0.212 0.015 99.997 0.199 0.014 99.999 0.156 0.012 99.999 0.156 0.012
50 99.997 0.187 0.014 99.997 0.167 0.013 99.992 0.141 0.012 99.999 0.149 0.012
25 0.102 0.001 0.001 0.102 0.001 0.001 0.101 0.001 0.001 0.101 0.001 0.001
50 0.100 0.000 0.001 0.100 0.000 0.001 0.100 0.000 0.001 0.099 0.001 0.001

*se =

√
1

S−1

∑
s(β̂s−β)2√
S

, where S is the total number of simulation runs
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Table (2).
Average results of the estimates of the variance of one (condition A) or two (conditions B�D) of the 5
random e�ects over 1,000 simulation runs. Data generating values were: φ2 = 50 and φ2 = 0.2

SEMA SU EM SWEM

Condition n×1000 φ̂2 s2 se* φ̂2 s2 se* φ̂2 s2 se* φ̂2 s2 se*

rv = 1
25 49.756 5.305 0.073 49.744 5.302 0.073 49.702 5.285 0.073 49.702 5.285 0.073
50 49.730 5.157 0.072 49.712 5.152 0.072 49.687 5.139 0.072 49.690 5.209 0.073

rv = 5,
cor = 0

25 49.631 5.068 0.072 49.622 5.067 0.072 49.568 5.054 0.072 49.568 5.054 0.072
50 49.626 4.944 0.071 49.603 4.942 0.071 49.569 4.932 0.072 49.569 5.117 0.073
25 0.220 0.007 0.031 0.202 0.004 0.032 0.194 0.002 0.032 0.194 0.002 0.032
50 0.199 0.000 0.032 0.199 0.000 0.032 0.199 0.000 0.032 0.199 0.002 0.032

rv = 5,
cor = .15

25 49.703 4.776 0.070 49.693 4.773 0.070 49.644 4.765 0.070 49.644 4.765 0.070
50 49.715 4.623 0.069 49.693 4.622 0.069 49.669 4.621 0.069 49.656 4.724 0.070
25 0.228 0.007 0.031 0.209 0.004 0.031 0.194 0.002 0.032 0.194 0.002 0.032
50 0.201 0.000 0.032 0.201 0.000 0.032 0.201 0.000 0.032 0.200 0.002 0.032

rv = 5,
cor = .5

25 49.738 5.538 0.075 49.730 5.531 0.075 49.722 5.523 0.075 49.722 5.523 0.075
50 49.740 5.328 0.073 49.729 5.323 0.073 49.755 5.334 0.073 49.733 5.447 0.074
25 0.234 0.006 0.031 0.219 0.004 0.031 0.197 0.001 0.032 0.197 0.001 0.032
50 0.200 0.000 0.032 0.200 0.000 0.032 0.200 0.000 0.032 0.200 0.001 0.032

*se =

√
1

S−1

∑
s(φ̂

2
s−φ2)2

√
S

, where S is the total number of simulation runs
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Table (4).
Average Mean Absolute Error∗1 (MAE) and average Root Mean Squared Error∗2 (RMSE) of the 1,000
simulation runs.

SEMA SU EM SWEM
Condition error mean CIlow CIup mean CIlow CIup mean CIlow CIup mean CIlow CIup

rv = 1
MAE 1.860 1.847 1.872 1.860 1.847 1.872 1.870 1.857 1.883 1.919 1.906 1.933
RMSE 2.349 2.333 2.365 2.349 2.333 2.365 2.372 2.352 2.392 2.432 2.411 2.453

rv = 5,
cor = 0

MAE 2.058 2.043 2.072 2.057 2.042 2.072 2.075 2.060 2.090 2.273 2.254 2.292
RMSE 2.631 2.610 2.651 2.630 2.610 2.650 2.665 2.642 2.689 2.912 2.883 2.940

rv = 5,
cor = .15

MAE 2.055 2.041 2.069 2.054 2.040 2.068 2.072 2.057 2.086 2.267 2.250 2.285
RMSE 2.628 2.608 2.649 2.627 2.607 2.647 2.662 2.638 2.684 2.906 2.881 2.931

rv = 5,
cor = .5

MAE 2.031 2.017 2.045 2.030 2.016 2.045 2.046 2.032 2.061 2.216 2.199 2.234
RMSE 2.594 2.574 2.615 2.593 2.573 2.613 2.627 2.603 2.652 2.839 2.813 2.866

∗1 average MAE = 1
1000

(
∑n

i=1 |ŷi−yi|
n

), n = 48000: the length of the data stream, without the training set

∗2 average RMSE = 1
1000

(

√∑n
i=1(ŷi−yi)

2

n
)
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Table (5).
Fitted model to the smart-scale data stream

Variables Fixed Random number of categories Reference
Intercept X X
Day of the week X X 7 Friday
Gender X 2 male
Year of birth X � 1970 (centered)
Length X � 174cm (centered)
Feedback X 3 only weight
Frequency X 3 not speci�ed
Time of Measurement X 4 morning

The dependent variable is weight
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Figure (1).
Computational complexity of online versus o�ine algorithms to compute the sample mean
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(a) Estimated �xed e�ect of Monday
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(b) Estimated variance of Monday
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Figure (4).
The estimated Monday e�ect and variance. The `×' is EM, triangle is SEMA Update, open circle is
SEMA and closed circle is Sliding Window EM, the most right `×' is EM using all data and 2000
iterations
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Figure (5).
Mean Absolute Error (MAE), a moving average of 1,000 data points, shifting with 500 data points at a
time


