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Abstract In the last few years, it has become increasingly easy to collect data from
individuals over long periods of time. Examples include smart-phone applications
used to track movements with GPS, web-log data tracking individuals’ browsing be-
havior, and longitudinal (cohort) studies where many individuals are monitored over
an extensive period of time. All these datasets cover a large number of individuals and
collect data on the same individuals repeatedly, causing a nested structure in the data.
Moreover, the data collection is never ‘finished’ as new data keep streaming in. It is
well known that predictions that use the data of the individual whose individual-level
effect is predicted in combination with the data of all the other individuals, are better
in terms of squared error than those that just use the individual mean. However, when
data are both nested and streaming, and the outcome variable is binary, computing
these individual-level predictions can be computationally challenging. In this paper,
we develop and evaluate four computationally-efficient estimation methods which do
not revise “old” data but do account for the nested data structure. The methods that
we develop are based on four existing shrinkage factors. A shrinkage factor is used to
predict an individual-level effect (i.e., the probability to score a 1), by weighing the
individual mean and the mean over all data points. In a simulation study, we compare
the performance of existing and newly developed shrinkage factors. We find that the
existing methods differ in their prediction accuracy, but the differences in accuracy
between our novel shrinkage factors and the existing methods are small. Our novel
methods are however computationally feasible in the context of streaming data.
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1 Introduction

Researchers often encounter grouped data where the outcome variable of interest is
binary. For example, Murnaghan, Sihvonen, Leatherdale, and Kekki (2007) com-
pared the smoking behavior (smoking versus none smoking) of students that are
grouped within different schools. Quintelier (2010) studied the effect of schools on
students voting behavior (vote versus no vote), and Linares, Guizar, Amador, Garcia,
Miranda, Perez, and Chapela (2010) monitored children over a long period of time
(repeated measurements nested within children) to investigate the effect of air pol-
lution on the presence (or absence) respiratory symptoms. Furthermore, Cheng and
Cantú-Paz (2010) studied ‘click’ behavior in e-commerce, i.e., whether an individual
clicks on an advertisement on a website. In this latter case, the repeatedly observed
click-through behavior is nested within the individual. In each and every instance
above researchers are interested in obtaining good estimates of the probability of an
event occurring at the level of the individual, while respecting the nested structure
in the data. In this paper, we examine efficient methods of obtaining such estimates
in a situation where the collected data arrive continuously and datasets are rapidly
augmented.

To settle for an unambiguous terminology throughout, we adopt the terms of the
latter e-commerce example. Here a researcher could be interested in the individual-
level effect µi, which is the estimated probability that an individual will click. Note
that we use i to index the grouping factor which, in this particular case of multi-
ple observations nested within the individual, denotes the individual customer whose
click-through rate is being estimated. However, the methods discussed in this paper
do not restrict themselves to the nesting of observations that are nested within indi-
viduals but could also be used for groupings such as individuals within schools or
schools within districts. Our interest lies in estimating the individual-level effect µi,
accurately and computationally efficiently.

In a now classical paper, Stein (1956) showed that predicting the individual-level
effects of one individual (i.e., µi) using only the data of this particular individual,
thus without taking the other individuals into account, results in a larger average
squared prediction error than when these other individuals are taken into account. He
demonstrated that combining the estimated mean of an individual, which we denote
pi, with the estimated sample mean over all data points, p̄, results in better out-of-
sample predictions (see, for instance, Efron and Morris, 1977). Following this result,
James and Stein in 1961 introduced the idea of a shrinkage factor, a way to weigh the
estimated mean of an individual and the mean over data points to obtain a prediction
of µi. The resulting weighted combination can be denoted as follows:

µ̂i = (1− β̂ )pi + β̂ p̄, (1)

where β is the so-called shrinkage factor. Because we focus on binary outcomes, the
pi in our case denotes the proportion of (for instance) clicks. In the remainder of this
paper we refer to pi as the individual mean, and p̄ as the group mean.

The aim of this paper is to develop and evaluate different shrinkage factors which
can be used to efficiently estimate the individual-level effect in a situation where new
data present themselves over time. We refer to this situation as a data stream. In
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a data stream, the data collection is never “finished”, for instance in click-behavior
data on a website. In the case of real-time prediction, where up-to-date predictions of
the individual-level effects are required at each moment during the stream, methods
that can update rather than re-estimate the individual-level effects, greatly improve
the speed of the estimation process (Pébay, Terriberry, Kolla, and Bennett, 2016).

In general, various methods are available to deal with data streams. For instance
one could subsample from the data stream (i.e., at random include some of the data
points in the analysis while excluding others), and analyze the subsample in order
to obtain predictions (Efraimidis and Spirakis, 2006). While this method solves the
problem of a growing dataset, it inherently limits the information and risks not be-
ing able to include data of specific individuals who are of future interest. Another
method that deals well with a data stream is a sliding-window approach. Effectively
the sliding window is also a subsample of the data, existing of only the most recent
data points. The advantages of this method are that memory burden is fixed and, in
cases in which the data-generating process is not stationary over time, the most recent
observations most heavily influence the resulting predictions. However, choosing the
size of the window often requires domain knowledge: too small might not catch any
events meaningful, too large a window might computationally be too expensive (see,
Aggarwal, 2007, for an introduction on many more data-stream techniques, includ-
ing sliding windows). In this paper, we focus on another method to deal with data
streams: online learning, “computing estimates of model parameters on-the-fly, with-
out storing the data and by continuously updating the estimates as more observations
become available” (Cappé, 2011). Note that our current focus is solely on estimat-
ing the individual-level effects in the context nested data and hence accounting for
the grouping present in the data. While the inclusion of additional explanatory vari-
ables (for instance to take into account when an individual was last seen in the data
stream, previous purchases, etc.) in the prediction model is possible when estimating
shrinkage factors (see, for instance Morris and Lysy (2012) or Ippel, Kaptein, and
Vermunt (2016b)), we restrict our attention solely to random-intercept models with
binary outcomes.

A possible solution to efficiently obtaining estimates in a situation where the data
come streaming in, is to estimate the individual-level effects in real time using on-
line estimated shrinkage factors. Online estimation (or online learning) implies that a
parameter (e.g., a mean, or regression coefficient) is updated using a single (or small
batch of) data point and some sufficient statistics (e.g., a summation of the previous
data points, Bottou, 1998; Ippel, Kaptein, and Vermunt, 2016a). An illustrative ex-
ample is the computation of the sample mean 1

n ∑
n
t=1 xt . Estimating a sample mean in

a data stream using online learning can be done as follows:

n(t+1) = n(t)+1

p̄(t+1) = p̄(t)+
x(t+1)− p̄(t)

n(t+1) ,
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or equivalently,

n := n+1

p̄ := p̄+
x− p̄

n
,

(2)

where n is the total number of observations and ‘:=’ is an assignment operator, mean-
ing that the left-hand side is updated using the expression on the right-hand side.
Throughout this paper we will use the notation presented in Equation 2 as opposed to
using explicit superscripts.

Note that the offline estimation procedure stores all the observations and for each
new estimate revisits the older data points. Updating the sample mean offline in a
data stream thus takes increasingly more time because more and more data need to
be processed. On the contrary, the online estimation procedure only stores n and p̄
in memory, and, when a new data point enters, these are updated according to Equa-
tion 2. This results in a time-constant update. Attractively, using online estimation
methods, there is no need to revisit previous data points, which can therefore be dis-
carded from memory (Kaptein, 2014). However, not every offline estimation proce-
dure can be used exactly for online estimation (see, e.g., Ippel, Kaptein, and Vermunt,
2016a; Neal and Hinton, 1998). Hence, we often have to resort to approximate solu-
tions. In this paper, we evaluate the accuracy of online approximations of a number
of shrinkage factors. Note that although we focus on data streams, extremely large
static datasets can be analyzed using the same methods.

The paper is organized as follows. Section 2 describes four existing shrinkage
factors and develops the online implementation of each of the shrinkage factors. In
Section 3 we discuss when the individual-level effect should be estimated, an issue
which arises due to the fact that new data present themselves over time. Section 4
presents a simulation study where we compare the online and offline implementations
of the shrinkage factors in terms of the accuracy of the estimated individual-level
effects. Here we explicitly explore different data-generating mechanisms. In Section
5 we apply the developed online shrinkage factors to analyze a real dataset. The
dataset contains data coming from a large panel study. Because dropouts in panel
data is a serious threat, we focus on predicting the probability of non-response per
repeatedly observed individual. These predictions could facilitate the choice of which
respondents to invite for the next wave, or personalize the response request to achieve
higher response rates. Finally, in Section 6, we discuss the limitations of the shrinkage
factors and their possible extensions to a broader setting.

2 Estimation of shrinkage factors

The intuition of a shrinkage model (Eq. 1) is as follows: there is information available
both on the group level as on the individual level, so by shrinking the individual-level
effect towards the group mean, the estimator “borrows strength from the neighbors”,
thereby reducing the average squared prediction error (Efron and Morris, 1977; James
and Stein, 1961; Stein, 1956). In this section, we discuss four shrinkage factors and
develop their online implementations:
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– James-Stein estimator, (JS): Here, we use the formulation as introduced by Morris
and Lysy (2012). This shrinkage factor assumes normally distributed individual-
level effects. This assumption is clearly violated for binary data; using the data
transformation, also suggested by Morris and Lysy (2012), the normal distribution
is approximated. Furthermore, this shrinkage factor is equal across all individuals.

– Approximate Maximum Likelihood estimator, (ML): The ML is unlike the JS in-
dividual specific. The level of shrinkage is influenced by the number of observa-
tions of an individual. This shrinkage factor also assumes that the individual-level
effects are normally distributed. Hence, here also we use the data transformation
suggested by Morris and Lysy (2012).

– Beta-Binomial estimator, (BB): This shrinkage factor does not assume a normal
distribution, instead the individual-level effects are assumed to have a Beta distri-
bution. Similar to ML, the level of shrinkage is individual specific and the level of
shrinkage is influenced by the number of observations of an individual. We esti-
mate the BB using the method of moments estimator (see, for instance Young-Xu
and Chan, 2008).

– Heuristic estimator, (HN): Unlike the previous three shrinkage factors, the HN
does not rely on any distributional assumptions. This shrinkage factor is an ad-hoc
estimator which solely depend on the number of observations of an individual.

2.1 The James Stein estimator

The JS is historically important since it is among one of the first shrinkage factors
to be considered in the literature. This shrinkage factor assumes normally distributed
individual-level effects. Thus, the assumed data-generating model is:

yi ∼ N(µi,σ
2
i I)

µi ∼ N(µ,τ2),
(3)

where yi is the response vector of individual i with ni observations, I is a ni × ni
identity matrix, σ2

i the residual variance, µ is the population average, which below
we estimated using p̄, and τ2 the variance of the individual-level effects. Since we
focus on grouped binary data, the individual means (i.e., proportions) are bounded,
and therefore, not nearly normally distributed. To address this Morris and Lysy (2012)
suggested the following data transformation:

wi =
√

n̄(arcsin(1−2pi)− arcsin(1−2p̄)), (4)

where wi is the transformed individual mean, n̄ = n/N, the total number of obser-
vations divided by the total number of individuals, pi the individual mean, p̄ the
sample mean over all data points. The transformation stabilizes the within-variance
to be approximately equal to σ̂2

i = n̄/ni. Using this data transformation to estimate
the individual-level effects results in the following shrinkage model:

ŵi = wi(1− β̂ js)+ w̄β̂ js, (5)
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where w̄ the average across the transformed individual means and β̂ js, the JS shrink-
age factor, is given by

β̂ js =
N−2

N
∑

i=1

(wi−w̄)2

n̄/ni

,

=
N−2
SS js

,

(6)

as formulated by Morris and Lysy (2012), where SS js is the sum of squares between
individuals. To obtain the estimated individual-level effect in terms of probabilities
one computes

µ̂i = (sin((ŵi/n̄)+ arcsin(1−2 p̄))−1)/−2. (7)
Thus, the quantities or parameters that are needed to estimate µi using the JS shrink-
age factor are: wi, pi, ni, n, N, p̄, n̄, w̄ and SS js (see, Eq. 4, 5, and 6). While the above
formulas detail how to estimate β js in an offline setting, we now turn to deriving an
online formulation.

Parts of the online computation of β̂ js are straightforward, for instance the compu-
tations of n or ni using, n := n+1, to merely count the observations. We do not detail
these further. However, counting the number of unique individuals (N) requires some
additional thought: before N is incremented when a new data point arrives, we need
to check whether this new data point originates from an already observed individual
or from a new individual. Only in the latter case we increment the counter:

N :=

{
N if it ∈ N,
N +1 if it /∈ N,

(8)

where i is the index of an individual and subscript t indicates that we only focus
on the individual belonging to the most recent data point. Furthermore, N is set of
unique identifiers of all known individuals observed up to now. Each individual is
labeled with an identifier such that we can track the individual over time. If a new
individual is observed a new element is added to the set N. Thus, the vector of unique
identifiers grows when new individuals arrive in the data stream, but does not grow
when an observed individual arrives (again) in the data stream. To check whether the
individual it is new or not, the set of unique identifiers of individuals N needs to be
available.

The online update of the transformed individual means, w̄, is less trivial than
count observations or the online update of the sample mean (Eq. 2). The w̄, is a
sample mean averaged over individuals (N), not over data points (n). Similar to the
count of individuals (N, Eq. 8), we check whether the individual belonging to the
new data point is observed before. Different update functions are used depending on
whether or not an individual is observed before. When the data point belongs to a
known individual, there is already a contribution of this individual to w̄. We, first,
correct w̄ by subtracting the old contribution (i.e, the previous w′i), then, the new
contribution (i.e., the updated wi) is added to w̄:

w̄ :=

{
(Nw̄−w′i +wi)/N if it ∈ N,
(Nw̄+wi)/N if it /∈ N,

(9)
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where w′i is the previous transformed individual mean from the last time this individ-
ual (it ) entered and wi the current estimate of the transformed individual mean.

Note that, due to the influx of new data, group parameters (n, p̄, and N) are con-
stantly changing. The data transformation uses these group parameters. This implies
that all transformed individual means change when new data enter, not only the indi-
vidual that just entered (it ). In order to obtain the exact same result using the offline
and online estimation procedure, all the transformed individual means should be up-
dated every time a data point enters. Updating all these transformed individual means
is inefficient and becomes infeasible when the number of individuals grows rapidly.
Hence, we approximate the offline version by updating only the current individual.
We discuss this issue in more detail in Section 3.

The remaining parameter needed for the estimation of β̂ js is the between indi-
viduals sum of squares (SS js), which is also a summation over individuals. For the
estimation of SS js we make use of a similar update regime as used for w̄:

SS js :=


SS js−SS jsi′ +

(wi− w̄)2

n̄/ni
if it ∈ N,

SS js +
(wi− w̄)2

n̄/ni
if it /∈ N,

(10)

where SS jsi′ denotes the previous contribution to the SS js. Using Eq. 10, β js can be
estimated, with which we can estimate ŵi (Eq. 5). Lastly, to obtain µ̂i, ŵi is imputed
in Eq. 7 to transform ŵi to µ̂i.

2.2 Approximate Maximum likelihood estimator

The ML is an often used shrinkage factor for multilevel models, where µi’s are nor-
mally distributed and the outcome variable is continuous (among others, Goldstein,
1986). Because the means of binary observations are not normally distributed, we
use the same data transformation (Eq. 4) as discussed previously in Section 2.1. Sim-
ilar to the estimation of µi using the JS, the ML estimation of µi uses the alternative
shrinkage model (Eq. 5) which includes the transformed individual means. However,
unlike the previous shrinkage factor, ML estimator is tailored to an individual: the
level of shrinkage is influenced both by the number of observations of an individual
as well as by information of the other individuals:

β̂ml i =
σ̂2

i

τ̂2 + σ̂2
i
,

=
n̄/ni

τ̂2 + n̄/ni
,

(11)

where more observations of an individual (ni) result in less shrinkage, and τ̂2 is the
maximum-likelihood value of the variance of the individual-level effects. The most
likely value of τ2 is found by maximizing the following log-likelihood function (see,
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Morris and Lysy, 2012, equation at the bottom of page 128):

`(τ2) =
N

∑
i=1

[ (wi− w̄)2

n̄/ni

n̄/ni

n̄/ni + τ2 + log
( n̄/ni

n̄/ni + τ2

)]
/2,

=
N

∑
i=1

[ (wi− w̄)2

σ2
i

σ2
i

σ2
i + τ2 + log

(
σ2

i

σ2
i + τ2

)]
/2,

=
N

∑
i=1

[ (wi− w̄)2

σ2
i

βml i + log(βml i)
]
/2,

(12)

In the case of offline estimation, Eq. 12 is maximized by iterating over the dataset,
using a numerical optimization method, for instance Newton Raphson.

For the estimation of µi using ML, the following parameters are needed: pi, ni,
wi, σ̂2

i , n, N, n̄, p̄, w̄, and τ̂2. Most of these parameters have already been discussed in
the previous section (see, Eq. 2, 8, and 9), therefore we focus only on the remaining
parameter: the estimation of the variance of the individual-level effects, τ̂2.

Estimating τ̂2 is not straightforward during the data stream since using an iterative
maximization procedure is not feasible. For this reason, we use Stochastic Gradient
Descent (SGD, Bottou, 2010). SGD updates the estimate of τ2 by evaluating the
gradient (in this case, a one-dimensional gradient or derivative) of `(τ2) one data
point at a time.

Intuitively, SGD works as follows: The first-order derivative of the log-likelihood
function is a summation over individuals. SGD evaluates this first-order derivative for
a single data point and based on the value of the derivative SGD determines whether
the current estimate of the parameter is above or below the maximum-likelihood
value. Using a learn rate (γ), SGD steps towards the maximum of the likelihood func-
tion. When a new data point enters, SGD evaluates the derivative again and updates
the parameter estimate accordingly. The first-order derivative of `(τ2) is:

∇`(τ2) =
N

∑
i=1

(wi− w̄)2− σ̂2
i − τ̂2

2(σ̂2
i + τ̂2)2 . (13)

Because Eq. 13 is a summation over individuals, we apply a similar update regime as
in Equation 10:

τ̂
2 :=

{
τ̂2− γ∇`i′(τ

2)+ γ∇`i(τ
2) if it ∈ N,

τ̂2 + γ∇`i(τ
2) if it /∈ N,

where ∇`i′(τ
2) is the previous contribution of individual i to the gradient of τ2 and

∇`i the current contribution to that gradient of individual i. When the learn rate, γ ,
is large, SGD can ‘move’ fast towards the maximum-likelihood value, however with
the same pace it can also step over the maximum of the likelihood function. When
the learn rate is small it will take many evaluations of the derivative (i.e., many data
points have to enter) before the maximum likelihood is reached (see, e.g., Bottou,
2010; Xu, 2011; Schaul, Zhang, and LeCun, 2013, for a more extensive discussion
on learn rates for SGD). After the estimation of βml i, the individual-level effect is
estimated using the shrinkage model for transformed individual means (Eq. 5) after
which ŵi is transformed to µ̂i using Eq. 7.
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2.3 The Beta-Binomial estimator

When we assume that the data-generating model is a Beta Binomial distribution,

ki ∼ Bin(ni,µi)

µi ∼ Beta(α,β )
(14)

where ki = ∑
ni
j=1 yi j, the individual means do not have to be transformed to estimate

BB, because the Beta distribution naturally falls within the [0,1] range. Thus, in order
to estimate µi we can make use of the shrinkage model as defined in Eq. 1. In this
case, we choose the method-of-moments estimation method to estimate BB because
this method has a closed-form solution to estimate the shrinkage factor. The closed-
form expression of the estimation procedure of BB makes it easier to rewrite the
formulation of BB to an online formulation.

The compound distribution of the Beta-Binomial distribution is:

f (k|n,α,β ) =
Γ (n+1)

Γ (k+1)Γ (n− k+1)
Γ (k+α)Γ (n− k+β )

Γ (n+α +β )

Γ (α +β )

Γ (α)Γ (β )

=
Γ (M)

Γ (Mµ)Γ (M(1−µ))

(
n
k

)
Γ (k+Mµ)Γ (n− k+M(1−µ))

Γ (n+M)

(15)

where µ is estimated by p̄, and k = ∑
N
i=1 ∑

ni
j=1 yi j, and where M̂ is computed as fol-

lows:

M̂ =
p̄(1− p̄)− ŝ2

ŝ2− p̄(1−p̄)
N c

,

where c = ∑
N
i=1 1/ni and ŝ2 is defined as

ŝ2 =
N ∑

N
i=1 ni(pi− p̄)2

(N−1)∑
N
i=1 ni

,

=
NSSbb

(N−1)∑
N
i=1 ni

,

where SSbb is the between-individual sum of squares using the individual means. The
shrinkage factor of BB is:

β̂bb i =
M̂

M̂+ni
, (16)

Similar to the ML, the BB is also individual specific where the number of observa-
tions per individual influences the level of shrinkage. The parameters for the estima-
tion of µi using BB are: ni, pi, SSbbi , n, N, c, p̄, M̂, and ŝ2.

The computation of ŝ2 requires the following: N,n, and SSbb. While the first two
parameters are easy to update during the data stream and already discussed in Section
2.1, the latter is again a sum over individuals, which requires an update similar to SS js
(Eq. 10):

SSbb :=

{
SSbb−SSbbi′

+ni(pi− p̄)2 if it ∈ N,

SSbb +ni(pi− p̄)2 if it /∈ N,
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where SSbbi′
denotes the previous contribution to the SSbb. Similar to the β̂ js, the β̂bb

estimated online is slightly different compared to the offline estimated β̂bb. The differ-
ence between the two estimation procedures is due to the fact that SSbb is dependent
on p̄ which fluctuates throughout the data stream.

For the computation of M̂ we need p̄, ŝ2,N, and c. Because all parameters except
the last parameter are already discussed previously, we only present the computation
of c:

c :=

{
c− ci′ +1/ni if it ∈ N,
c+1/ni if it /∈ N,

where ci′ is the previous contribution to c (i.e. 1
ni−1 ). The individual-level effect µi is

then estimated using Eq. 1, using β̂bb i, pi and p̄.

2.4 The Heuristic estimator

The previous two shrinkage factors (ML, Eq. 11 and BB, Eq. 16) both have a similar
type of intuition: individual-level effects are moved more towards the group mean
when little is known about the individual (i.e., a small number of observations) com-
pared to when there is more information about an individual. The last shrinkage factor
has the same intuition, however, we do so without any distributional assumptions or
sophisticated formulas. The last shrinkage factor

β̂hn i =
1
√

ni
,

shrinks individual-level effects only based on the (square root of) number of observa-
tions of an individual. Like BB, the HN also shrinks the individual-level effects using
Eq. 1: When an individual only has 1 observation, µ̂i = p̄, and the amount of shrink-
age decreases as more observations of an individual enter. All the parameters used
for the estimation of µi using HN (pi, ni, p̄, and n), have been discussed in Section
2.1.

Table 1 gives an overview of the online shrinkage factors that are used in the sim-
ulation study. The characteristics of each of the shrinkage factors are presented. The
last three lines of the table give an indication how many parameters should be updated
to estimate the shrinkage factor and the individual-level effect when an additional data
point enters the dataset. First of the three lines are the individual parameters, second
line are group level count parameters, and last line are the parameters that require
more computations to update.

3 Predicting individual-level effects: when is the right time?

When analyzing static data, the exact moment at which one should predict the individual-
level effects, does not come to question. It naturally follows that the prediction is only
made once: after the shrinkage factor is estimated. This is, however, not the case when
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Table 1 Overview of the characteristics of the shrinkage factors and their complexity

JS ML BB HN
distribution µi Normal Normal Beta –
group or individual group individual individual individual
equal variance yes no no no
transformation yes yes no no
update µ̂i pi, ni, wi, SS jsi pi, ni, wi, τ̂2

i , σ̂2
i pi, ni, SSbbi pi, ni

p̄, N, n, N p̄, N, n, N p̄, N, n, N p̄, N, n
n̄, w̄, SS js n̄, w̄, τ̂2 SSbb, ŝ2, c, M̂ –

data are entering over time. In this section, we explain why the researcher is faced
with a choice when to estimate the individual-level effect.

The individual-level effect is a combination of the individual mean, the group
mean, and a shrinkage factor. Every time a new data point enters, the record of
one person changes. However, due to this new data point, the estimates of all the
individual-level effects at that moment in time change slightly. That is, if one would
re-estimate all the individual-level effects every time a new data point enters, the
estimates change with every additional data point. Such re-estimation is, however,
infeasible for the full set of individuals at each time point, and in many applications
one would only obtain an estimate only for the individual concerned. In any case, the
shrinkage of the individual-level mean to the group-level mean to obtain a prediction
for a specific individual can be done at two distinct moments:

1. one could obtain a shrinkage estimate the moment an individual’s data is observed
and store the resulting prediction,

2. or, one could obtain a prediction at the moment that the individual is about to
re-enter the dataset; hence, the moment a prediction might be needed.

The first option leads to the following procedure: when a data point enters, the
group-level parameters, the parameters of the individual (it ) whose data point entered,
and shrinkage factor are updated or computed. With these parameters, a prediction
of the individual-level effect is made and stored in memory. This option has two
downsides. The first downside is that besides pi, a prediction (µ̂i) needs to be stored,
which is potentially never used if we do not observe this individual anymore. The
other downside is that while we store the prediction, new data are entering. These new
data points affect the shrinkage factor and global statistics. All these changes are not
taken into account because the prediction is stored and considered fixed. Therefore,
the stored prediction does not optimally make use of the most recent information.

For the second option, imagine an individual (it ) intends to pay our website—as
discussed in the introduction—a visit again. Her browser will send out a request to
access the website. At that point, we know who is about to enter our website, so we
can retrieve this individual’s record. Now, we can predict this individual’s µ̂i based
on all the information we know so far. The data generated by this individual during
the website visit allows us to update both the group and individual-level parameters.
This second option thus deals with both downsides of the first option: it does not
waste memory on storing predictions that we might end up not using at all and it
incorporates the most recent changes to the group-level parameters.
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time in data stream

p

t = 1 t = 2

pi ● pi●

●µ̂i

● µ̂i

Fig. 1 An illustration of when to shrink the individual-level effect. Option 1 (t = 1) estimates µi right
after the data point enters, option 2 estimates µi at t = 2. While pi remains the same between the two time
points, the group mean p̄, does change over time.

The two options are illustrated in Figure 1. The black dot denotes an individual
mean. One could choose to predict the individual-level effect right after this data
point enters at t = 1, or one could wait until this individual returns (t = 2) and shrink
towards the group mean at that point in time (which is t = 2 in this case). As can
be seen from the plot, when the individual-level effect is estimated influences the
estimate of µi. Because the group mean and the estimated shrinkage factor change
over time, these two options (shrink at t = 1 vs. t = 2) do not result in the same
µ̂i. In the following simulation study, we have chosen this second implementation of
predicting the individual-level effect.

4 Simulation Study

4.1 Design

To evaluate whether the online implementations of the shrinkage factors perform
equally well as their original offline implementations, we conduct a simulation study.
In this simulation study we compare the two estimation procedures in terms of the
average squared prediction error (∑(µ̂i− µi)

2/N). Since two of the four shrinkage
factors assume a normal distribution, we specifically examine the case when this is
violated in the simulation study. To do so, we generated three distributions of the
individual-level effects, which increasingly depart from normality: the distribution
underlying the true individual-level effects is centered B(7,7), right skewed, B(2,12),
or a mixture of two Beta distributions: B(1,6) and B(6,1). We set the average1 num-
ber of observations equal to 20. As a benchmark we use a multilevel model with
logit link function, as implemented in the GLMR function from the ‘lme4’ package
(in [R]) with 20 adaptive Gaussian Quadrature points. While this model is known
to provide very good estimates of µi, it is computationally complex to fit (Agresti,
Booth, Hobert, and Caffo, 2000; Bock and Aitkin, 1981; Breslow and Clayton, 1993;
Moerbeek, Van Breukelen, and Berger, 2003; Rabe-Hesketh, Skrondal, and Pickles,

1 Because we sample the individuals at random after which we generate an observation, the number of
observations is not equal across individuals.
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2002; Skrondal and Rabe-Hesketh, 2004), especially in a data stream. The generated
data streams consist of n = 10,000 (which results in N = 500) and all conditions have
1,000 replications.

4.2 Results

The main results of the simulation study are presented in Figure 2 and Figure 3.
Figure 2 presents the average of the estimated shrinkage factors over the simulation
runs. Figure 3 presents the average squared prediction error over the simulation runs.
Both figures consist of three subfigures: one for the centered (B(7,7) distribution,
one for the right skewed (B(2,12)) distribution, and one for the mixture distribution
(B(1,6) and B(6,1)). Table 2 further details the average squared prediction error at
three points in the data stream and includes the standard deviation over the different
simulation runs.

The x-axes of Figure 2 presents the length of the data stream and the y-axes
the average shrinkage factor. The solid lines represent the online implementations
of the shrinkage factors. The dashed lines represent the offline implementations of
the shrinkage factors. The four gray lines indicate the offline (dashed) and the on-
line (solid) shrinkage factors that do not require the data transformation. The BB
carries triangle symbols (facing up) to differentiate the BB from HN which carries
square symbols. The black lines are also marked with symbols: JS is denoted with
circles and ML is marked with triangles (facing down). In all three subfigures, there
is a small difference between the offline and online implementations of the shrinkage
factors. In general, the online implementations tend to shrink somewhat more than
the offline implementations.

In Figure 2a the centered distribution is presented. The BB (online and offline)
shrinks the individual-level effects most, and the online implementation does so even
more than the offline implementation. The BB (online and offline) needs many (over
2,000) data points before it can be estimated. This is an artifact of the method of
moments estimator, which returns negative hyperparameters for the Beta distribution
when the data does not (yet) comply to the beta distribution (under dispersion). Both
the offline versions of the JS and the ML have a relatively stable level of shrinkage,
while the online implementation of the JS quickly decreases during the data stream.
The ML online implementation only changes very gradually. The chosen learn rate
(γ =0.01) might have been slightly too small. Towards the end of the generated data
streams three or the four shrinkage factors shrink approximately the same, only the
heuristic shrinkage factor (online and offline) shrinks substantially less than the other
factors.

The average estimated shrinkage factors in the right-skewed distribution of the
individual-level effects are presented in Figure 2b. For the two shrinkage factors that
do not use the data transformation the results are quite similar. However, the ML and
JS show differences with the previous condition. The online implementation of the
JS shrinks more over a longer time, also the offline implementation of the JS shrinks
more in the beginning of the data stream. The offline ML shrinks on average some
more than the offline JS but behaves qualitatively the same as the offline JS. Towards
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the end of the data stream, the different shrinkage factors are more spread out than
in the previous condition, while the online and offline implementations of all four
shrinkage factors have similar levels of shrinkage.

The last subfigure (Fig. 2c) presents a different pattern of shrinkage factors. Even
at the end of the data stream, there are two distinct clusters of shrinkage factors. The
cluster of shrinkage factors with the highest level of shrinkage consists of the online
and offline implementations of the heuristic shrinkage factors, and the online imple-
mentation of ML. The remaining shrinkage factors (online and offline BB and JS, and
the offline ML) hardly shrink at all. This is due to the fact that the data-generating
distribution of the individual-level effects is bimodal. Because the heuristic estimator
(online and offline) does not have any distributional assumptions, it cannot take into
account that there are two modes. The online ML does decrease more in this condi-
tion than in the other two conditions. A larger learn rate or longer data stream would
allow the online ML to decrease even more and reach a similar level of shrinkage as
the offline ML. The offline ML, BB and JS do take into account that the distribution
of individual level effects is not normal, and shrink very little accordingly.

The subfigures of Figure 3 are organized as follows: The y-axes present the aver-
age squared prediction error: ∑(µ̂i−µi)

2/N and the x-axes present the data stream.
Note that the y-axes of the three subfigures of Figure 3 differ across the three scenar-
ios. In addition to the already introduced lines, the dotted line represents the GLMR
function. The results of the two unimodal distributions (B(7,7) and B(2,12)) are
comparable, however, the mixture distribution (B(1,6),B(6,1)) shows different re-
sults. Figure 3a and Figure 3b show that in the beginning of the data stream, the two
shrinkage factors that make use of the data transformation have more error (JS, ML)
than the two shrinkage factors (BB, HN) that do not rely on the transformation. The
GLMR function performs ‘best’ in both scenarios. However, the difference between
the shrinkage factors and the GLMR function is minimal later in the data stream.
More importantly for our purpose, there is almost no difference between the offline
and online implementations of the shrinkage factors.

Table 2 is organized as follows. In the rows are the three conditions (centered,
right skewed and mixture), within each condition three points within the data stream
are presented (n = 1,000, 5,000, and 10,000). In the columns are the different shrink-
age factors with the offline and online implementations. Both the average squared
prediction error of each of the shrinkage factors and the standard deviations are pre-
sented. In the centered scenario, the GLMR function outperforms the shrinkage fac-
tors (offline and online). However, as the data stream continues, the difference be-
tween the shrinkage factors and GLMR becomes smaller. The standard deviations
across the shrinkage factors and during the stream are stable and small. The sec-
ond scenario, the right-skewed distribution, has an even smaller average squared
prediction error. This is due to the fact that the distribution of µi is narrowly dis-
tributed around the group mean making the mean over all data a good predictor of the
individual-level effects. This results in a small average squared prediction error and
even smaller standard deviations.

The mixture scenario provides quite different results. While the average squared
prediction error decreases rapidly in the beginning of the data stream (see Fig. 3c),
after about 2,000 data points the error increases for both JS and ML. For the other two
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Fig. 2 The average estimated shrinkage factors, averaged over the 1,000 replications
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shrinkage factors and the benchmark GLMR, i.e., these estimation methods that do
not use Morris and Lysy’s (2012) data transformation, this is not the case. This pattern
appears for both the online and offline estimated shrinkage factors. Due to the mixture
of the two distributions the individual means are either clustered close to zero, or close
to one. While the mean of these two distributions is 0.5, all the true individual-level
effects are either close to zero or close to one. This makes the group mean a poor
predictor of the individual-level effects. Because these individual means are far from
the group mean, the transformed individual means have large absolute values. In an
absolute sense, larger values are moved more towards the group mean than values
that are closer to the group mean. Transforming the predicted individual-level effects
to µ̂i’s causes the individual-level effects to be moved even more towards the group
mean. Thus, even though the shrinkage factors that use the data transformation are in
fact small (see Figure 2c), the data transformation pushes the individual-level effects
even closer to the group mean. This additional push towards the group mean causes
the JS and ML to have larger prediction error than HN and BB.

From the simulation study, we can thus conclude that a) for a long enough data
stream all online shrinkage factors perform as well as their offline counterparts, and b)
the BB seems to have the most robust performance over the three conditions. Hence,
for the analysis of large, nested, binary outcome data streams we would recommend
using the our online version of the BB. In the following section, all the examined
shrinkage factors are further evaluated in a real-data example. In this example we
show that it is possible to accurately predict whether respondents of a long-running
panel study will respond to a monthly questionnaire.

5 LISS Panel Study: Predicting Attrition

An application where data are entering over time and real-time prediction is rele-
vant is a panel study, where new questionnaires are sent to the same respondents
over a longer period of time. Panel studies are used to analyze ongoing trends. One
of the major issues of a panel study is attrition (i.e., respondents who drop out) be-
cause it can affect the generalizability of the results to the population (Goodman and
Blum, 1996). Much effort is spent on the prevention of non-response, for instance,
reminders, rewards (Curtin, Singer, and Presser, 2007; Manzo and Burke, 2012), and
multi-mode data collection (Leeuw, 2005). Knowing which respondents are likely
to drop out of the panel, could facilitate the prevention of the dropout. For instance,
when the probability for a given respondent to answer to the questionnaire drops
below a threshold, an additional incentive (a letter of the importance of the panel,
money etc.) could be sent when inviting the respondent to answer the questionnaire
to increase the probability that the respondent will reply to the questionnaire. Know-
ing a respondent was unlikely to respond to the questionnaire, after the facts, is not
very informative or helpful. Therefore, predicting non-response in a panel study is a
good example of a case where real-time prediction is useful.

In this application, we predict whether a respondent of the panel study is going
to participate in the next wave as well. Data are coming from the LISS (Longitudinal
Internet Study for Social sciences) panel study, consisting of 50 monthly waves be-
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tween November 2007 and December 2011. For the analysis, we selected only these
respondents that received at least one questionnaire, who had an identification number
and started before December 2011. Total number of individuals used for the analysis
is N = 12,924 and n = 397.647 observations. For the analysis of the LISS panel data,
we had to drop one questionnaire (July, 2011) because none of the respondents had
answered this questionnaire.

We analyze the data by replaying the data as if it is a data stream. To do so
we kept the ordering of the questionnaires but randomly ordered the respondents
within a questionnaire. We randomly selected the responses within a questionnaire
because we do not have data about the order in which the data entered originally. We
compare the results of the four shrinkage factors (online and offline) with the results
by the GLMR function, like in the simulation study, in terms how well each of the
methods can classify whether a respondent is or is not going to respond. We take
into account whether a respondent indicated to stop the panel and correct the group
statistics accordingly.

5.1 Results

Figure 4 presents the results of the replay of the data stream of the LISS panel ques-
tionnaires. The y-axis presents the percentage of correctly classified respondents. A
respondent is correctly classified if the shrinkage model predicted the probability of
a response greater than .5 and the respondent indeed answered the questionnaire, or
when the predicted probability was below .5 and the responded failed to answer the
questionnaire. The x-axis is the replay of the questionnaires as these are send out over
time.

As expected from the simulation study, the differences between the offline and
online estimation procedures are negligible. The classification performances of the
offline BB and GLMR are exactly the same, and therefore, impossible to disentangle.
Furthermore, the same clustering of shrinkage factors as in the simulation condition
with the mixture of distribution appears in Figure 4: the JS and ML (online and of-
fline) are less able to make accurate predictions with regard to non-response while the
HN and BB perform equally well as the benchmark (GLMR). This is not much of a
surprise, as the distribution of the individual-level effects estimated with GLMR (the
MAP estimates) shows that the majority of the individual-level effects are on either
end of the interval, see Fig. 5, just like the mixture of distributions of the simulation
study. Even though BB and HN are less computationally complex than GLMR, the
predictions made by BB and HN are equally accurate.

6 Conclusion and discussion

The most important conclusion we can draw is that we can make accurate predictions
of the individual-level effects when the outcome variable is binary, the data have a
nested structure, when the data enter over time, and predictions are required in real
time. While the multilevel model with logit link function is the standard for analyz-
ing nested data with a binary outcome, due to the computational complexity of that
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model, analyzing data streams of nested binary data becomes infeasible. To overcome
this problem, we studied online – and computationally efficient – versions of four
different shrinkage factors: the James-Stein estimator, the (approximate) Maximum
Likelihood estimator, the Beta-Binomial estimator and lastly a heuristic estimator.
In a simulation study, we showed that all these shrinkage factors on average make
good predictions of the individual-level effects. However when there is a mixture of
distributions of the individual-level effects, shrinkage factors that do not rely on the
normal distribution of the individual-level effects do noticeably better. It appears that
the data transformation suggested by Morris and Lysy (2012), in the studied situations
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does not work well in situations where the number of observations is limited and the
distribution of the individual-level effects deviates from the normal distribution.

There are differences between the shrinkage factors in how well they are able to
predict the individual-level effects. When the true individual-level effects are close
to normally distributed the prediction accuracy is very similar across all shrinkage
factors. More importantly, the shrinkage factors implemented offline (making use of
all individual data points) or online (incrementally and not revising previous data)
perform similarly. However, when the distribution of the individual-level effects de-
viates from the normal distribution, the James-Stein (JS) estimator and the approxi-
mate Maximum Likelihood estimator perform less well than the Beta-Binomial and
heuristic estimator.

In the current study, we assumed the data-generating process to be stationary;
the possible effect of the time within the data stream is not explicitly modeled. As
a result, the individual-level effects are estimated using the information of all data
points equally, irrespective of their history. In practice, this assumption might, how-
ever, not hold. If the stationarity assumption does not hold, one might prefer to weigh
the recent data points more heavily than the older data points when computing an
estimate. All the online shrinkage factors presented in this paper are easily adapted to
create such a moving window approach by changing the learn rate of the procedure
to a fixed value: for example, when updating the sample mean p̄ using Equation 2
we effectively use a learn rate of 1

n (which is easy to see since x−p̄
n = 1

n (x− p̄)). By
choosing a fixed learn rate of, e.g., 1

1000 instead we would (smoothly) decrease the
value of older data points in the resulting estimate.

A possible advantage of the JS and ML could be that these methods are easier
to extend to deal with covariates (see, for instance, Morris and Lysy, 2012). The JS
can easily include fixed effects to improve the prediction of the individual effect.
Including more random effects in this case might be less straightforward. The ML
can, however, facilitate more random effects as well as fixed effects (Ippel, Kaptein,
and Vermunt, 2016b) at the level of the group. Including fixed effects at the level
of the observations seems challenging for both the JS as well as the ML since the
suggested data transformation aggregates the information to the level of individuals.

Making real-time predictions without revising older data has great potential. These
real-time predictions are not only beneficial in the context of e-commerce, or to
encourage respondents that have a low probability to respond to the questionnaire.
Other cases include classifying credit-card transactions (legitimate versus fraudu-
lence transactions), monitoring patients’ compliance with their medical regimen (med-
ication was taken or not), or tracking students’ progress in their educational ca-
reer (passing exams or not), to name a few. The presented methods for estimating
individual-level effects in data streams allow the researcher to take into account the
dependence among the observations without losing the computational efficiency of
the methods that do not take this dependency into account.
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