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Abstract

Multilevel models are often used for the analysis of grouped data. Grouped data
occur for instance when estimating the performance of pupils nested within schools
or analyzing multiple observations nested within individuals. Currently, multilevel
models are mostly fit to static datasets. However, recent technological advances
in the measurement of social phenomena have led to data arriving in a continu-
ous fashion (i.e., data streams). In these situations the data collection is never
“finished”. Traditional methods of fitting multilevel models are ill-suited for the
analysis of data streams because of their computational complexity. A novel algo-
rithm for estimating random-intercept models is introduced. The Streaming EM
Approximation (SEMA) algorithm is a fully-online (row-by-row) method enabling
computationally-efficient estimation of random-intercept models. SEMA is tested
in two simulation studies, and applied to longitudinal data regarding individuals’
happiness collected continuously using smart phones. SEMA shows competitive
statistical performance to existing static approaches, but with large computational
benefits. The introduction of this method allows researchers to broaden the scope
of their research, by using data streams.

Keywords: Data streams, Expectation-Maximization algorithm, Multilevel
Models, Online learning, Random-Intercept model

1. Introduction

In the social sciences we often encounter grouped data, such as pupils grouped
within school classes (e.g., Barrett et al., 2013), multiple observations grouped
within individuals (Killingsworth and Gilbert, 2010), or voters grouped within
geographical regions (Gelman, 2007). Such data are typically analyzed using mul-
tilevel (or hierarchical) models in which batches of group-level parameters are
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treated as randomly drawn from an underlying distribution. In this paper we
will use the formulation of “observations nested within individuals”, although the
method we present does not restrict itself to this type of nesting.

Multilevel models have various advantages over more traditional methods of
analysis, such as aggregated analysis, in which the within-group structure is ig-
nored, or group-specific analysis, in which information about the other groups is
ignored. That is, they

1. contain fewer parameters than group-specific models,

2. allow for generalization of results to a wider population of groups, and

3. allow information to be shared between groups (Raudenbush and Bryk, 2002;
Steenbergen and Jones, 2002).

The latter property in particular makes multilevel analysis interesting when
the focus is on obtaining group-level predictions, since multilevel modeling yields
smaller out-of-sample prediction error than predictions derived from either an ag-
gregate or a group-specific analysis (see e.g., Morris and Lysy, 2012).

Current (maximum-likelihood) methods for fitting multilevel models use it-
erative algorithms such as Newton-Raphson or Expectation Maximization (EM,
Dempster, Laird, and Rubin, 1977) to maximize the likelihood. Alternatively, but
not considered in this paper, one could use a Bayesian framework with MCMC
sampling (for more details see, e.g., Browne and Goldstein, 2010). However, each
of these methods require multiple passes through the full dataset to obtain pa-
rameter estimates. Even though fitting a multilevel model once, on a moderately
sized dataset does often not require excessive computation time, such ways of fit-
ting multilevel models can become infeasible when a dataset is extremely large, or
in the situation where the data collection is never “finished” because more data
present themselves over time.

Recent technological developments have, however, led to the increased availabil-
ity of these so-called data streams: i.e., datasets which are continuously augmented
with new data points. Such data streams often have a grouped (or nested) struc-
ture. Examples include fraud detection using credit card transactions, where trans-
actions are nested within credit cards (Patidar and Sharma, 2011), telephone com-
munication analysis, where calls are nested within telephone registrations (Cortes,
Fisher, Pregibon, Rogers, and Smith, 2000), and consumer behavior tracking in
e-commerce, where purchased items or visited web pages are nested within cus-
tomers (Lee, Podlaseck, Schonberg, and Hoch, 2001). In order to obtain up-to-date
predictions of the individual-level effects, the parameters of the model of interest
should be updated as data points come in, and the updated model parameters
should be used for prediction purposes. When applied to streaming data, these
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traditional methods have to repeatedly cycle through all available data points,
each time a new data point arrives, in order to obtain up-to-date parameter es-
timates. Additionally, even if the dataset is no longer augmented, but static and
(extremely) large, it is often computationally preferable to analyze the dataset in
smaller batches, or even a data point at a time (Ng and McLachlan, 2003; Thies-
son, Meek, and Heckerman, 2001). We propose an adaption of the EM algorithm
for the estimation of random-intercept models, to resolve the problem of analyzing
grouped data in a data stream or when the dataset is extremely large.

The resulting Streaming EM Approximation algorithm (henceforth referred to
as SEMA) falls within the framework of online learning methods (Gaber et al.,
2005). A key feature of online learning is that the data are summarized into a
few summary statistics which contain all relevant information of previous data
points (Opper, 1998). SEMA is an approximate EM method, because unlike the
EM algorithm which uses all the data to update the model parameters, we only
use a single data point, some summary statistics on the individual level, and the
previous estimates of the model parameters, to update the model parameters.
Because SEMA does not require all the data to be in memory, SEMA is more
appropriate to deal with data streams than the conventional EM algorithm.

Related methods for speeding up the EM algorithm have been proposed for
dealing with large (static) datasets, for example, Berlinet and Roland (2012) dis-
cussed methods to speed up the convergence rate of the conventional EM algo-
rithm. Wolfe, Haghighi, and Klein (2008) presented an (offline) parallel version
of the EM algorithm and McLachlan and Peel (2000, ch. 12) described various
possible adaptations of EM methods for large datasets. Various online adapta-
tions of the EM algorithm for different applications have also been proposed, for
example, for mixture models (see, e.g., Cappé and Moulines, 2009; Liu, Almhana,
Choulakian, and McGorman, 2006; McLachlan and Peel, 2000; Wolfe et al., 2008)
and for latent variable models (Cappé and Moulines, 2009). Instead of speed-
ing up the EM algorithm, Steiner and Hudec (2007) proposed a method to scale
down the data prior to using the EM algorithm. We add to this existing liter-
ature by proposing an EM approximation for the estimation of models based on
data streams consisting of dependent observations. The method we propose stores
information on the level of individuals, instead of the level of observations, and
updates the estimates in a single pass over the data, making it suitable for both
data streams and extremely large datasets.

The remainder of this article is organized as follows. In the next section, we
illustrate the computational advantages of streaming estimation using the simple
example of the estimation of a sample mean. Next, we discuss the estimation of
random-intercept models using the EM algorithm, and show how this algorithm
can be modified into a streaming version, leading to SEMA. Subsequently we eval-
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uate SEMA in two simulation studies. In the first simulation study we evaluate the
accuracy of the estimates of the model parameters, and of the individual-level ef-
fects. In the second study we evaluate three alternative implementations of SEMA
to improve the estimates both of the model parameters and of the individual-level
effects. The first alternative uses a small part of the data to obtain better starting
values, the second implementation cycles through all individuals at given intervals,
and the last implementation is a combination of the previous two. In Section 5 we
illustrate the use of SEMA in an application using real data on respondents’ hap-
piness, in which nested data, collected using a smart-phone application, “arrived”
in a stream. In Section 6 we detail some theoretical characteristics of SEMA, and
we discuss a convergence diagnostic to evaluate the estimated model parameters
of SEMA. In the following section, we extend the random-intercept model to in-
clude additional fixed covariates. The last section discusses the main results of the
simulation studies and presents directions for future work.

2. From offline to online data analysis

Before introducing SEMA, we first explain the key changes involved when moving
from the offline analysis of static datasets to the online analysis of data streams.
This conceptual shift is easily illustrated by examining the computation of a sample
mean x̄n. The standard offline computation proceeds as follows:

x̄n =

n∑
i=1

xi

n
, (1)

where xi denotes the measurement for the ith unit and n the total number of
observations.

Suppose now that we want to compute the sample mean and that data enter in
a stream. The naive application of the above offline formula would then imply that
each time a new data point enters one has to count the number of observations
n and compute the sum of all measurements xi. This is feasible as long as n is
not too large or when the update is only required rarely. However, even a simple
computation as in Equation 1 becomes infeasible when it needs to be performed
in the face of rapidly entering data points, as n grows larger and larger.

The online computation of a sample mean can be done by noting that the
sample mean for n+ 1 data points can be expressed as an update of the estimated
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sample mean for n data points x1, . . . , xn. More specifically,

x̄n+1 =

n+1∑
i=1

xi

n+ 1
,

= x̄n
n

n+ 1
+
xn+1

n+ 1
,

= x̄n +
xn+1 − x̄n
n+ 1

.

(2)

The last line of Equation 2 shows two key features of online learning: first, when a
new observation enters, we update the current estimate without revisiting all the
historical data. This reduces the computational complexity required to update the
sample mean. Note that the number of (offline) computations needed to compute
the sample mean as n grows, progresses as follows:

1 + 2 + 3 + · · ·+ n =
1

2
n(n+ 1),

= O(n2).

In comparison, the online update of the sample mean, requires the following num-
ber of computations

1 + 1 + 1 + · · ·+ 1 = n,

= O(n).

This simple analysis shows that the computations to update the mean offline grow
quadratically in n, while online the number grows linearly as a function of n.

Second, only certain summary statistics (here n and x̄n) are kept in memory.
This makes online learning both computationally fast as well as memory efficient.
Similar algorithms can be used, amongst others, for updating of higher moments
(Welford, 1962) or for estimating the coefficients of a linear regression model using
least squares (Escobar and Moser, 1993; Plackett, 1950). In the next section we
detail the transition from offline estimation to online estimation of the random-
intercept model.

3. Online estimation of random-intercept models

3.1. The random-intercept model and its standard offline estimation

In this section we will describe the random-intercept model with continuous out-
comes, which we focus on throughout this paper. Next, we will give a conceptual
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description of the EM algorithm, as well as the technical details of fitting the
random-intercept model. These technical details are subsequently needed to ex-
plain the transition from offline estimation of the random-intercept model to the
online estimation of this model.

The model of interest can be formulated as follows:

yij = µj + εij, i = 1 . . . nj, j = 1 . . . J, (3)

where yij is observation i of individual j, nj is the total number of observations of
an individual, J is the total number of individuals, and µj is the individual-level
random intercept. These intercepts are assumed to be normally distributed as
µj ∼ N (µ, τ 2). The random error per observation is denoted by εij and is also
assumed to be normally distributed εij ∼ N (0, σ2) and independent of µj. The
three unknown model parameters to be estimated are thus µ, τ 2, and σ2.

Maximum-likelihood estimates of the parameters of the random-intercept model
cannot be computed directly due to the fact that µj is not observed. In order
to obtain maximum-likelihood estimates, we use the Expectation Maximization
algorithm (Dempster et al., 1977). The EM algorithm uses the complete-data
log-likelihood function, a likelihood function for which the latent variable (µj) is
assumed to be known. The complete-data log-likelihood function is as follows:

`(µ, τ 2, σ2|y) = −n
2

ln(2π)− n

2
lnσ2 − 1

2

J∑
j=1

nj∑
i=1

(yij − µj)2

σ2

−J
2

ln(2π)− J

2
ln τ 2 − 1

2

J∑
j=1

(µj − µ)2

τ 2
,

(4)

where n =
∑J

j=1 nj.
Because µj is not observed, we have to impute values for this variable in or-

der to compute the Complete Data Sufficient Statistics (CDSS). There are three
CDSS, one for each model parameter. We denote these CDSS for µ, τ 2, and σ2

by T1, T2, and T3, respectively. In order to compute the CDSS, the algorithm
imputes values for the latent variable in the E step. Using these imputed values
in combination with the model parameters of the previous iteration (or starting
values) the CDSS are computed. Subsequently, these CDSS are used in the M
step. The M step maximizes the complete-data log-likelihood (Eq. 4), given the
CDSS of the previous E step.

The CDSS computed in the E step are a function of three individual-level pa-
rameters. These individual-level parameters are a function of the observations
of individual j and the estimates of the model parameter at iteration k − 1.
These individual-level parameters are µ̂j(k), ρ̂j(k), and ν̂j(k), which represent the
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individual-level effect, the reliability of this individual-level effect, and variance of
this individual-level effect respectively, at iteration k.

We can obtain, µ̂j(k) using

µ̂j(k) = ρ̂j(k)ȳj + (1− ρ̂j(k))µ̂(k−1), (5)

where ȳj is the individual average, and where ρ̂j equals

ρ̂j(k) =
τ̂ 2(k−1)

τ̂ 2(k−1) + σ̂2
(k−1)/nj

. (6)

Note that one minus the reliability, ρ̂j(k), can be interpreted as a shrinkage factor,
which determines the extent to which the estimated individual-level effect, µ̂j, is
moved towards the overall mean, µ̂, (see for instance, Morris and Lysy, 2012; Stein,
1956). When τ 2 is large compared to the residual variance, σ2, the reliability goes
up. The reliability also goes up when the number of observations per individual,
nj, increases. Lastly we compute

ν̂j(k) = τ̂ 2(k−1)(1− ρ̂j(k)), (7)

which can be interpreted as a measure of uncertainty of the individual-level effect.
The CDSS are then computed as follows:

T1(k) =
J∑
j=1

µ̂j(k), (8)

T2(k) =
J∑
j=1

(µ̂2
j(k) + ν̂j(k)), (9)

T3(k) =
J∑
j=1

nj∑
i=1

[
(yij − µ̂j(k))2 + ν̂j(k)

]
. (10)

In the M step, these CDSS are used to obtain new estimates µ̂(k), τ̂
2
(k), and σ̂2

(k).
That is,

µ̂(k) =
T1(k)
J

, (11)

τ̂ 2(k) =
T2(k)
J
− µ̂2

(k), (12)

σ̂2
(k) =

T3(k)
n

. (13)

After updating the model parameters a new E step is executed, followed by an M
step. This process is repeated until convergence.
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3.2. Online estimation of the random-intercept model

For streaming estimation of the random-intercept model, an algorithm is needed
that does not require storing all the data in memory, or cycling through all the
data points at each iteration cycle. For this purpose we propose a modification of
the E step of the EM algorithm described previously. This modification involves
updating the contribution to the CDSS only for the individual for which a new
data point enters. The M step remains the same since, given the CDSS, the M
step is independent of the data points.

The key feature used by our proposed SEMA algorithm is that the CDSS T1,
T2, and T3 can be computed at the level of individuals instead of observations
within individuals. Therefore it is no longer required to store all n observations,
we merely store a small number of summaries for each of the J individuals.

Let jt denote the individual which corresponds to the t-th data point. Note
that this data point can be either from an individual who is already in the sample,
or from a new individual. For the discussion of SEMA, the iteration index, which
was previously denoted by k, is now replaced by t, indexing the data point which
is being processed. The key element of the proposed SEMA algorithm is that µ̂j,
ρ̂j, and ν̂j are computed only for individual j = jt, that is, the individual for which
a new data point arrives. This implies that when going from the CDSS based on
t−1 data points, denoted by Tw(t−1), w ∈ {1, 2, 3} to those based on t data points,
Tw(t), only the contribution of individual j = jt needs to be updated. This can be
expressed as follows:

Tw(t) = Tw(t−1) − Twjt(t−1) + Twjt(t), (14)

where Twjt(t−1) and Twjt(t) denote the contribution to CDSS for individual jt before
and after the entry of data point t. Note that Twj(t) = Twj(t−1) for j 6= jt; that is,
the contribution does not change if the new data point does not concern individual
j.

Equation 8 (T1, CDSS for µ) and Equation 9 (T2, CDSS for τ 2) are already
written as a sums over J individuals instead of data points. Therefore they are
easily rewritten in the format of Equation 14:

T1(t) =
J∑
j=1

µ̂j(t),

=
J∑
j=1

T1j(t),

= T1(t−1) − T1jt(t−1) + T1jt(t).

(15)

The difference between Equation 8 and Equation 15 is that in the former all µ̂j
are estimated with the model parameters from the latest iteration. In the latter
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formulation however, only for person jt, µ̂j is computed using the most recent
model parameters. Therefore, SEMA applies a partial E step, only for 1 individual
(see also, McLachlan and Peel, 2000; Neal and Hinton, 1998). We rewrite T2 in a
similar way:

T2(t) =
J∑
j=1

µ̂2
j(t) + ν̂j(t),

=
J∑
j=1

T2j(t),

= T2(t−1) − T2jt(t−1) + T2jt(t).

(16)

The update of the CDSS of the residual variance (T3, Eq. 10) differs from the
previous two equations. This is due to the fact that Equation 10 presents a sum-
mation over n observations, while here we present the computation more efficiently
as a summation over J individuals. However, this is relatively straightforward:

T3(t) =
J∑
j=1

nj∑
i=1

[
(yij − µ̂j(t))2 + ν̂j(t)

]
,

=
J∑
j=1

(ȳ2j − 2ȳjµ̂j(t) + µ̂2
j(t) + ν̂j(t))nj,

=
J∑
j=1

T3j(t),

= T3(t−1) − T3jt(t−1) + T3jt(t),

(17)

where ȳ2j is the average of the squared yij for individual j. This analysis shows
that in order to perform the E step we do not need all data points, but only ȳj,
ȳ2j and nj.

To summarize, at entry of data point t the SEMA algorithm proceeds as follows:

• E step: for j = jt,

1. subtract the current contribution from the CDSS,

2. update ȳj, ȳ2j , and nj online,

3. compute new µ̂j(t), ρ̂j(t), and ν̂j(t),

4. add the new contribution to the CDSS,

• M step
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1. increase J by 1 when it concerns an observation of a new individual and
set n = t,

2. compute the new estimates µ̂(t), τ̂
2
(t), and σ̂2

(t) based on the CDSS from
the previous E step.

In the summary presented above, it can be seen why SEMA (Streaming EM
Approximation) is called an approximate EM algorithm: SEMA performs, like
EM, an E step and a M step. However, unlike the EM algorithm, it only does a
single partial E step, because it only updates the contribution to the CDSS for
a single individual. Doing only an E step for one individual is computationally
less expensive than doing the E step for all individuals. It also means that SEMA
will converge more slowly (i.e., take more partial E - M steps) to the (local)
maximum-likelihood estimate than the EM algorithm, because it only updates
the information of one individual instead of the updating the information of all
individuals. The benefit of SEMA is that it is computationally less intensive, which
makes it suitable for dealing with both very large static data and data streams,
because the required memory only grows with the number of individuals instead
of the number of data points. An example of the SEMA algorithm in [R] code is
available at github.com/L-Ippel/SEMA. In Section 6 we provide some additional
justification for SEMA. In the next section we will test the accuracy of SEMA in
two simulation studies.

4. Performance of SEMA evaluated by simulation

4.1. Simulation study I: Evaluation of the precision of estimated param-
eters

4.1.1. Design

In this simulation study, we compare the performance of the proposed SENA algo-
rithm with the standard EM algorithm, in terms of the accuracy of the parameter
estimates. An important factor affecting the speed of convergence of the EM al-
gorithm for multilevel models is the average reliability ρ̄ (see also Eq. 6); that is,
when ρ̄ is large, the EM algorithm will converge after a few iterations, but when
the ρj’s get closer to zero convergence will become slower. Since it can be expected
that convergence of SEMA will be strongly affected by ρ̄, this is the main factor
varied in this simulation study. We do so in two different ways: by varying the
number of observations per individual, nj, and by varying the amount of variance
of the random intercept, τ 2. In this simulation study we keep the residual variance,
σ2, constant. We evaluate SEMA and EM by monitoring the parameter estimates
and predicted individual-level effects during the data stream.

10



We generated data streams of n = 10, 000 observations. The average number
of observations per individual (nj) was 10, 25, or 100, which results in J = 1,000,
250, or 100 individuals in total. The individual-level effects, µj, were drawn from a
normal distribution with µ = 10 and variance τ 2 = {1, 10, 25, 100}. The residual
variance was set to σ2 = 100 in all conditions. First we generated J individual-level
effects from µj ∼ N (µ, τ 2). Next, the observations were generated by randomly
drawing an individual, and generating a data point based on this individual’s true
individual-level effect. The 12 different settings for nj and τ 2 yielded average
reliabilities ρ̄ ranging from .091 to .990. Table 1 presents the different levels of ρ̄
in the simulation study.

Each of these 12 conditions was run 1,000 times. The starting values used
for the model parameters were µ̂(0) = yt=1 (first observation of the data stream),
τ̂ 2(0) = 1, and σ̂2

(0) = 1. Both the simulation of the data stream, and the estimation

using SEMA and EM, were implemented in [R](R Core Team, 2013).

4.1.2. Results

Tables 2 through 5 present the mean and standard deviation (SD) of µ̂, σ̂2, and τ̂ 2

respectively, and the averaged squared prediction error: ē2 =
∑J

j=1
(µ̂j−µj)2

J
across

1,000 replications at 100, 1,000, 5,000, and 10,000 observations for both SEMA
and standard (offline) EM. For each simulation the population values were µ = 10
and σ2 = 100. The two factors that varied are τ 2 (presented in the columns) and
nj (presented in the rows). In bold are the parameter estimates that differed by
more than 10 compared to the population values that generated the data.

Across all conditions, the SEMA and EM estimates of µ are close to the pop-
ulation value even with as little as 100 observations (see Table 2). However, the
SEMA estimates are clearly much more variable than those of EM at the beginning
of the data stream, that is, when SEMA did not have the chance to converge. But
this difference has disappeared by 10,000 observations. Both EM and SEMA have
larger SD’s at the end of the data stream in the condition with τ 2 = 100 and nj =
100 than in the other conditions. This is due to the smaller number of individuals
in this condition (J = 100), causing the data-generating model to fluctuate more

Table 1: Average reliability ρ̄ in the simulation study for σ2 = 100

τ 2

nj 1 10 25 100
10 .091 .500 .714 .909
25 .200 .714 .862 .962
100 .500 .909 .962 .991
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across the different runs.
The results for the estimated residual variance, σ2, are presented in Table 3. In

the condition in which τ 2 is low, both EM and SEMA underestimate the residual
variance in the beginning of the data stream (when n = 100). SEMA somewhat
overestimates σ2 halfway through the data stream for the conditions where τ 2 > 1.
In all conditions, the variability of both the SEMA and EM estimate is large in the
beginning of the data stream, but decreases steadily towards the end of the data
stream. Irrespective of the average reliability, ρ̄, at the end of the data stream
(n = 10, 000) σ2 is estimated equally well by SEMA and EM.

Next, Table 4 presents the results for τ 2. In the five lowest reliability conditions
(τ 2 = 1 with nj = {10, 25, 100} and τ 2 = 10 with nj = {10, 25}, see Table
1), SEMA seems to slightly overestimate τ 2. However, when n = 5,000, SEMA
starts approaching the EM estimates. The only situation in which τ 2 still seems
overestimated at 10,000 observations occurs with τ 2 = 1 and nj = 10, which is the
lowest reliability condition corresponding to ρ̄ = 0.091. In general, the higher the
reliability the faster the estimate of τ 2 converges to its true value.

The last result we present from this simulation study is the average squared
prediction error of the individual-level effects, ē2. Table 5 shows that irrespec-
tive of the condition, ē2 and its variability across replications are very large in
beginning of the data stream for both SEMA and EM, but both the size and the
variability of ē2 decrease rapidly during the data stream; that is, when the model
parameter estimates improve and the amount of information available per individ-
ual increases. The prediction quality of SEMA is similar to that of EM at 5,000
data points, except for the lowest reliability condition (ρ̄ = 0.091) in which SEMA
performs somewhat worse. When the reliability increases, as expected, the predic-
tion error decreases for both SEMA and EM. For a stream of length n = 10, 000
the performance of EM and SEMA is identical.

4.2. Simulation study II: Improving SEMA in low reliability cases

4.2.1. Design

Our first simulation study showed that in the lowest reliability condition, i.e.,
when nj = 10 and τ 2 = 1, SEMA performs less well than EM. That is, the average
estimates of SEMA for τ 2 are too high (at n = 10, 000: SEMA: τ̂ 2 = 5.47, EM:
τ̂ 2 = 1.04) and for σ2 are too low (at n = 10, 000: SEMA: σ̂2 = 98.08, EM:
σ̂2 = 100.00) and moreover, the average squared prediction error, ē2, of SEMA
(ē2 = 1.92) is larger compared to EM (ē2 = 0.94).

One possible explanation for the fact that SEMA has some difficulties in the low
reliability condition is that it is sensitive to the starting values, especially when the
average reliability is very low. Our rather crude starting values may have been too
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far off to guarantee convergence within 10,000 data points. A second explanation
is that this low reliability condition is a rather difficult condition even for EM.
That is, in a situation where the average reliability equals .091, the EM algorithm
needs hundreds of iterations (and passes through the full dataset) to converge. It
is not surprising that the SEMA algorithm, which passes through the dataset only
once, has not yet reached the peak of the likelihood function.

These two explanations suggest two possible adaptations of SEMA: a) an adap-
tation yielding better starting values and b) an adaptation in which more than one
pass over all individuals is performed. For this purpose, we investigate three pos-
sible variants of the SEMA algorithm, which we refer to as SEMA-T, SEMA-U,
and SEMA-TU, where the T refers to training, and the U to update. That is,

1. SEMA-T: While SEMA is used to obtain estimates of the individual-level
effect and the model parameters, when the first 1,000 observations of the
data stream have entered, the EM algorithm (which iterates until conver-
gence) is used to obtain better estimates for the model parameters, which
are subsequently used for SEMA.

2. SEMA-U: A single EM iteration over all available individuals is used to
update all the estimated individual-level effects and model parameters after
each 1,000 data points.

3. SEMA-TU: combines both features.

The training set could provide SEMA with better starting values, speeding up
the convergence to a local maximum. The second variant of SEMA, using EM
updates is especially useful when observations of an individual enter in a block. In
that case the contributions to the CDSS will be based on model parameters which
are not yet converged, and more importantly these erroneous contributions to the
CDSS are not corrected, because this individual is no longer returning. Doing an
additional full E step will help in correcting the contributions to the CDSS. In
this second simulation study, we repeat the nj = 10 and τ 2 =1 condition but now
we also apply these three variants of SEMA. Additionally we keep track of the
computational time required by each of the different algorithms: EM, SEMA, and
the three variants of SEMA.

4.2.2. Results

Table 6 presents the results obtained with the different variants of SEMA at n =
900, 1,000, 5,000, and 10,000 observations. At 900 observations, all SEMA versions
are still identical, but at 1,000 observations large differences appear between the
variants using those observations as a training set and those that do not. For µ,
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the average estimates were already close to the true value at n = 900 observations,
but clear improvements are visible in the SDs, with the variants of SEMA with
a training set having lower SDs than those without a training set. At 5,000 ob-
servations, the difference between EM and SEMA-T and SEMA-TU are minimal.
The training set in SEMA-T and SEMA-TU clearly improves the precision of the
estimates of µ, while the additional update only marginally improves the precision.

However, for τ 2, the SEMA variants have a large impact on both the point
estimate and their SD. Allowing for a single EM updates every 1,000 data points
(SEMA-U) already yields a solution that is much closer to the full EM solution.
An even larger improvement is shown by SEMA-T. Using both a training set and
EM updates yields another slight improvement of the estimate of τ 2. A similar
pattern can be observed for the residual variance σ2, though the effect is smaller
because the SEMA estimate was already close to the true value. Using a training
set and EM updates yields estimates closer to those of the EM algorithm, though
the additional updates seem to only have a minimal influence on the estimate and
its SD.

The average squared prediction error is more affected by using a training set
or additional EM updates. This effect of the training set and updates is especially
noticeable halfway through the data stream. The variant with only the training
dataset outperforms the variant with only the updates. Towards the end of the
data stream, the difference between standard SEMA and its variants becomes
much smaller.

Finally, Figure 1 presents the difference in cumulative computation time when
the algorithms have to produce up-to-date parameter estimates each time a new
data point arrives (or after the indicated number of data points). We scale the
time required to update the model parameters proportional to the time required
to estimate the model when n = 500. There is no visible difference between the
different variants of SEMA, which all grow linearly by factor of about 10 (as n
grows with a factor of 20). Figure 1 shows four variants of the EM algorithm. The
model parameters are updated using EM every: 1, 10, 100, or 1,000 data points.
All four variants of the EM algorithm grow with a much larger factor than SEMA
when it has to produce up-to-date parameter estimates when data enter over time.
More importantly the curves of the EM algorithm tend to deviate from linear and
curve more upwards as larger datasets are analyzed. These curved lines of the
EM algorithm illustrate that analyzing nested data using the EM algorithm when
data points enter over time becomes infeasible, as the estimation of the model
parameters will require increasingly more time.

To conclude, both the model-parameter estimates and the prediction errors can
be improved by using better starting values obtained from a training dataset. Also,
performing a single EM iteration after every 1,000 data points improved parameter
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Table 6: Results of SEMA variants in the condition µ = 10, τ2 = 1, and σ2 = 100. In the
parentheses are the SD’s over 1,000 replications, and in bold those values which are more than
10 from the population value: τ2 = 1.

SEMA SEMA T SEMA U SEMA T+U EM
n mean SD mean SD mean SD mean SD mean SD

µ̂

900 10.07 (2.74) 10.07 (2.74) 10.07 (2.74) 10.07 (2.74) 10.00 (0.33)
1,000 10.07 (2.67) 10.00 (0.32) 10.06 (2.32) 10.00 (0.32) 10.00 (0.32)
5,000 10.01 (0.89) 10.00 (0.24) 10.00 (0.41) 10.00 (0.21) 10.00 (0.15)

10,000 10.00 (0.22) 10.00 (0.16) 10.00 (0.13) 10.00 (0.12) 10.00 (0.10)

τ̂2

900 17.24 (9.09) 17.24 (9.09) 17.24 (9.09) 17.24 (9.09) 3.64 (2.89)
1,000 17.07 (8.88) 3.42 (2.71) 16.18 (7.92) 3.42 (2.71) 3.40 (2.66)
5,000 10.47 (3.22) 3.10 (2.10) 7.74 (1.72) 2.92 (1.80) 1.21 (0.68)

10,000 5.47 (0.87) 2.50 (1.25) 3 .67 (0.41) 2.16 (0.87) 1.04 (0.47)

σ̂2

900 96.47 (21.03) 96.47 (21.03) 96.47 (21.03) 96.47 (21.03) 97.61 (5.72)
1,000 96.47 (20.26) 97.77 (5.33) 95.17 (17.60) 97.77 (5.33) 97.91 (5.31)
5,000 96.61 (3.42) 98.64 (2.36) 96.45 (2.32) 98.63 (2.31) 99.85 (2.16)

10,000 98.08 (1.48) 99.16 (1.54) 98.42 (1.45) 99.19 (1.50) 100.00 (1.48)

ē2

900 12.12 (17.52) 12.12 (17.52) 12.12 (17.52) 12.12 (17.52) 1.30 (0.46)
1,000 11.73 (16.96) 1.27 (0.41) 9.42 (14.05) 1.27 (0.41) 1.26 (0.40)
5,000 4.16 (2.62) 1.28 (0.41) 2.45 (0.69) 1.22 (0.31) 0.99 (0.06)

10,000 1.92 (0.37) 1.14 (0.24) 1.33 (0.17) 1.05 (0.14) 0.94 (0.05)

estimates and lowered prediction errors. Experimentation with variants of the
latter method showed that even larger improvements can be obtained by either
performing multiple EM iterations, or performing the single EM iteration more
frequently. In other words, depending on whether this is feasible in the streaming
data application concerned, other combinations of SEMA and EM could be used.

5. An application of SEMA to longitudinal happiness ratings

To illustrate the use of SEMA in a real-life application, we use data from a lon-
gitudinal study of happiness ratings by Killingsworth and Gilbert (2010). We
will fit a random-intercept model to the data to obtain individual-level estimates
of respondents’ happiness. Data were collected using a smart-phone application,
yielding daily measurements of the participants’ happiness on a continuous rating
scale. The dataset contains a total of n = 17,742 observations for J = 2,248 indi-
viduals. The average number of observation per person is 7.89, with a minimum
of one observation (254 individuals) and maximum of 39 observations (one indi-
vidual). While the authors analyzed the dataset after the data collection stopped,
in reality, the data entered as a data stream. We fit a random-intercept model on
the data stream resulting from the smart-phone application, by replaying the data
collection over time.
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Table 7: Longitudinal happiness ratings: model parameter estimates and average squared error

µ̂ τ̂2 σ̂2 ē2

n SEMA EM SEMA EM SEMA EM SEMA EM
100 68.15 67.01 125.60 161.52 235.87 229.08 31.40 27.15

1,000 65.60 65.49 129.24 121.72 349.30 353.06 24.64 22.82
5,000 63.96 63.80 103.33 93.91 336.33 337.67 19.58 19.06

10,000 64.34 64.39 103.61 97.16 357.36 359.90 14.14 13.68
17,742 64.72 64.85 100.22 93.58 365.28 367.16 0.30 –

During the data stream, we obtained parameter estimates from the SEMA and
EM algorithms from only the data seen so far, and compared these to the EM esti-
mates using the entire dataset: µ̂ = 64.85, τ̂ 2 = 93.58, and σ̂2 = 367.16. We used
the individual-level effects estimated using all data (i.e., end of the data stream) as
the “true” individual-level effect, to compute the average squared prediction error
during the data stream. From these “true” estimates we find that the estimated
reliabilities range from 0.20 to 0.91 with an average of 0.67. As in the simulation
study, during the data stream we monitored the estimates of µ̂, τ̂ 2, and σ̂2, as
well as the estimated individual-level effects. The starting values for SEMA were,
respectively, µ0 = yt=1 (the first observation), τ 20 = 1, and σ2

0 = 1.
Table 7 reports the values of the parameter estimates and the average squared

prediction error for both SEMA and EM. Similar to the results obtained in the
simulation study, µ̂ is estimated properly, while τ̂ 2 is somewhat overestimated by
SEMA compared to EM. The residual variance, σ̂2, is somewhat underestimated.
The average squared prediction error of SEMA is close to the average squared
prediction error of the EM algorithm, even though at the end of the data stream
EM is obviously favored due to its own use in the operationalization of the “gold
standard”.

6. SEMA characteristics

6.1. Theoretical considerations

The proposed SEMA algorithm yields two improvements compared to the tradi-
tional EM algorithm. First, it is no longer required to store all n data points
in memory, leading to a decrease in memory required. What needs to be stored
are merely the current values of nj, ȳj, ȳ2j , T1j, T2j, and T3j for each of the J
individuals. Second, SEMA decreases the number of computations compared to
the conventional EM algorithm when analyzing a data stream. The SEMA algo-
rithm updates the njt , ȳjt , ȳ

2
jt

, T1jt , T2jt , and T3jt for a single individual only, and
subsequently updates the CDSS and the model parameters in a single pass.
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SEMA is conceptually positioned between what Liang and Klein (2009) call
incremental EM and stepwise EM (Cappé and Moulines, 2009). Neal and Hin-
ton (1998) provide a proof for the large sample convergence of both stepwise and
incremental EM. Incremental EM estimates the parameters by storing the CDSS
and the contributions of each of the data points and then iterates over the dataset,
subtracting previous contributions of the data point to the CDSS, thereby correct-
ing the erroneous contribution to the CDSS of previous time. As such, incremental
EM requires all data points in memory. In contrast, stepwise EM does not store
all the data, but it does not correct for previous contributions to the CDSS: step-
wise EM adds a weighted contribution of each data point to the CDSS. To use
stepwise EM the analyst has to choose a weight given to new data points. SEMA,
which conceptually combines the two earlier methods, does not store the observed
data; it stores only contributions at the level of the individuals, instead of the data
points themselves. This means that SEMA scales with J , instead of n in the case
of incremental EM, while using more information than stepwise EM.

6.2. Convergence

Fitting multilevel models on data streams adds an additional complication to stan-
dard offline methods: it is not immediately clear when (e.g., after how many ob-
servations), the parameter estimates can be said to have “converged” and thus can
be substantively interpreted. However, options are available to address this issue.
One could, for example choose, during the data stream, to compute a moving av-
erage of the absolute difference between two estimates of the same parameter at
adjacent time points:

δ̄θ =

(t−1)∑
i=(t−C)

|θ̂i − θ̂i+1|/C, (18)

where C is the size of the window of the moving average and θ is one of the model
parameters. As new data points enter and thus t increases, the average will cover a
new interval of parameter differences. This measure δ̄θ – which can be maintained
during the stream – can be used to quantify convergence (where given some cut-
off ζ, δ̄θ < ζ would imply convergence). If we examine the behavior of δ̄θ for the
simulations presented in Section 4, we find for the parameter µ that in all streams
δ̄µ monotonically approaches zero, and that the difference between the parameter
estimates of µ obtained using our online method, and those obtained offline (where
we determined convergence by no change in parameter estimates to the fourth
decimal) decreases as δ̄µ decreases. Hence, δ̄θ seems a good candidate to use for
convergence; the smaller the value of δ̄θ, the closer the parameter estimates are to
their offline equivalent. The actual cut-offs ζ for δ̄θ will be problem dependent and
might differ for the different parameters. For the parameter σ2 we also find that
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δ̄σ2 decreases during the stream, and that this decrease corresponds to more and
more precise estimates. However, for σ2, the decrease is quite a bit slower (i.e., σ2

needs more observations) than for µ, in many of the simulations, indicating that
some parameters might be said to have converged sooner than others.

7. Extending SEMA

In practice one might want to extend the random-intercept model to a model
with more parameters. One could, for example, include covariates to improve the
estimates of the model parameters and the predictions resulting from the model.
Here we discuss the inclusion of additional fixed effects to SEMA. This model can
be written as:

yij = xjβ + µj + εij, (19)

where xj is a p-dimensional row-vector of covariates at the individual level with
first element equal to 1 for the intercept, β is a p-dimensional vector with fixed-
effect regression coefficients, and the individual-level intercepts µj are normally
distributed as:

µj ∼ N (0, τ 2). (20)

We assume the covariates are constant within each individual: xij = xj. Because
µj is now centered around zero, the computation of the parameters is altered
slightly. In the E step the following individual-level parameters are computed:

µ̂j = V̂ −1j (ȳj − xjβ̂)nj, (21)

where V̂ −1j equals

V̂ −1j = ν̂j/σ̂
2,

= τ̂ 2
(

1− τ̂ 2

τ̂ 2 + σ̂2/nj

) 1

σ̂2
,

=
1

σ̂2/τ̂2 + nj
.

(22)

The CDSS of β, τ 2, and σ2 are again referred to as T1, T2, and T3, where T1 is now
a vector, instead of a scalar. The contributions to the CDSS for a single individual
are can then be computed as follows:

T1jt = njtx
′
jtµ̂jt , (23)

T2jt = µ̂2
jt + ν̂jt , (24)

T3jt = [(ȳjt − xjt β̂ − µ̂jt)2 + ν̂jt ]njt , (25)
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where, as previously, Tw(t) = Tw(t−1) − Twjt(t−1) + Twjt(t).
In the M step, the CDSS can be used to obtain new estimates for the model

parameters using Escobar and Moser’s (1993) updating method for the regression
coefficients, as follows:

β̂ =
( J∑
j=1

nj∑
i=1

(x′ijxij)
)−1 J∑

j=1

nj∑
i=1

x′ij(yij − µ̂j),

=
( J∑
j=1

nj(x
′
jxj)

)−1 J∑
j=1

x′j(ȳj − µ̂j)nj,

=
( J∑
j=1

nj(x
′
jxj)

)−1 J∑
j=1

njx
′
j ȳj − njx′jµ̂j,

=A1(A2 − T1),

(26)

where A1 and A2 can both be computed online:

A1(t) = A1(t−1) −
A1(t−1)xijtx

′
ijtA1(t−1)

1 + x′ijtA1(t−1)xijt
, (27)

A2(t) = A2(t−1) + x′ijtyijt . (28)

Note that we use xijt in this formulation. This means that every time a new
data point arrives the values of the covariates xjt are retrieved from memory.
Because A1 and A2 only consist of observed data (there are no model parameters
involved) and it are sums over n observations, we do not have to correct for previous
contributions.

Moreover, using the notation including the summation over nj, the fixed effect
is weighted according to the number of observations of an individual. Taking into
account which individuals have more observations results in better estimates of
β in the case where the individual-level effect µj is dependent on the number of
observations of that individual, nj. For the model introduced in Equation 3, if µj
depends on nj, T1jt = njµ̂j and µ̂ = T1/n. In our simulation studies the individual-
level effects were not dependent on the number of observations. Therefore the
results using either of the two formulations will effectively be the same.

Next, the variance of the random effect, τ̂ 2, is computed as follows:

τ̂ 2(t) =
T2(t)
J

. (29)

This is slightly different from the previous formulation in Equation 12; the differ-
ence is due to the fact that µj is now distributed around 0 instead of µ, since we
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separated the fixed effects from the random effects. Lastly, the residual variance
σ̂2 is the same as it was previously,

σ̂2
(t) =

T3(t)
J

. (30)

Other interesting extensions concern the inclusion of fixed and random effects
for level-1 predictors and the generalization to more than 2 levels of nesting. For
those models, SEMA versions can also be formulated, which as shown here involves
the derivation of the updating formulas for the expected sufficient statistics and
for the parameters. In future research we will look into these extensions.

8. Discussion

Since data streams are becoming more common in both real-life applications and
social science research (e.g., Hofmann, Adriaanse, Vohs, and Baumeister, 2014;
Killingsworth and Gilbert 2010; San Pedro, Baker, Bowers, and Heffernan, 2013)
there is a need for computationally feasible methods to analyze data streams. This
paper presents a novel method for estimating multilevel models in data streams
consisting of dependent observations. Because the regular EM algorithm becomes
computationally infeasible as the size of the data stream grows, we propose a
streaming EM approximation (SEMA). SEMA is obtained by adapting the E step
of the EM algorithm; that is, by using a partial E step (McLachlan and Peel,
2000) in which only the contributions to the sufficient statistics of the individual
providing the new observation are updated.

Our first simulation study showed that SEMA recovers both the fixed effect
and the individual-level (random) effects well, as encountered in grouped data
streams. Also, the variance components are well estimated, although in conditions
with very low reliability (i.e., when the residual variance is large compared to the
variance of the random intercept), a large number of data points are needed to get
estimates which are close to population values. In the second simulation study,
we examined two ways to improve the estimates obtained by SEMA early in the
data stream. First, one could occasionally preform a single EM iteration using
all individuals entered so far. Using this extra information for the estimation of
the model parameters resulted in parameters which approached the EM estimates
of the parameters faster. Second, one could use the first n (where we choose
n = 1, 000) data points of the stream as a training set. These first data points can
be used to obtain better starting values, by applying EM until convergence, after
which the stream is continued using SEMA to estimate the model parameters. The
combination of the two approaches showed an even larger improvement. Finally,
in our implementation, an individual-level effect is updated when a new data point
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enters for the person concerned. However, when individual-level prediction is the
main focus of the analysis, one could fine tune the estimation of the individual-level
effects, for example, by recomputing these at the moment that they are needed
using the most recent model parameter estimates. The proposed alterations to
SEMA, SEMA-T and SEMA-U, provide a step in this direction.

It is to be noted that the random-intercept model, as presented in Equation
3, which provided the basis for our SEMA algorithm, can also be formulated
differently: one could also interpret the current model as a factor analysis model
in which our “observations within individuals” correspond to multiple items within
individuals, to which one fits a single-factor model. The current model could then
be specified as: µ + τzj + εij, where zj ∼ N (0, 1). The (offline) EM algorithm to
fit this model, and its generalizations, is specified in detail in Rubin and Thayer
(1982). For our current model the covariances between the items are constrained,
which allows one to also in this formulation derive a online version of the EM
algorithm leading to the same update steps as presented here. However, this
seems not to be true in the general case: when the covariances are unconstrained,
the computation of the sufficient statistics in a data stream seems cumbersome,
due to the differing numbers of observations within individuals during the stream.
Still, the factor-analytic view on the current problem might, in future work, inspire
online EM approximations of more complex models.

Another issue to be noted is that ordering of the data points in the data stream
is important for the rate of convergence of SEMA. Especially in the beginning of
the data stream, if the data points are very extreme, SEMA will require more
data to find the maximum-likelihood estimates for the model parameters. This
is conceptually similar to using offline EM with poorly-chosen starting values of
the parameters: in this case also convergence will be slow. As the data stream
progresses, the influence of extreme values will lessen, since their contribution to
the CDSS will decrease at a rate of at least 1/J . Additionally, in the case that all
the data for an individual enter as a block (i.e., all at once), the individual-level
effect for this individual could be based on model parameters which are not yet
close to the maximum of the likelihood function. This could result in contributions
to the CDSS of an individual which are incorrect, and because the data entered
in a block, the incorrect contributions to these CDSS are not corrected. Even
though the effect of these incorrect contributions will decrease eventually, as new
data points (and individuals) enter, this is an additional reason to do a full EM
iteration, using all individuals, occasionally during the data stream.

With the introduction of SEMA, we provide a novel method to fit multilevel
models row-by-row. This allows for the analysis of data streams and extremely
large data sets, without revisiting the previous data. Because SEMA is an online
method, it is not necessary to store all the data points in memory. Additionally,
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SEMA requires less computational power than the EM algorithm when fitting mul-
tilevel models to data streams. These two advantages make SEMA attractive both
in terms of the number of computations and in terms of the memory requirements.
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